
Algorithms for
Imprecise Trajectories

Aleksandr Popov

Algorithm
s for Im

precise Trajectories
Aleksandr Popov

You are cordially
invited to the public
defence of my thesis

Algorithms for
Imprecise

Trajectories

on Thursday,
12th October 2023

at 16:00 in
Atlas 0.710 at

Eindhoven University
of Technology

Aleksandr Popov

Algorithms for

Imprecise Trajectories

Aleksandr Popov

The work in this thesis is supported by the Dutch Research Council

(NWO) under project no. 612.001.801.

A catalogue record is available from the Eindhoven University of Tech-

nology library.

ISBN: 978-90-386-5841-4.

Printed by Ipskamp Printing, Enschede.

This thesis has been typeset in LATEX. The body text is typeset using TEX

Gyre Pagella, an enhanced version of URW Palladio, based on Hermann

Zapf’s Palatino. The headings and the captions are typeset using Lucida

Sans, designed by Chuck Bigelow and Kris Holmes and licensed through

the TEX Users Group. The figures are drawn using Ipe and TikZ. The

cover is made using Inkscape.

Thank you to Mariana Souza for help in making the cover.

©2023 by Aleksandr Popov. All rights are reserved.

Algorithms for Imprecise Trajectories

PROEFSCHRIFT

ter verkrĳging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof. dr. S.K. Lenaerts, voor een

commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen

op donderdag 12 oktober 2023 om 16:00 uur

door

Aleksandr Andreevich Popov

geboren te Sint-Petersburg, Rusland

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling

van de promotiecommissie is als volgt:

voorzitter: prof. dr. J.J. Lukkien

1
e

promotor: prof. dr. K.A. Buchin (TU Dortmund)

2
e

promotor: prof. dr. B. Speckmann

copromotor: dr. ir. M.J.M. Roeloffzen

leden: prof. dr. M.T. de Berg

prof. dr. C. Knauer (Universität Bayreuth)

prof. dr. W.J.H. Mulzer (Freie Universität Berlin)

adviseur: dr. M. Löffler (Universiteit Utrecht)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Contents

Contents v

Acknowledgements vii

1 Introduction 1
1.1 Uncertainty . 6

1.2 Trajectory Analysis and Processing 12

1.3 Trajectory Analysis Under Uncertainty 19

1.4 Contributions . 20

2 Preliminaries 28
2.1 Curves . 28

2.2 Uncertainty . 29

2.3 Fréchet Distance . 30

2.4 Uncertain Curves and Distances 33

3 Similarity of Uncertain Curves in 2D 35
3.1 Hardness Results . 38

3.2 Algorithms for Lower Bound Fréchet Distance 70

3.3 Algorithms for Upper Bound and Expected Fréchet Distance 85

3.4 Conclusions . 97

4 Similarity of Uncertain Curves in 1D 98
4.1 Lower Bound Fréchet Distance: General Approach 99

4.2 Lower Bound Fréchet Distance: One Dimension 105

4.3 Upper Bound Fréchet Distance 117

4.4 Weak Fréchet Distance . 122

4.5 Conclusions . 131

v

Contents vi

5 Uncertain Curve Simplification 134
5.1 Overview of the Approach 137

5.2 Shortcut Testing: Intermediate Points 138

5.3 Shortcut Testing: All Points 151

5.4 Combining Steps . 162

5.5 Conclusions . 164

6 Map-Matching Queries under Fréchet Distance on Low-
Density Spanners 166
6.1 Straight Path Queries . 171

6.2 Map-Matching Segment Queries 176

6.3 General Map-Matching Queries 182

6.4 Conclusions . 186

7 Segment Visibility Counting Queries in Polygons 187
7.1 Preliminaries . 191

7.2 Point Queries . 198

7.3 Segment Queries . 202

7.4 Segment Query for a Set of Segments 213

7.5 Extensions, Discussion, and Future Work 216

8 Conclusions 226
8.1 Discussion of Results . 226

8.2 Future Work . 228

Bibliography 230

Summary 252

Curriculum Vitae 254

Acknowledgements

Four years ago, I embarked on my PhD journey. When Kevin suggested

to do a master’s project and a PhD in computational geometry, it was

an easy decision for me—I had enjoyed all the courses from ALGO,

and I knew it would be fulfilling work. Though this journey came with

unexpected twists and turns, I look at it with satisfaction. I would like

to thank the people that have made it possible.

First of all, I would like to thank Kevin for being a great supervisor,

always encouraging and finding the time to provide insight into any

problem. I would also like to thank Marcel for his thoroughness and

continuous support with drafts, questions, and doubts throughout my

project. I would like to thank Maarten for the infrequent but insightful

contributions, and for the opportunity to go to Dagstuhl. Finally, I

would like to thank Bettina for all her help and guidance at the final

stages of my PhD.

I would also like to thank the members of the committee, Mark de

Berg, Christian Knauer, and Wolfgang Mulzer, for taking the time to

review my thesis. I hope that it was a pleasant read.

During my PhD, I shared an office with some wonderful people.

Pre-COVID, I was fortunate to be seated with Bram, Dáni, and Huib,

from whom I learnt a lot about doing a PhD and about a wide array

of topics in algorithms. Later, I shared the cool office with Bram, Max,

Pantea, and Thĳs, from whom I learnt a lot about all sorts of topics

outside of our research. My gratitude goes to all of them, for all the

good times and fun discussions.

In the last year of my PhD, I also got to go on a research visit to the

University of Sydney. Thank you to Joachim for hosting, thank you

to André, Antonia, Joachim, Kevin, Maike, and Sampson for exciting

vii

Acknowledgements viii

research discussions, and thank you to Andrew, Anushka, Lindsey,

Omid, Sampson, and Zĳin for being so friendly and hospitable, making

me feel right at home. Finally, thanks to Antonia, Lea, and Lukas for

exploring Sydney and the Blue Mountains with me.

I am grateful to the current and the former members of ALGO

for many fun and insightful discussions during lunches, board game

evenings, and workshops, Andrés, Arpan, Bart, Bettina, Bram, Céline,

Dániel, Henk, Huib, Irene, Irina, Jari, Jules, Kevin Buchin, Kevin Verbeek,

Leonidas, Leonie, Leyla, Marcel, Mark, Martĳn, Max van Mulken,

Max Sondag, Michał, Morteza, Nathan, Pantea, Ruben, Shivesh, Thĳs

Beurskens, Thĳs van der Horst, Tim, Tom, Willem, and Wouter. I would

also like to thank the people I had the pleasure to collaborate with,

André Nusser, André van Renssen, Antonia, Benjamin, Bram, Carolin,

Chenglin, Frank, Ivor, Jérôme, Joachim, Kevin Buchin, Kevin Verbeek,

Maarten, Maike, Marcel, Milutin, Sampson, and Tim.

Finally, I would like to thank a few people outside the university.

Mark, I appreciate our discussions on algorithms, cybersecurity, and

everything in between over the years. Kate, it has always been great to

catch up whenever I visit; I hope to be able to do so again soon. Nikita,

through university and beyond, your friendship has meant a lot to me.

I’d like to thank my parents for all their support and advice, in recent

years and before. Mari, I do not know where I’d be now without you.

Thank you for your love and support for all these years, and looking

forward to many more years together.

Eindhoven, September 2023

CHAPTER 1
Introduction

The world is in motion. No matter what scale you choose, from molecules

to stars—nothing in the world stands still. We humans spend a significant

part of our time moving: we commute to work, we go shopping, we go

out, we exercise, we travel. Movement is an integral part of our existence

and of the way we experience the world, and has been since the dawn

of time (Figure 1.1).

As a species, we have always been interested in ourselves and the

world around us. Ever since the technological advances of the twentieth

century, we have been able to fuel our curiosity with massive amounts

200 000

70 000
100 000

25 000
40 000

50 000

30 000

15 000

12 000

4500

1500

1500

Figure 1.1. Prehistoric human migration patterns [185]. Dates indicate how

many years ago the migration happened.

1

Chapter 1. Introduction 2

Figure 1.2. Multipath effects occur when the signal reflects, e.g. from a building,

and reaches the receiver by two or more paths (red and blue in this case). This

leads to difficulties in calculating the distance to the satellite, and results in

positioning errors. From other directions, the (purple) signal may be entirely

obstructed.

of data that we collect and process. Among other types of data, we

collect trajectory data capturing movement between locations.

The massive amount of collected data means that we need to ana-

lyse the data automatically, to let humans extract insight from various

derived statistics and visualisations rather than raw data. Naturally,

trajectory analysis has been an important area of research with countless

contributions from different areas of science and engineering, motivated

by many applications where data-driven approaches can improve the

status quo. For example, trajectory analysis can improve our understand-

ing of urban mobility [193], as well as guide policies on the matter [133];

or it can help us understand the mechanisms of interaction between

animals [91]; or it can help improve performance in sport [129]; or it

can even be used to detect unusual events based on deviations in mass

movement characteristics [213].

Unfortunately, data collection and data analysis are complicated in

practice. A common way to acquire location measurements is using a

satellite navigation system, like GPS, which yields imprecise locations,

with varying degree of imprecision depending on the conditions. Satel-

lite navigation is based on measuring the time that it takes for signal to

travel between several satellites and a receiver, so any obstructions to

these signals, like in Figure 1.2, may result in positioning errors [197];

Chapter 1. Introduction 3

Professor

oor 5 Spoor 3

Un
Ei

Dom
m
el

Do
mm

(a) From original data, we
can identify the subject’s
workplace.

Professor

oor 5 Spoor 3

Un
Ei

Dom
m
el

Do
mm

(b) Each data point is ran-
domly perturbed, decreas-
ing precision.

Professor

oor 5 Spoor 3

Un
Ei

Dom
m
el

Do
mm

(c) Data from the sensitive
areas has been removed,
thus losing information.

Figure 1.3. Individual data points can be anonymised in a dataset by perturbing

the points or by removing parts of the data.

Chapter 1. Introduction 4

Figure 1.4. A storm path is inherently uncertain, because storm does not

cover a single point and often does not have a sharp boundary. Here: storm

development over the Netherlands on 5th July 2023. Image from KNMI [155].

furthermore, the geometry of the satellites with respect to the receiver

plays an important role [196]. It is, however, possible to estimate the

distortion [28] and to work further with explicitly modelled imprecision.

In other applications, we may intentionally obstruct the exact recorded

locations, like in Figure 1.3, so that we cannot tell if a specific person’s

data are included in the data set [113, 161, 182]. Depending on the

national law, it may even be illegal to precisely track and record one’s

own location using satellite navigation [144]. Finally, sometimes the

locations are the result of a forecast rather than observed events, or

capture nebulous phenomena like storms, as in Figure 1.4, so there is

inherent uncertainty in the (predicted) locations. In all these cases, there

is some imprecision in the measured locations.

Furthermore, it is usually infeasible to record trajectory data continu-

ously or even with extremely high frequency, if we are not using video

cameras. Therefore, we only know the subject’s (imprecise) locations

Chapter 1. Introduction 5

Professor

oor 5 Spoor 3

Un
Ei

Dom
m
el

Do
mm

(a) Sparse GPS data.

Professor

oor 5 Spoor 3

Un
Ei

Dom
m
el

Do
mm

(b) Bounded speed model.

Professor

oor 5 Spoor 3

Un
Ei

Dom
m
el

Do
mm

(c) Using the map.

Figure 1.5. When the GPS data are sparse (a), we do not know where the subject

was between the measurements. However, we can use physical models that

bound the object’s speed or acceleration to bound the locations possibly visited

by the subject (b); or we can use other movement context, like a road network,

to infer a likely path (c).

at the time of measurements, but do not have any information on their

movement between measurements. Our trajectory data has gaps, and

we usually need to fill them in some way, dealing with the uncertainty

between measurements. See Figure 1.5 for example approaches.

In practically oriented areas, like geographic information science, the

quality of the data has always been a concern, along with broader issues

related to the way humans interact with their environment, which can

collectively be viewed as uncertainty [115, 119]. In such areas, there is a

Chapter 1. Introduction 6

large body of work that aims to develop robust mechanisms and tools

that give useful results in the presence of uncertainty, and there are even

some sophisticated models for uncertainty; however, these models are

commonly used to preprocess the data, and are used less frequently in

the analysis algorithms directly. In computational geometry, there is a

significant amount of work on trajectory analysis and on uncertainty;

given the amount of interest in these topics, there is surprisingly little

work in their intersection.

Handling uncertainty explicitly by consciously choosing how to

model it and by incorporating it into the algorithms allows us to get

results that are resilient and transparent in terms of the quality of the

analysis. In this thesis, we aim to do just that—develop algorithms for

analysing uncertain trajectories.

1.1 Uncertainty

To get an accurate overview of the problems, we need to first consider

the notion of uncertainty: where does it come from in trajectory data

and how has it been dealt with, in computational geometry and beyond?

1.1.1 Uncertainty in Trajectory Data

Let us consider trajectory data acquisition. On the scale of humans and

animals, the most common capture method is periodically recording

measurements from a global navigation satellite system (GNSS), such as

GPS, GLONASS, Galileo, or BeiDou. Disregarding technical details

that would better fit in a dedicated manuscript,1 the principle used by

these four satellite navigation systems is the same: all the satellites of

a constellation have precisely synchronised atomic clocks, and each

broadcasts a specific signal; the receiver needs to simultaneously get an

unobstructed signal from at least four satellites. The broadcast positions

of the satellites and the time offsets allow the receiver to compute their

location in ℝ3
, with the origin at the Earth’s centre [2] (here ℝ denotes

the set of real numbers). Measurements happen with certain intervals,

so in the end, we obtain a sequence of locations paired with timestamps.

We generally want to use a reference system that easily gives us a

1
Readers interested in the workings of GNSS are referred to a book [197] on the topic.

Chapter 1. Introduction 7

position with respect to the surface of the Earth rather than its centre, so

we convert these coordinates into latitude, longitude, and height above

mean sea level, often also ignoring the latter. This is the form in which

trajectory data is usually stored after acquiring it: a sequence of triplets

of latitude, longitude, and timestamps.

In the described setting, we have to handle multiple types of uncer-

tainty introduced earlier. Some sources of errors can be mitigated or

are essentially negligible. However, other sources may give errors on

the scale of at least tens of metres. For instance, atmospheric effects

during e.g. storms can obstruct the GNSS signals [197, Sections 4.2, 5.4].

Neglecting clock corrections yields large positional errors, as well [197,

Section 5.2]. Whenever the receiver is located close to reflective con-

structions, the reflected GNSS signals produce a multipath, thus giving

the illusion of being further away from the receiver than they are and

inducing an error [197, Section 4.2]. Finally, in urban environments, the

issues arise in canyons, that is, rows of tall buildings flanking a relatively

narrow street: in addition to multipath issues, the buildings make it

more difficult to locate the receiver in the direction orthogonal to the

street due to the lack of a direct line of sight to the relevant satellites [122].

Sometimes no GNSS-based location is available: for example, in

tunnels, inside buildings, or under water. In some of these cases,

there may still be alternative ways of locating the tracked object. Wi-Fi
positioning can be very accurate [156], but requires the access points to

be in a database so we know where they are located; setting up such a

system requires a dedicated effort, so trajectory data rarely stems from

these systems. Systems based on GSM location have significantly worse

accuracy, generally not better than 50 metres [166, Table 2]. Previously,

land-based radio beacon systems like Decca, Omega, Loran-C, Alpha,

or Chayka were used for navigation, with comparatively large errors,

but these are not relevant to readers that are not historically inclined.

As we have just discussed, for most used sources of trajectory data,

we need to deal with uncertainty in the measurements. The other type of

uncertainty we mentioned, uncertainty between measurements, arises

naturally with all of these methods as we measure the location at discrete

time steps rather than continuously. Depending on the requirements on

the battery life in tracking devices, the measurements may intentionally

be very sparse. The nature of trajectory data thus dictates the challenges

related to handling uncertainty.

Chapter 1. Introduction 8

1.1.2 Uncertainty in Computational Geometry

In computational geometry, there are well-known models that bridge

the divide between the theoretical models of computation using real

numbers and the real-life computers using bounded-precision floating-

point numbers, implemented in state-of-the-art libraries like CGAL [210].

Indeed, some early inspiration for modelling data uncertainty stems

from this line of research: Salesin, Stolfi, and Guibas [195] proposed

a way to model imprecision that arises in computation, where they

assume every point ends up somewhere in a disk of radius 𝜀 during

the computation, but this approach has also been widely used to model

data imprecision. Let us discuss the different proposed models.

Modelling uncertain points. We first focus on modelling measurement

uncertainty. The models may have a different level of complexity, with

the more complex ones representing the reality better; but they are also

more difficult to work with, both conceptually and computationally.

Suppose we are working on a simple problem, like finding the convex

hull of a point set in two dimensions. Intuitively, the convex hull is the

smallest convex shape that contains all the points. If we are to work on a

set of uncertain points, we have several choices to make when picking a

model. (See also Figure 1.6.) One choice relates to the type of questions

we want answered.

Probabilistic questions. Examples may be approximating a distribu-

tion of the number of points on the convex hull, or some other

variable of interest; or computing expected values of these vari-

ables. Such questions require us to model the possible point

locations with probability distributions, then derive the random

variable of interest as a function of the probabilistic points. While a

very flexible approach, it is also generally more difficult to use: it is

sometimes difficult to propagate the distributions cleanly through

the problem, and it may be computationally difficult to obtain the

results.

Extremal questions. In this case, we do not make any statements about

the likelihood of the point’s location, but only describe the possible

locations. The questions are mostly related to the largest or smallest

values of certain parameters. For example, asking for the largest

or smallest area of a convex hull of a set of uncertain points is

Chapter 1. Introduction 9

(a) Existential model. (b) Indecisive model. (c) Imprecise model.

Figure 1.6. We can pick any combination here to model uncertainty for the

algorithmic questions about the convex hull of a point set. In the existential

model, some points may be off. In the indecisive model, we pick a point of each

colour. In the imprecise model, we pick a point in the region. All of these can

be assigned a probability distribution.

an extremal question. To resolve these, we generally need some

sharp bounds on the possible point locations, but further can treat

the problem geometrically, without involving probabilities.

The second major decision is to pick the type of uncertainty regions

that we use; this choice is orthogonal to the first one. We assume that

we are operating in ℝ𝑑
, that is, 𝑑-dimensional real coordinate space.

Existential model. Also referred to as 0/1 model, each uncertain point

is either ‘on’ or ‘off’. In other words, an uncertain point has

one precise location, and we may choose whether to include it

or not include it in the point set. This can be done in a way to

compute the lower or upper bounds on some parameter (extremal

questions); or each point may be assigned a probability of being

‘on’ (probabilistic questions). The motivation here is e.g. in radio

transmission, where certain repeaters may be off and we still want

to establish connectivity.

Indecisive model. In this model, each uncertain point is a finite set of

possible discrete locations. For some questions, this model may

be viewed as an extension of the existential model, although this

is not true in general—there may be no way to express a point

being off in this model. The problems in the indecisive model are

also referred to as colour-spanning problems. Essentially, instead

of having 𝑛 uncertain points with 𝑘 options per point, we have 𝑚

points with 𝑛 colours, and we need to select exactly one point of

each colour while solving the problem. Sometimes we are allowed

to select at most one point of every colour, which is equivalent to

Chapter 1. Introduction 10

combining the indecisive and the existential models.

This model is used as a simplified version of complex probabilistic

models. Suppose we model a point location with a distribution;

instead of working with it directly, we can sample 𝑘 points 𝑝𝑖 ∈ ℝ𝑑
,

𝑖 ∈ {1, 2, . . . , 𝑘} from this distribution, then for sufficiently large

𝑘, the indecisive point 𝑈 = {𝑝1 , 𝑝2 , . . . , 𝑝𝑘} approximates the

distribution. If all the samples are assigned equal probability, we

can now approximate the solutions to the probabilistic questions

in the original model with less algebraic complexity. If we ask

extremal questions, we approximately decide whether something

is true with high probability in the original model.

Imprecise model. In this model, each uncertain point is a compact

connected region 𝑈 ⊂ ℝ𝑑
. Commonly used examples include

balls in ℝ3
; or disks, line segments, and convex polygons in ℝ2

; or

intervals in ℝ. The model with 𝜀-disks [195] introduced earlier is

a special case of this one.

We list some examples of work in computational geometry that uses

these models outside the context of trajectory analysis. See Section 1.3

for an overview of the work on explicitly modelled uncertain trajectories.

When uncertainty in computational geometry started to get traction,

the first set of systematic work has focused on basic geometric problems.

In the existential model, there has been work on probabilistic queries for

range searching, skylines, and nearest neighbours [215], as well as on

separability [112]. In the imprecise model, the results mostly considered

with the upper and the lower bounds for problems like finding the

closest pair [31], the smallest bounding box, the smallest enclosing circle,

and the minimum width strip on a set of imprecise points modelled as

disks, squares, and line segments [171, 174]. In similar vein, there is

work on the diameter [171, 174], perimeter of a polygon, and finding

tours [172] on uncertain points. There is also an extensive set of early

results on convex hulls [12, 158, 173, 208].

A bit more recently, similar geometric problems have been studied

on indecisive points [149]. In this model, there is work on finding

the smallest axis-aligned [3] and arbitrary [90] rectangles or strips

that contain the points. More complex problems, like unit disk graph

connectivity [107] or covering [25], have been studied in this model too.

Since then, many more geometric problem have been studied under

Chapter 1. Introduction 11

uncertainty, including nearest-neighbour finding [6, 10], covering [17,

21], TSP [33, 84, 146], range queries [1, 4, 8, 9, 14, 134, 169], skylines [5,

143, 190], visibility in uncertain polygons [54, 68], Voronoi diagrams [200,

207], and clustering [150].

There are a few research directions that stand out otherwise. For

instance, triangulations in general and Delaunay triangulations in par-

ticular have been considered in a preprocessing setting: we are given

a set of uncertain points and want to construct a data structure for

fast triangulation; at query time, we get a precise point set, with each

precise point realising an uncertain one, and we want to compute the

triangulation fast [55, 92, 159, 177]. In the same model, there are also

results on sorting [142] and computing the Pareto front [143] and the

onion decomposition [175]. The use of uncertainty in this model is quite

different from the previously mentioned research.

Some of the aforementioned research uses the probabilistic model

and not the extremal one [5, 33, 54, 61, 146, 176]. Problems on uncertain

terrains [97, 120, 121] have been studied, too. Finally, there are efforts

to visualise uncertain data and solutions to various problems under

uncertainty [203, 214]. Over all, there is a very broad range of results on

geometric computing with uncertainty.

Getting closer to problems on trajectories, there is research on moving

points [62, 66, 104, 105, 106, 191, 202]. The uncertainty model is generally

that we know the location of the point precisely when we query its

location, and otherwise its uncertainty region grows. The main questions

then concern the query strategies to keep the uncertainty under control.

Nevertheless, the flavour is still quite different from trajectory analysis.

In Section 1.3, we bridge the gap and discuss the research into trajectory

analysis under uncertainty.

1.1.3 Uncertainty in Other Areas

Uncertainty is certainly a very broad and vague term, referring to

different concepts in different areas, and it would be unfair to other

disciplines to only describe the efforts made in computational geometry.

The entirety of statistics, for instance, is built on uncertainty: we observe

some data that may or may not be modelled by a given probability

distribution; we can only be certain about this to a certain degree,

expressed with the 𝑝-value of a statistical test. We accept a certain level

Chapter 1. Introduction 12

of uncertainty, but we ensure that it is low enough before concluding

our analysis. In statistics, uncertainty is a fundamental concept; if one

were to ignore it, the field would not exist.

A similar attitude towards uncertainty is traced to machine learning

through the Vapnik–Chervonenkis theory. When learning a classifier,

we only use the training data, in the hopes that it represents a real

underlying distribution. We can use statistics to guide us to minimise

the empirical risk, that is, the likelihood of a mistake based on the data

set. For instance, this approach is taken by support vector machines. We

explicitly acknowledge the uncertainty in the area that does not contain

any data points, and model it consciously to reduce its impact.

Uncertainty has also gotten a lot of attention in geographic informa-

tion science and in movement ecology, specifically applied to trajectory

data, as we discuss in Section 1.3.

1.2 Trajectory Analysis and Processing

Having discussed the concept of uncertainty, we now need to cover the

traditional tasks and methods of trajectory analysis that do not explicitly

model uncertainty. In general, a trajectory is a sequence of measurements,

each including a location, a timestamp, and associated data. To simplify

the setting, trajectories stored as discussed in Section 1.1.1 (latitude,

longitude, optionally elevation) are usually projected from the geoid

into the metric space on ℝ2
or ℝ3

equipped with Euclidean distance.

Fortunately, there is usually a fitting projection that keeps subsequent

analysis accurate.

The field of trajectory analysis is vast [91]. In the following overview,

we focus on several important analysis tasks, namely, simplification

(reduce the number of measured points while keeping most of the

information), clustering (organise a set of trajectories into groups),

and map matching (snap a noisy trajectory to a known map). (See

Figure 1.7.) An observant reader will notice that all three tasks heavily

rely on the notion of trajectory similarity, which should capture how

closely two trajectories are related. We discuss similarity measures like

the Hausdorff and the Fréchet distances in detail in Section 1.2.1.

Chapter 1. Introduction 13

(a) Simplification. (b) Clustering. (c) Map matching.

Figure 1.7. A common preprocessing task is to simplify a trajectory while

roughly preserving its shape. Other common tasks include clustering and map

matching.

Simplification. Captured trajectory data are naturally quite complex

and noisy. It may be useful to simplify the data for the purposes of con-

serving storage and speeding up analysis and visualisation, by reducing

the number of stored data points without significantly distorting the

trajectory (see Figure 1.7a). This ties in with the question of similarity: to

make sure we do not distort the trajectory too much, one often imposes

a threshold on some similarity measure between the original trajectory

and its simplification.

There are two common ways to approach simplification: either the

points of the simplified trajectory are a subsequence of the original

trajectory, or they are placed freely. All of the work discussed here does

not make special provisions for time, treating trajectories as sequences of

locations. By far the most common approach is to select a subsequence of

the input points, and to measure the deviation between two consecutive

output points and the corresponding subtrajectory, rather than between

the complete input and output curves.

A simple well-known heuristic is the Ramer–Douglas–Peucker al-

gorithm [94, 192]. It implicitly uses the Hausdorff distance to bound the

deviation from the input curve; the approach by Agarwal, Har-Peled,

Mustafa, and Wang [11] uses the Fréchet distance instead to efficiently

compute an approximate solution. Another commonly used algorithm

is due to Imai and Iri [145]: this one provides guarantees on the quality of

the output and can be adapted to use either the Hausdorff or the Fréchet

distance. There are many related approaches [11, 29, 37, 53, 70, 123, 132,

181]. There is also some work on the approaches to simplification [152]

that do not restrict the output to the input points, or that compute the

distances on the complete trajectories [160].

Chapter 1. Introduction 14

Clustering. We often get a massive number of trajectories, difficult to

visualise clearly and impossible to analyse manually. However, many

of these may exhibit similar behaviour, so perhaps we do not need to

analyse all trajectories separately, but rather study the behaviour of

groups of trajectories. This problem is called clustering: group the set

of entities into a small number of subsets, so that each subset contains

similar entities (see Figure 1.7b). As you may surmise from the general

phrasing, this problem can be stated on many types of entities, not only

trajectories, as long as the entities live in a suitable metric space.

Indeed, a lot of work on clustering is done on point sets, and it

is widely used in the machine learning community, among others.

Prominent examples of clustering algorithms include many heuristics

for the NP-hard problem of 𝑘-means clustering, as well as the related

𝑘-medians and 𝑘-medoids problems. The goal in each of these problems

is to partition the input into 𝑘 clusters, each with its own centroid. There

are also density-based algorithms, such as DBSCAN [103], that consider

clusters as areas of high density; and hierarchical clustering algorithms

like single-linkage clustering and complete-linkage clustering that create

a hierarchy of clusters bottom-up, merging the clusters closest together

on every level of the hierarchy; the difference lies in how the distance

between clusters is defined. All of these approaches could be easily

adapted for use on trajectories, if each trajectory is represented as a point

in an appropriate metric space.

However, there is also some work targeting trajectory clustering

specifically, for example, work on 𝑘, ℓ -centre clustering, where we pick

a centroid per cluster, like in the 𝑘-medians or 𝑘-means problem, and

ensure that the centroid has complexity at most ℓ , i.e. that the trajectory

has at most ℓ measurements [47, 48, 49, 98]. Finally, there is work

tracking groups (clusters) of moving entities over time, which can be

seen as clustering subtrajectories [44], and work on detecting patterns in

groups of moving points [124].

Map matching. Very often, when working with trajectories, we know

they move on a network. Cars generally drive on roads, aeroplanes follow

air corridors, and trains are bound to the tracks—these are all examples of

entities moving on networks. Even if the data we have collected is noisy,

as long as we know that it comes from an entity moving on a network,

we can handle the uncertainty in the best possible way: by decreasing its

Chapter 1. Introduction 15

amount. In other words, even if a measurement is uncertain, we know it

must have been on the network, and this knowledge allows us to make

it significantly more precise. The map-matching problem is as follows:

given a map (network) and a trajectory, both embedded in ℝ2
or ℝ3

,

find a path on the map closest to the trajectory (see Figure 1.7c). Map

matching has received considerable attention, with multiple surveys

comparing approaches on different types of data [19, 71, 138, 164, 212,

217]. Recently, there has also been a host of work using the Fréchet

distance between the trajectory and the candidate paths on the map [22,

35, 69, 79, 80, 128, 201]. It is also possible to combine multiple sources of

extra information, for instance, the map and some physical limitations

on the movement (maximum acceleration, etc.) to decrease uncertainty

even further [88]; and it is possible to connect to the points that are not

directly on the network [26]. We can also look at a related problem of

reconstructing a map based on a set of trajectories [16, 40, 89].

1.2.1 Trajectory Similarity

One of the most fundamental analysis tasks on trajectories is quantifying

their similarity. A similarity measure that effectively captures the

relevant differences between trajectories is essential to further analysis

and processing tasks like simplification or map matching. Furthermore,

we can plug a suitably defined similarity measure into general structures

for e.g. nearest neighbour search or clustering, and thus elegantly reuse

the work done on point sets.

There are many ways to group similarity measures. We list some

common features to consider [205, 209]:

Absolute or relative time and space. Depending on the desired notion

of similarity, we may want to treat trajectories as translation

invariant, that is, we may want to ignore the absolute spatial

separation between them. For example, if we are comparing

handwritten signatures, we do not want to capture the fact that

they were placed in different locations on the page. Similarly, we

may want to treat time as relative rather than absolute if we are

trying to compare paths that people take through a railway station:

we do not necessarily care that one person was there two minutes

later, but we do still care about their speeds. These concepts may

Chapter 1. Introduction 16

sometimes be implemented during preprocessing, but other times

they need to be incorporated into the similarity measure.

Incorporating time. Depending on the application, time may be treated

as an extra regular dimension; as a special dimension; or ignored.

Note that treating time as an extra dimension is similar to ignor-

ing it: we just lift the points into one dimension higher. One

simple measure that treats time in a special way is the lock-step
Euclidean distance [209], which computes the total distance between

time-aligned pairs of points; a more sophisticated example is the

Skorokhod distance [180], which captures both the maximum dis-

tance between pairs of points under distorted time, and the needed

time distortion. Most similarity measures used in computational

geometry do not have special provisions for time.

Metric or non-metric. A metric on a set 𝔻 is a function 𝑑 : 𝔻 ×𝔻 → ℝ

satisfying three properties: 𝑑(𝑥, 𝑥) = 0 for any 𝑥 ∈ 𝔻; symmetry,

i.e. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for any 𝑥, 𝑦 ∈ 𝔻; and triangle inequality,

i.e. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for any 𝑥, 𝑦, 𝑧 ∈ 𝔻. It is worth

considering whether a similarity measure is a metric—many

similarity measures do not satisfy the triangle inequality, and some

are not symmetric, both limiting the scope of their application.

Discrete or continuous. Some similarity measures are continuous, that

is to say, they operate on the entire inferred path of an object;

others are discrete, so they only take into account distances between

measured points. Discrete measures usually perform poorly if the

sampling is irregular; to apply continuous measures, we need to

interpolate the path between the measurements in some way.

One similarity measure commonly used as a baseline is the Hausdorff
distance [139, Kapitel VIII, § 6]. Defined for subsets of a metric space, it

can be applied to trajectories by treating them as sets of measurements

rather than sequences. Alternatively, with some method to fill in the

gaps between measurements, it can be applied to entire paths treated as

sets. It is a metric; but it does not capture the fact that trajectories are

sequential, thus often giving unnatural results. (See Figure 1.8.)

There are several common similarity measures coming from time

series analysis, loosely related to the edit distance. In the edit distance
on real sequence [82], we traverse the trajectories only considering the

measurements: we may skip the current measurement, adding one edit;

Chapter 1. Introduction 17

(a) Hausdorff distance. (b) Fréchet distance.

Figure 1.8. The Hausdorff distance gives unnatural results for trajectories

compared to the Fréchet distance. In this example of dissimilar trajectories, the

Hausdorff distance is much lower than the Fréchet distance.

or we may match it to the current point on the other trajectory, only

adding one edit if the points are too far apart. This measure is robust to

outliers, since skipping points does not incur a prohibitive cost, but it is

a non-metric, because the triangle inequality does not hold.

The longest common subsequence (LCSS) [211], adapted to trajectories,

is a related measure. We traverse the two trajectories and consider points

equivalent if they are close enough to each other in space; the resulting

value is the maximum number of equivalent points. Just like the edit

distance on real sequence, LCSS is robust to outliers, but a non-metric.

Perhaps the most established similarity measure is the dynamic time
warping (DTW) [163], seemingly stemming from speech recognition

techniques. It is a discrete measure, and its main feature is enforced

monotonicity: we traverse the trajectories from start to end, not going

back and not skipping over measurements. Of all the ways to traverse

the trajectories, we pick the one that minimises the sum of all pairwise

distances. Unfortunately, the triangle inequality does not hold for DTW,

so it is also a non-metric. There is also a continuous version of this

measure called continuous dynamic time warping [36, 59] that captures

trajectory similarity fairly naturally, but to date, there are no efficient

algorithms for it in two dimensions or higher.

Finally, the Fréchet distance [114] is similar to DTW, but it instead

minimises the largest distance, it is continuous, and it is a metric,

making it by far the preferred similarity measure. It captures the

sequential nature of trajectories naturally, and it is straightforward

to compute in 𝒪(𝑚𝑛 log𝑚𝑛) time on two trajectories with 𝑚 and 𝑛

measurements, respectively [23, 117]. Further research show that it can

be computed slightly faster [45], and assuming the Strong Exponential

Chapter 1. Introduction 18

(a) Fréchet distance. (b) Weak Fréchet distance.

Figure 1.9. For the Fréchet distance and the weak Fréchet distance, we establish

the matchings differently, capturing slightly different notions of similarity.

Time Hypothesis, it cannot be computed or even approximated well

in strongly subquadratic time [39, 60]. However, for several restricted

versions the Fréchet distance can be calculated faster, for example, for

𝑐-packed curves [96], when the edges between the measurements are

long [125], or when the alignment of the curves is restricted [41, 179].

There is also a discrete variant, fittingly called the discrete Fréchet
distance [7, 100], which can be computed in 𝒪(𝑚𝑛 log log 𝑛/log 𝑛) time, faster

than the Fréchet distance, but may yield unexpected results when facing

irregular sampling. Unless SETH fails, it also cannot be approximated

well in strongly subquadratic time [39, 60].

A relaxation where one has to move continuously, but not necessarily

monotonously, is called the weak Fréchet distance [23]. It can be computed

in quadratic time [137], and cannot be approximated well in strongly

subquadratic time unless SETH fails, except in 1D, where a linear-time

algorithm exists [43, 60]. One can define the discrete weak Fréchet

distance in a straightforward way, and it can be computed in quadratic

time as well. See Figure 1.9.

There are many further variants, like the Fréchet distance with

shortcuts [63, 87, 95], the generalised Fréchet distance [136], the Fréchet

gap distance [108, 111], the 𝑘-Fréchet distance [24], or the translation-

invariant Fréchet distance [38, 110]. The Fréchet distance and its variants

have found many applications, not only in trajectory analysis, but also in

the context of protein alignment [147] or handwriting recognition [216].

In this thesis, we focus on the Fréchet distance and its variants. The

reason for that is that it is by far the most natural and useful similarity

measure for trajectories that captures the natural notions of similarity

well and is an easy to compute metric, allowing its efficient use in many

trajectory analysis tasks like the ones listed earlier. We discuss the

Chapter 1. Introduction 19

definitions and the standard algorithms in Section 2.3.

1.3 Trajectory Analysis Under Uncertainty

As we have seen, trajectory analysis is a broad area of research, and

there has been a lot of interest in computing under uncertainty. Given

the wealth of work on uncertain point sets in the models of Section 1.1.2,

it is perhaps surprising that there is little comprehensive research into

trajectory analysis using these models.

Measurement uncertainty. For the fundamental problem of trajectory

similarity with uncertain measurements modelled as in Section 1.1.2,

there has been little research prior to this thesis, and we are not even

aware of any work in these models for other trajectory analysis tasks.

Knauer, Löffler, Scherfenberg, and Wolle [154] have considered the

directed Hausdorff distance between imprecise point sets; it can be

applied on trajectories, but Hausdorff distance in general does not

capture the ordering of the measurements, and hence does not reflect

trajectory similarity in a natural way, unlike the Fréchet distance.

Buchin and Sĳben [65] have proposed an algorithm for computing the

discrete Fréchet distance on uncertain points described by probability

distributions. However, they consider a different kind of a problem—

their goal is to determine a Fréchet alignment that maximises the

probability that the distance is below a given threshold. In other words,

the computed value is a lower bound for the probability under our

definition, because some possible uncertain point locations may require

a different alignment.

The discrete Fréchet distance has also been studied in the extremal

model. Ahn, Knauer, Scherfenberg, Schlipf, and Vigneron [18] have

solved the lower bound problem for the discrete Fréchet distance,

where we aim to find the smallest discrete Fréchet distance over all the

possible point locations; Fan and Zhu [109] have shown that the upper

bound problem is NP-hard in some settings. We study multiple related

problems in this thesis.

Uncertainty between measurements. There has been significantly

more research into modelling the uncertainty between measurements.

Chapter 1. Introduction 20

The concept of space–time prisms, where the speed of the object between

measurements is assumed to be bounded, has been applied to traject-

ory similarity [64] and to map matching [165]. In disciplines such as

movement ecology and biology, there is a long tradition of using ran-

dom walks, such as Brownian bridges, Ornstein–Uhlenbeck processes,

Wiener processes, or Markov chains. There are many related mod-

els [157] that further build upon these stochastic processes to capture

the relevant information; see a survey [86] for a more detailed overview.

In geographic information science, there is also a substantial body of

work [178, Chapter 5] on analysis in presence of noise [72, 183] and on

interpolation [162], as well as other topics involving uncertainty [83].

1.4 Contributions

We seek to expand the study of algorithms for trajectory analysis that

model uncertainty. We next describe the contributions of this thesis.

First, we discuss trajectory analysis with measurement uncertainty in

Chapters 3 to 5. In particular, we first discuss the natural questions for

the variants of the Fréchet distance in two dimensions in Chapter 3; as

many turn out to be NP-hard, we study the one-dimensional case in

Chapter 4. We then discuss trajectory simplification under uncertainty.

Furthermore, we build upon the traditional view in Chapter 6 to utilise

context in trajectory analysis without modelling uncertainty explicitly,

by doing map matching; finally, we provide some contributions to

visibility in simple polygons under uncertainty in Chapter 7.

In Chapters 3 to 6, we use the Fréchet distance as the base. We

therefore do not make any special provisions for the time stamps. To

make that clear, we talk about uncertain curves rather than uncertain

trajectories. In this thesis, we adopt the distinction that a trajectory has

associated time stamps, but a polygonal curve is simply a sequence of

points in some space and does not treat time in any special way. We

show an example in Figure 1.10.

Similarity of Uncertain Curves in 2D

In Chapter 3, we discuss the extremal questions on the (discrete) Fréchet

distance under uncertainty. In particular, we consider the lower bound

Chapter 1. Introduction 21

(0, 0) at 10:01

(1, 1) at 10:05

(0, 2) at 10:07

(2, 4) at 10:12

(a) Trajectory data. (b) Polygonal curve. (c) Imprecise curve.

Figure 1.10. Captured trajectory data is a sequence of measurements with

timestamps. By treating it as a sequence of locations without time having

a special role, we get a polygonal curve. If we capture imprecision at each

measurement, we get an imprecise curve, with a possible true curve shown in

red.

and the upper bound (discrete) Fréchet distance, that is, the smallest and

the largest Fréchet distance for any possible choice of point locations.

There are known algorithmic results for the lower bound discrete

Fréchet distance [18], originally stated for disks as uncertainty regions,

but easily extensible to line segments and to indecisive points. We study

the upper bound Fréchet distance, both the discrete and the continuous

variants, and find that it is NP-hard to decide whether it is above a

given threshold in several models, namely, for indecisive points and

for imprecise points modelled as line segments and as disks. We also

study the lower bound Fréchet distance, showing that it is computable

in polynomial time for indecisive points, but it is NP-hard to decide if it

is below a threshold for imprecision modelled as vertical line segments.

We also consider a probabilistic question: assuming a uniform

distribution over each uncertain point, what is the expected (discrete)

Fréchet distance? It turns out to be #P-hard to answer this question for

indecisive points and for imprecise points modelled using line segments.

This set of hardness results is summarised in Table 1.1.

On the positive side, we present a FPTAS in constant dimension for

computing the lower bound Fréchet distance when Δ/𝛿 is polynomially

bounded, where Δ is a bound on the diameter of an uncertainty region

Chapter 1. Introduction 22

Table 1.1. Hardness results for the decision problems in 2D. Ahn et al. [18]

solve the lower bound problem for disks, but their algorithm extends to the

indecisive curves as well as line-segment imprecision.

indecisive

imprecise

disks line segments

DFD

LB polynomial [18] polynomial [18] polynomial [18]

UB NP-complete NP-hard NP-hard

Exp #P-hard — #P-hard

FD

LB polynomial — NP-hard

UB NP-complete NP-hard NP-hard

Exp #P-hard — —

and 𝛿 is the lower bound Fréchet distance of interest. We also show a near-

linear-time 3-approximation for the decision problem with uncertainty

modelled as 𝛿-separated convex regions, which can be turned into a

9-approximation for computing the lower bound Fréchet distance.

For the upper bound and the expected (discrete) Fréchet distance,

we also present polynomial-time algorithms on indecisive curves with

time bands, when the allowed Fréchet matchings are restricted.

Of the results described above, the author has worked on those

pertaining to the upper bound and the expected (discrete) Fréchet

distance, as well as on the algorithm for the lower bound Fréchet

distance on indecisive curves. The results in this chapter are available

in the following publications:

Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin

Raichel, and Marcel Roeloffzen. ‘Fréchet Distance for Uncertain Curves’. In:

ACM Transactions on Algorithms 19.3, 29 (2023). issn: 1549-6325. doi: 10.1145/

3597640.

Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin

Raichel, and Marcel Roeloffzen. ‘Fréchet Distance for Uncertain Curves’. In:

Proceedings of the 47th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2020). Ed. by Artur Czumaj, Anuj Dawar, and Emanuela

Merelli. Leibniz International Proceedings in Informatics 168. Wadern, Ger-

many: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020, 20. isbn:

978-3-95977-138-2. doi: 10.4230/LIPIcs.ICALP.2020.20.

https://doi.org/10.1145/3597640
https://doi.org/10.1145/3597640
https://doi.org/10.4230/LIPIcs.ICALP.2020.20

Chapter 1. Introduction 23

Table 1.2. Complexity results for the lower bound problems for uncertain

curves in Chapter 4. The upper bound Fréchet distance remains NP-hard.

Fréchet distance weak Fréchet distance

discrete continuous discrete continuous

1D polynomial [18] polynomial NP-hard polynomial

2D polynomial [18] NP-hard (Ch. 3) NP-hard NP-hard

Similarity of Uncertain Curves in 1D

In Chapter 4, we take the problems of the previous chapter to one

dimension. Evidently, any setting where an efficient algorithm exists in

two dimensions is still solvable in polynomial time in one dimension.

For instance, the lower bound Fréchet distance with indecisive curves

can be computed in polynomial time, as well as the lower bound discrete

Fréchet distance with both indecisive and imprecise curves. In this

chapter, we show that, unlike in two dimensions, the Fréchet distance

on imprecise2 curves can be computed in polynomial time.

We also formulate a general approach that leads to exponential-time

algorithms in two dimensions and beyond, but may be helpful in further

delineating the boundary of hardness.

We show that the upper bound (discrete) Fréchet distance remains

NP-hard in one dimension both for indecisive and imprecise curves.

Finally, we study the lower bound weak Fréchet distance. We show

that it can be computed in polynomial time with uncertainty modelled

as intervals in 1D. In contrast, we present an NP-hardness argument for

the lower bound discrete weak Fréchet distance both with indecisive

and imprecise curves. This argument also implies that the continuous

version becomes hard in two dimensions. See Table 1.2 for a summary.

The author has contributed to the results not pertaining to the weak

Fréchet distance. The work in this chapter has been published in:

Kevin Buchin, Maarten Löffler, Tim Ophelders, Aleksandr Popov, Jérôme

Urhausen, and Kevin Verbeek. ‘Computing the Fréchet Distance between

Uncertain Curves in One Dimension’. In: Computational Geometry: Theory &
Applications 109, 101923 (2023). issn: 0925-7721. doi: 10.1016/j.comgeo.2022.

101923.

2
In one dimension, the only reasonable type of imprecision region is an interval.

https://doi.org/10.1016/j.comgeo.2022.101923
https://doi.org/10.1016/j.comgeo.2022.101923

Chapter 1. Introduction 24

(a)

(b)

(c)

𝜀

Figure 1.11. (a) An uncertain curve modelled with convex polygons and a

potential realisation. (b) A valid simplification under the Hausdorff distance

with the threshold 𝜀: for every realisation, the subsequence is within Hausdorff

distance 𝜀 from the full sequence. (c) An invalid simplification under the

Hausdorff distance with the threshold 𝜀: there is a realisation for which the

subsequence is not within Hausdorff distance 𝜀 from the full sequence.

Kevin Buchin, Maarten Löffler, Tim Ophelders, Aleksandr Popov, Jérôme

Urhausen, and Kevin Verbeek. ‘Computing the Fréchet Distance between

Uncertain Curves in One Dimension’. In: Proceedings of the 17th International
Symposium on Algorithms and Data Structures (WADS 2021). Ed. by Anna Lubiw,

Mohammad Salavatipour, and Meng He. Lecture Notes in Computer Science

12808. Berlin, Germany: Springer, 2021, pp. 243–257. isbn: 978-3-030-83507-1.

doi: 10.1007/978-3-030-83508-8_18.

Uncertain Curve Simplification

As we discussed earlier, trajectory simplification is an important pro-

cessing step: we may want to reduce storage or improve computation

times of further analyses while keeping the trajectory close to the ori-

ginal data. In Chapter 5, we aim to define what this means under

uncertainty. The particular problem we choose is as follows: find the

shortest subsequence of uncertain points so that no matter what the true

location of each uncertain point is, the resulting polygonal curve is a

valid simplification of the original polygonal curve under the Hausdorff

or the Fréchet distance. We consider this problem with indecisive points

as well as imprecise points modelled as disks, line segments, and convex

polygons. In all the settings, we present polynomial-time algorithms for

this problem. See Figure 1.11.

https://doi.org/10.1007/978-3-030-83508-8_18

Chapter 1. Introduction 25

Barcelona
- Plaça

Catalunya
Carre

r d
'Aragó

Carre
r d

'Arag
ó

Via Augusta

Carrer de Muntaner

Carrer d'Aribau

ró de
terols
7 m

Figure 1.12. Given a map (of Barcelona), we can preprocess it so that, given a

query red trajectory, we efficiently compute the purple path of the map. Map

data from OpenStreetMap [188].

The results of Chapter 5 have been published as:

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen. ‘Un-

certain Curve Simplification’. In: Proceedings of the 46th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2021). Ed. by Filippo

Bonchi and Simon J. Puglisi. Leibniz International Proceedings in Informatics

202. Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2021, 26. isbn: 978-3-95977-201-3. doi: 10.4230/LIPIcs.MFCS.2021.26.

Map-Matching Queries on Low-Density Spanners

In Chapter 6, we take a more traditional approach and study the map-

matching problem on a realistic road network. (See Figure 1.12.) We

show an efficient algorithm that matches an arbitrary noisy trajectory

to a known realistic map. There are somewhat impractical conditional

lower bounds on this problem, even if the map is known in advance.

We circumvent them by imposing practical restrictions on the map that

are satisfied by most real-world maps. We further ensure that the map

complexity does not slow down the analysis by preprocessing the map.

The results of Chapter 6 are also available as:

https://doi.org/10.4230/LIPIcs.MFCS.2021.26

Chapter 1. Introduction 26

Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and

Sampson Wong. Map-Matching Queries under Fréchet Distance on Low-Density
Spanners. Presented at EuroCG 2023, Barcelona, Spain. 2023. url: https://dccg.

upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.

pdf (visited on 01/07/2023).

Segment Visibility Counting Queries in Polygons

In the presence of uncertainty, a typically interesting question is to

determine if two subjects met. Extending the concept leads us to

visibility questions: how likely is it that two objects saw each other? We

study a related problem in simple polygons. Two objects see each other

if and only if there is a line of sight between them unobstructed by the

polygon boundary. Ideally, we would solve this problem in presence

of measurement uncertainty, with some probability distribution on the

regions. Instead, we can sample the probability distributions, getting

indecisive points. If every point has 𝑘 options, we can consider all 𝑘2
line

segments connecting two consecutive points. We can even incorporate

uncertainty between measurements by adding intermediate locations.

If we can count the pairs of such line segments on which the objects

see each other, then we can approximate the probability of them seeing

each other. In Chapter 7, we make an important step in this direction

by showing how to efficiently count the pairs of line segments that are

weakly visible to each other. See Figure 1.13.

The results of Chapter 7 have been published as:

Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr

Popov, Marcel Roeloffzen, and Frank Staals. ‘Segment Visibility Counting

Queries in Polygons’. In: Proceedings of the 33rd International Symposium on
Algorithms and Computation (ISAAC 2022). Ed. by Sang Won Bae and Heejin

Park. Leibniz International Proceedings in Informatics 248. Wadern, Germany:

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 58. isbn: 978-3-95977-

258-7. doi: 10.4230/LIPIcs.ISAAC.2022.58.

Other Results

In addition to the results presented in this thesis, the author has worked

on centre-based clustering with continuous dynamic time warping [36]

and on oriented spanners [52].

https://dccg.upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf
https://dccg.upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf
https://dccg.upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf
https://doi.org/10.4230/LIPIcs.ISAAC.2022.58

Chapter 1. Introduction 27

𝑝
𝑞

Figure 1.13. We preprocess a simple polygon and the blue line segments so

that we can efficiently count how many are weakly visible to the red query

segment.

CHAPTER 2
Preliminaries

In this chapter, we introduce the notation and the definitions relevant to

the rest of this thesis, as well as recall the definitions and computational

approaches to the (discrete) Fréchet distance.

2.1 Curves

Denote a sequence of points in ℝ𝑑
by 𝜋 = ⟨𝑝1 , . . . , 𝑝𝑛⟩. For only two

points 𝑝, 𝑞 ∈ ℝ𝑑
, we also use 𝑝𝑞 instead of ⟨𝑝, 𝑞⟩. This notation can also

be used if we interpret 𝜋 as a polygonal curve on 𝑛 vertices (of length 𝑛).

It is defined by linearly interpolating between the successive points in

the sequence and can be seen as a continuous function, for 𝑖 ∈ [𝑛 − 1]
and 𝛼 ∈ [0, 1]:

𝜋(𝑖 + 𝛼) = (1 − 𝛼)𝑝𝑖 + 𝛼𝑝𝑖+1 .

Here we use the notation1 [𝑛] def

= {1, 2, . . . , 𝑛} for any 𝑛 ∈ ℕ. Denote

a subsequence of a sequence 𝜋 from index 𝑖 to 𝑗 with 𝜋[𝑖 : 𝑗] =

⟨𝑝𝑖 , 𝑝𝑖+1 , . . . , 𝑝 𝑗⟩. Occasionally we use the notation ⟨𝜋(𝑖) | 𝑖 ∈ 𝐼⟩𝑛
𝑖=1

to

denote a curve built on a subsequence of vertices of 𝜋, where vertices

are only taken if their indices are in set 𝐼. For example, setting 𝐼 =

1
Where relevant, we use ≔ and ≕ to denote assignment,

def

= for equivalent quantities

in definitions or to point out equality by earlier definition, and = in other contexts. We

also use ≡, but we introduce its usage as needed.

28

Chapter 2. Preliminaries 29

{1, 3, 4}, 𝑛 = 5, 𝜋 = ⟨𝑝1 , 𝑝2 , . . . , 𝑝5⟩ means ⟨𝜋(𝑖) | 𝑖 ∈ 𝐼⟩𝑛
𝑖=1

= ⟨𝑝1 , 𝑝3 , 𝑝4⟩.
Where we deem it important to distinguish between points that are a

part of the curve and other points, we denote the polygonal curve by

𝜋 = ⟨𝜋1 ,𝜋2 , . . . ,𝜋𝑛⟩. We denote the concatenation of two sequences 𝜋
and 𝜎 by 𝜋 ⊔ 𝜎; this also naturally defines concatenation of polygonal

curves. Finally, 𝑝 ⊔ 𝑞 (or simply 𝑝𝑞) denotes the line segment between

points 𝑝 and 𝑞. We can generalise this notation:⨆︂
𝑖∈[𝑛]

𝑝𝑖
def

= 𝑝1 ⊔ 𝑝2 ⊔ . . . ⊔ 𝑝𝑛 = ⟨𝑝1 , 𝑝2 , . . . , 𝑝𝑛⟩ ≡ 𝜋 .

We also introduce the notation for the order of points along a curve.

Let 𝑝 ≔ 𝜋(𝑎) and 𝑞 ≔ 𝜋(𝑏) for some 𝑎, 𝑏 ∈ [1, 𝑛]. Then 𝑝 ≺ 𝑞 iff 𝑎 < 𝑏,

𝑝 ≼ 𝑞 iff 𝑎 ≤ 𝑏, and 𝑝 ≡ 𝑞 iff 𝑎 = 𝑏. Note that we can have 𝑝 = 𝑞 for

𝑎 ≠ 𝑏 if the curve intersects itself.

Given two points 𝑝, 𝑞 ∈ ℝ𝑑
, denote their Euclidean distance by ∥𝑝−𝑞∥.

Throughout the thesis, we treat the dimension 𝑑 as a small constant. For

two compact sets 𝑋,𝑌 ⊂ ℝ𝑑
, denote their distance by

∥𝑋 − 𝑌∥ def

= min

𝑥∈𝑋,𝑦∈𝑌
∥𝑥 − 𝑦∥ .

Finally, given points 𝑝, 𝑞, 𝑟 ∈ ℝ𝑑
, define the distance from 𝑝 to the

segment 𝑞𝑟 as 𝑑(𝑝, 𝑞𝑟) def

= min𝑡∈𝑞𝑟 ∥𝑝 − 𝑡∥.

2.2 Uncertainty

An uncertainty region 𝑈 ⊂ ℝ𝑑
describes a possible location of a true

point: it has to be inside the region, but there is no information as to

where exactly. A realisation 𝑝 of such a point is one of the points from

the region 𝑈 . When needed we assume the realisations are drawn

from 𝑈 according to a known probability distribution ℙ. We denote

the diameter of any compact set (e.g. an uncertain point) 𝑈 ⊂ ℝ𝑑
by

diam(𝑈) def

= max𝑝,𝑞∈𝑈 ∥𝑝 − 𝑞∥.
We use several uncertainty models, so the regions𝑈 are of different

shape. An indecisive point is a form of an uncertain point where the

uncertainty region is represented as a discrete set of points, and the

true point is one of them: 𝑈 = {𝑝1 , . . . , 𝑝𝑘}, with 𝑘 ∈ ℕ and 𝑝 𝑖 ∈ ℝ𝑑
for

all 𝑖 ∈ [𝑘]. Imprecise points are modelled with uncertainty regions that

Chapter 2. Preliminaries 30

are compact connected sets. In particular, we consider line segments, balls,
referred to as disks in two dimensions, and polygonal closed convex sets.
We denote a line segment between 𝑝, 𝑞 ∈ ℝ𝑑

with 𝑆(𝑝, 𝑞). We denote a

ball with the centre 𝑐 ∈ ℝ𝑑
and the radius 𝑟 ∈ ℝ+

as 𝐷(𝑐, 𝑟). Formally,

𝐷(𝑐, 𝑟) def

= {𝑝 ∈ ℝ𝑑 | ∥𝑝 − 𝑐∥ ≤ 𝑟}. We define a polygonal closed convex set
(PCCS) as a closed convex set with bounded area that can be described

as the intersection of a finite number of closed half-spaces. Note that

this definition includes both convex polygons and line segments (in 2D).

Given a PCCS𝑈 , let𝑉(𝑈) denote the set of vertices of𝑈 , i.e. the vertices

of a convex polygon or the endpoints of a line segment.

2.3 Fréchet Distance

The Fréchet distance is often described through an analogy with a person

and a dog walking along their respective curves without backtracking,

where the Fréchet distance is the shortest leash needed for such a walk.

Formally, consider a set of reparametrisations Φℓ of length ℓ , defined

as continuous non-decreasing surjective functions 𝜙 : [0, 1] → [1, ℓ].
Given two polygonal curves 𝜋 and 𝜎 of lengths 𝑚 and 𝑛, respectively,

and the corresponding reparametrisations 𝜙1 ∈ Φ𝑚 and 𝜙2 ∈ Φ𝑛 , define

cost

𝜙1 ,𝜙2

(𝜋, 𝜎) = max

𝑡∈[0,1]
∥𝜋(𝜙1(𝑡)) − 𝜎(𝜙2(𝑡))∥ .

We call the pair 𝜇 = (𝜙1 , 𝜙2) an alignment or a matching.
The cost represents the maximum distance between two points

traversing the curves from start to end according to 𝜙1 and 𝜙2 (which

allow varying speed, but no backtracking). The Fréchet distance 𝑑F(𝜋, 𝜎)
is defined as the minimum possible cost over all such traversals:

𝑑F(𝜋, 𝜎)
def

= inf

𝜙1∈Φ𝑚 ,𝜙2∈Φ𝑛

cost

𝜙1 ,𝜙2

(𝜋, 𝜎)

= inf

𝜙1∈Φ𝑚 ,𝜙2∈Φ𝑛

max

𝑡∈[0,1]
∥𝜋(𝜙1(𝑡)) − 𝜎(𝜙2(𝑡))∥ .

In the person–dog analogy for the Fréchet distance, the best choice

of reparametrisations means that the person and the dog choose the

best speed, and the leash length is then the largest needed leash length

during the walk.

The discrete Fréchet distance 𝑑dF(𝜋, 𝜎) is defined similarly, except that

we do not traverse the edges of the curves, but jump from one vertex to

Chapter 2. Preliminaries 31

(0, 0)

(0, 1)

(0, 2)

(2, 4)

(2, 0)

(1, 1)

(3, 2)

(4, 4)

(0, 0)

(0, 1)

(0, 2)

(2, 4)

(2, 0)

(1, 1)

(3, 2)

(4, 4)

Figure 2.1. Left: Discrete Fréchet distance, with an optimal coupling shown in

dashed red lines. Right: Fréchet distance, where the dashed blue lines indicate

the specific values for an optimal alignment 𝜙1, 𝜙2.

the next on one or both curves. We define a valid coupling as a sequence

𝑐 = ⟨(𝑝1 , 𝑞1), . . . , (𝑝𝑟 , 𝑞𝑟)⟩ of pairs from [𝑚] × [𝑛] where (𝑝1 , 𝑞1) = (1, 1),
(𝑝𝑟 , 𝑞𝑟) = (𝑚, 𝑛), and, for any 𝑖 ∈ [𝑟 − 1], we have

(𝑝𝑖+1 , 𝑞𝑖+1) ∈ {(𝑝𝑖 + 1, 𝑞𝑖), (𝑝𝑖 , 𝑞𝑖 + 1), (𝑝𝑖 + 1, 𝑞𝑖 + 1)} .

Let 𝒞 be the set of all valid couplings on curves of lengths 𝑚 and 𝑛; then

𝑑dF(𝜋, 𝜎)
def

= inf

𝑐∈𝒞
max

𝑠∈[|𝑐 |]
∥𝜋(𝑝𝑠) − 𝜎(𝑞𝑠)∥ ,

where 𝑐𝑠 = (𝑝𝑠 , 𝑞𝑠) for all 𝑠 ∈ [|𝑐 |]. This variant can be seen as minimising

the cost over all discrete matchings, restricted to vertices. Both distances

are illustrated in Figure 2.1.

We also define the weak Fréchet distance 𝑑wF(𝜋, 𝜎) as

𝑑wF(𝜋, 𝜎)
def

= inf

weak matching 𝜇
cost

𝜇
(𝜋, 𝜎) ,

where the weak matching is not a pair of reparametrisations, but a

path (𝛼, 𝛽) : [0, 1]2 → [1, 𝑚] × [1, 𝑛], with 𝛼(0) = 1, 𝛼(1) = 𝑚 and

𝛽(0) = 1, 𝛽(1) = 𝑛.

Computing the discrete Fréchet distance. We recall the standard

dynamic programming approach by Eiter and Mannila [100]. The

Chapter 2. Preliminaries 32

Table 2.1. Left: Distance matrix on vertices for the example of Figure 2.1. Right:

Dynamic program for the discrete Fréchet distance, filled from the bottom left

corner. Rows correspond to points from the left trajectory, columns—to points

from the right trajectory. The optimal path is marked in grey.

4

√
10

√
5 2

2

√
2

√
2 3 2

√
5√

5 1

√
10 5

2

√
2

√
13 4

√
2

4

√
10

√
5

√
5

2

√
2 2 3 2

√
5√

5 2

√
10 5

2 2

√
13 4

√
2

algorithm is deduced in a standard manner from the following recursion:

𝑑dF(𝜋[1 : 𝑖 + 1], 𝜎[1 : 𝑗 + 1]) =max(∥𝜋(𝑖 + 1) − 𝜎(𝑗 + 1)∥ ,
min(𝑑dF(𝜋[1 : 𝑖], 𝜎[1 : 𝑗]),

𝑑dF(𝜋[1 : 𝑖 + 1], 𝜎[1 : 𝑗]),
𝑑dF(𝜋[1 : 𝑖], 𝜎[1 : 𝑗 + 1]))) .

That is, the discrete Fréchet distance is the maximum of the distance

of the newly added element in the coupling and the value that was

considered best previously. Due to the coupling restrictions, there

are only three possible subproblems that we need to consider, and we

may choose the best of them, thus obtaining the recursion above. It is

straightforward to turn it into a dynamic program.

Table 2.1 shows the distance matrix and the computation of the

discrete Fréchet distance for the example of Figure 2.1. Each cell of the

table on the right shows the value of the discrete Fréchet distance so far;

the final result can be read out from the top right corner of the table,

and the coupling that yields this result can be read from the sequence of

grey cells. Notice that the table shows the same coupling as Figure 2.1.

Given two trajectories of lengths 𝑚 and 𝑛 in two dimensions, this

approach takes Θ(𝑚𝑛) time. More recently, Agarwal et al. [7] presented

an algorithm that computes the discrete Fréchet distance in time 𝒪(𝑚𝑛 ·
log log 𝑛/log 𝑛) in two dimensions, for 𝑚 ≤ 𝑛. However, it is rather complex

and does not help the intuition about the problems discussed in this

thesis, so we will not go into further detail. The decision version of the

problem can be solved in a similar fashion, but propagating boolean

values instead.

Chapter 2. Preliminaries 33

(0, 0)

(0, 1)

(0, 2)

(2, 4)

(2, 0)

(1, 1)

(3, 2)

(4, 4)

Figure 2.2. Left: Visualisation of the Fréchet distance. Right: Free-space

diagram for the threshold 𝜀 = 2.15. One can draw a monotone path from

the lower left corner to the upper right corner of the diagram, so the Fréchet

distance between the trajectories is below the threshold.

Computing the Fréchet distance. One can use a similar approach

to solve the decision version of the Fréchet distance problem with

threshold 𝛿, except now we have free and blocked areas within each

cell of the table rather than simply having a boolean value in each cell.

The resulting table is called a free-space diagram. It is a two-dimensional

diagram on [1, 𝑚] × [1, 𝑛], where each point (𝑥, 𝑦) corresponds to the

pair (𝜋(𝑥), 𝜎(𝑦)). The point (𝑥, 𝑦) is free if and only if ∥𝜋(𝑥) − 𝜎(𝑦)∥ ≤ 𝛿.

The free space is the collection of all the free points.

On polygonal curves, each cell becomes an intersection of an ellipse

with the cell, with the inside of the ellipse being free. The answer to

the problem is True if and only if there is a monotone path from the

bottom left corner to the top right corner of the free-space diagram.

A free-space diagram for the example of the two polygonal curves of

Figure 2.1 is shown in Figure 2.2. Algorithmically this can be checked

by keeping the open intervals on the edges of the cells, i.e. the white

segments on the cell borders shown in Figure 2.2. The algorithm then

runs in time Θ(𝑚𝑛). For further details, the reader is invited to consult

the work by Alt and Godau [23, 117], or the work by Buchin et al. [45]

that describes a slightly faster approach.

2.4 Uncertain Curves and Distances

We call a sequence of uncertainty regions an uncertain curve: 𝒰 =

⟨𝑈1 , . . . , 𝑈𝑛⟩. If we pick a point from each uncertainty region of 𝒰 ,

Chapter 2. Preliminaries 34

we get a polygonal curve 𝜋 that we call a realisation of 𝒰 , denoting it

with 𝜋 ⋐ 𝒰 . That is, if for some 𝑛 ∈ ℕ we have 𝜋 = ⟨𝑝1 , . . . , 𝑝𝑛⟩ and

𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩, then 𝜋 ⋐ 𝒰 if and only if 𝑝𝑖 ∈ 𝑈𝑖 for all 𝑖 ∈ [𝑛]. We

denote the set of all realisations of an uncertain curve 𝒰 by Real(𝒰). In

a probabilistic setting, we write 𝜋 ⋐ℙ 𝒰 to denote that each point of 𝜋
gets drawn from the corresponding uncertainty region independently

according to distribution ℙ.

For uncertain curves 𝒰 and 𝒱, define the upper bound, the lower

bound, and the expected discrete Fréchet distance as

𝑑max

dF
(𝒰 ,𝒱) = max

𝜋⋐𝒰 ,𝜎⋐𝒱
𝑑dF(𝜋, 𝜎) ,

𝑑min

dF
(𝒰 ,𝒱) = min

𝜋⋐𝒰 ,𝜎⋐𝒱
𝑑dF(𝜋, 𝜎) ,

𝑑
𝔼(ℙ)
dF

(𝒰 ,𝒱) = 𝔼𝜋⋐ℙ𝒰 ,𝜎⋐ℙ𝒱[𝑑dF(𝜋, 𝜎)] .

We extend the definitions to the continuous Fréchet distance 𝑑max

F
,

𝑑min

F
, 𝑑

𝔼(ℙ)
F

using 𝑑F:

𝑑max

F
(𝒰 ,𝒱) = max

𝜋⋐𝒰 ,𝜎⋐𝒱
𝑑F(𝜋, 𝜎) ,

𝑑min

F
(𝒰 ,𝒱) = min

𝜋⋐𝒰 ,𝜎⋐𝒱
𝑑F(𝜋, 𝜎) ,

𝑑
𝔼(ℙ)
F

(𝒰 ,𝒱) = 𝔼𝜋⋐ℙ𝒰 ,𝜎⋐ℙ𝒱[𝑑F(𝜋, 𝜎)] .

For the weak Fréchet distance, we only use the lower bounds in this

thesis, but the other definitions can be made in a similar way.

𝑑min

dwF
(𝒰 ,𝒱) = min

𝜋⋐𝒰 ,𝜎⋐𝒱
𝑑dwF(𝜋, 𝜎) ,

𝑑min

wF
(𝒰 ,𝒱) = min

𝜋⋐𝒰 ,𝜎⋐𝒱
𝑑wF(𝜋, 𝜎) .

If the distribution is clear from the context, we write 𝑑𝔼
F

and 𝑑𝔼
dF

. The

definitions above also apply if one of the curves is precise, as a precise

curve is a special case of an uncertain curve.

CHAPTER 3
Similarity of Uncertain

Curves in 2D

For many trajectory analysis tasks, it is imperative that we establish

a trajectory similarity measure that captures the appropriate features

of the trajectories. In Section 1.2.1, we have argued that the Fréchet

distance is a suitable metric for this. We have also argued that it would be

beneficial to consider such fundamental constructions under uncertainty.

In this and the next chapter, we bridge the gap by studying the Fréchet

distance under uncertainty.

As we have already defined it in Section 1.4, a trajectory is a sequence

of measured locations with associated time stamps. The Fréchet distance

does not have special provisions for time, so we may turn the time into

a regular dimension or ignore it completely; either way, we obtain a

sequence of locations in some space. For the purposes of this chapter,

assume we have a sequence of locations in ℝ2
. Such a sequence without

explicit time stamps is referred to as a polygonal curve. An uncertain curve
is a sequence of uncertain points.

Each uncertain point is a set of potential locations. Recall the types of

models for uncertain points introduced in Section 1.1.2. In this chapter,

we consider the extremal questions in the indecisive and the imprecise
models. In the indecisive model, each point is a finite set of potential

35

Chapter 3. Similarity of Uncertain Curves in 2D 36

locations, and in the imprecise model, each point is a compact connected

region. A realisation of a set of uncertain points is a selection of one point

from each uncertain point. When asking extremal questions, the goal

is typically to compute the realisation of a set of uncertain points that

minimises or maximises some quantity (e.g. area, distance, perimeter)

of some underlying geometric structure (e.g. convex hull, Euclidean

minimum spanning tree). See Section 1.1.2 for a detailed overview of

such problems.

Here we consider both the continuous and discrete Fréchet distance

for uncertain curves. Our uncertain input is given as a sequence of

regions, from which a polygonal curve is realised by selecting one point

from each region. Our goal is to find, for a given pair of uncertain curves,

the upper bound, the lower bound, and the expected Fréchet distance,

where the upper (resp. lower) bound Fréchet distance is the maximum

(resp. minimum) distance over any realisation. For the expected Fréchet

distance, we assume a probability distribution is provided that describes

how each vertex on a curve is chosen from the region.

Previous work. There has been surprisingly little work using these un-

certainty models in curve and trajectory analysis. Buchin and Sĳben [65]

have studied the discrete Fréchet distance for uncertain points modelled

by a probability distribution. However, their problem is quite different

from our variant: they show how to compute the distance distribution

for a fixed coupling between the two curves and then solve the problem

of finding the optimal coupling that achieves a given Fréchet distance.

We look at the problem with the different order of quantifiers: we know

how to find the optimal coupling for any realisation and want to find

‘optimal’ realisations yielding a certain distance.

Previously, Ahn et al. [18] considered the lower bound problem as

we define it for the discrete Fréchet distance, giving a polynomial-time

algorithm for uncertain points modelled by balls or hyperrectangles

in constant dimension. The authors also gave efficient approximation

algorithms for the discrete upper bound Fréchet distance for uncertain

inputs, where the approximation factor depends on the spread of the

region diameters or how well-separated they are. Subsequently, Fan

and Zhu showed that the discrete upper bound Fréchet distance is

NP-hard for uncertain inputs modelled as thin rectangles [109]. To our

Chapter 3. Similarity of Uncertain Curves in 2D 37

Table 3.1. Hardness results for the decision problems in this chapter. Ahn et

al. [18] solve the lower bound problem for disks, but their algorithm extends to

the indecisive curves as well as to line-segment imprecision. DFD and FD stand

for the (discrete) Fréchet distance; LB, UB, and Exp refer to the lower bound,

the upper bound, and the expected value, respectively.

indecisive

imprecise

disks line segments

DFD

LB Polynomial [18] Polynomial [18] Polynomial [18]

UB NP-complete NP-hard NP-hard

Exp #P-hard — #P-hard

FD

LB Polynomial — NP-hard

UB NP-complete NP-hard NP-hard

Exp #P-hard — —

knowledge, we are the first to consider either variant for the continuous

Fréchet case, and the first to consider the expected Fréchet distance.

Contributions. In this chapter, we present an extensive study of the

Fréchet distance for uncertain curves in two (and higher) dimensions.

We provide a wide range of hardness results and present several ap-

proximations and polynomial-time solutions to restricted versions. We

are the first to consider the continuous Fréchet distance in the uncertain

setting, as well as the first to consider the expected Fréchet distance.

On the negative side, we present a plethora of hardness results

(see Table 3.1; details follow in Section 3.1). The hardness of the

lower bound case is curious: while the discrete Fréchet distance on

imprecise inputs [18] and, as we prove, continuous Fréchet distance on

indecisive inputs both permit a simple dynamic programming solution,

the continuous Fréchet distance problem on imprecise input has just

enough (literal) wiggle room to show NP-hardness by reduction from

SubsetSum. In Chapter 4, we explore this in 1D and find a similar

dichotomy for the weak Fréchet distance.

We complement the lower bound hardness result by two approxima-

tion algorithms (Section 3.2). The first is a FPTAS for general uncertain

curves in constant dimension when the ratio between the diameter of the

uncertain points and the lower bound Fréchet distance is polynomially

Chapter 3. Similarity of Uncertain Curves in 2D 38

bounded. The second is a 3-approximation for separated imprecise

curves, but uses a simpler greedy approach that runs in near-linear time.

The NP-hardness of the upper bound by a reduction from CNF-

SAT is less surprising, but requires a careful set-up and analysis of the

geometry to then extend it to a reduction from #CNF-SAT to the expected

(discrete or continuous) Fréchet distance under the uniform distribution.

However, by adding the common constraint that the alignment between

the curves needs to stay within a Sakoe–Chiba [194] band of constant

width (see Section 3.3 for definition and results), we can solve these

problems in polynomial time for indecisive curves. Sakoe–Chiba bands

are frequently used for time-series data [32, 151, 194] and trajectories [41,

93], when the alignment should (or is expected to) not vary too much

from a certain ‘natural’ alignment.

3.1 Hardness Results

In this section, we first present the hardness results for the upper bound

and the expected value of the continuous and the discrete Fréchet

distance for indecisive and imprecise curves. We then prove hardness

of finding the lower bound continuous Fréchet distance on imprecise

curves. Refer to Chapter 2 for the relevant definitions and notation.

3.1.1 Upper Bound and Expected Fréchet Distance

We present proofs of NP-hardness and #P-hardness for the upper bound

and the expected Fréchet distance for both indecisive and imprecise

curves by showing polynomial-time reductions from CNF-SAT (satis-

fiability of a boolean formula) and #CNF-SAT (its counting version).

We consider the upper bound problem for indecisive curves and then

illustrate how the construction can be used to show #P-hardness for

the expected Fréchet distance (both discrete and continuous). We then

demonstrate how the construction can be adapted to show hardness for

imprecise curves. All our constructions are in two dimensions.

Upper Bound Fréchet Distance: Basic Construction

Define the following problem.

Chapter 3. Similarity of Uncertain Curves in 2D 39

Problem 3.1. Upper Bound Discrete Fréchet: Given two uncertain

curves 𝒰 and 𝒱 and a threshold 𝛿 ∈ ℝ+
, decide if 𝑑max

dF
(𝒰 ,𝒱) > 𝛿.

We can similarly define its continuous counterpart, using 𝑑max

F

instead.

Problem 3.2. Upper Bound Continuous Fréchet: Given two uncertain

curves 𝒰 and 𝒱 and a threshold 𝛿 ∈ ℝ+
, decide if 𝑑max

F
(𝒰 ,𝒱) > 𝛿.

We first give some extra definitions to make the proofs clearer.

Suppose we are given a CNF-SAT formula 𝐶 with

𝐶 =
⋀︂
𝑖∈[𝑛]

𝐶𝑖 , 𝐶𝑖 =
⋁︂
𝑗∈𝐽𝑖

𝑥 𝑗 ∨
⋁︂
𝑘∈𝐾𝑖

¬𝑥𝑘 for all 𝑖 ∈ [𝑛].

Here 𝑛 and 𝑚 are the numbers of clauses and variables, respectively,

𝑥 𝑗 for any 𝑗 ∈ [𝑚] is a boolean variable, and 𝐽𝑖 ⊆ [𝑚], 𝐾𝑖 ⊆ [𝑚] \ 𝐽𝑖 for

all 𝑖 ∈ [𝑛] are sets of relevant variable indices. Such a variable may be

assigned ‘true’ or ‘false’; an assignment is a function 𝑎 : {𝑥1 , . . . , 𝑥𝑚} →
{True, False} that assigns a value to each variable, 𝑎(𝑥 𝑗) = True or

𝑎(𝑥 𝑗) = False for any 𝑗 ∈ [𝑚]. We denote by𝐶[𝑎] the result of substituting

𝑥 𝑗 ↦→ 𝑎(𝑥 𝑗) in 𝐶 for all 𝑗 ∈ [𝑚] As an aid to the reader, the problem we

reduce from is as follows.

Problem 3.3. CNF-SAT: Given a CNF-SAT formula 𝐶, decide if there is

an assignment 𝑎 such that 𝐶[𝑎] = True.

We pick some value 0 < 𝜀 < 0.25.1 Construct a variable curve, where

each variable corresponds to an indecisive point with locations (0, 0.5+𝜀)
and (0,−0.5 − 𝜀); the locations are interpreted as assigning the variable

True and False. Any realisation of the curve corresponds to a variable

assignment.

Intuitively, one curve encodes the variables, and the other encodes the

structure of the formula. We define a variable gadget on a variable curve

to encode the value of a boolean variable; and we define assignment

gadgets on the other curve to encode the literals 𝑥 and ¬𝑥 occurring in

the formula. The gadgets interact with each other, so if a literal is true,

the distance is large. The assignment gadgets have positions for ‘true’,

‘false’, and ‘do not care’ values, the latter being used to skip a variable

1
This range is determined by the relative distances in the construction.

Chapter 3. Similarity of Uncertain Curves in 2D 40

unused in a clause. We repeat the construction for each variable on both

curves with some synchronisation enforcement, constructing a variable

clause gadget and an assignment clause gadget, so the distance is large

if the clause is satisfied by setting the variables in a specific way. Finally,

we construct the full variable curve and the clause curve. Here the goal

is that we have a single copy of variables that can be assigned True or

False; and we can choose which clause we want to align with them. The

other clauses are caught by extra points on the variable curve so as to not

affect the distance. Some clauses are not satisfied, and they will yield a

small distance; others are satisfied and yield a large distance; so since

we can choose the clause freely, we only get a large distance between

complete curves if all the clauses give a large distance, so all are satisfied,

and so is the formula. Finding the upper bound Fréchet distance now

corresponds to finding the realisation of the points that achieves the

large distance, or finding the truth assignment of the variables that

satisfies the formula. We show the locations used by the gadgets and

their nesting in Figure 3.1. We present an example construction for a

specific formula and a realisation in Figure 3.2, highlighting also the

possible alignment options between the clause curve and the variable

curve and the resulting distances. Next, we define the gadgets formally

level by level and prove that the distances are correct.

Literal level. Define a variable gadget, where an indecisive point corres-

ponds to a variable and is followed by a precise point far away, to force

synchronisation with the other curve:

VG𝑗 = {(0, 0.5 + 𝜀), (0,−0.5 − 𝜀)} ⊔ (2, 0) .

Consider a specific clause 𝐶𝑖 of the formula. We define an assignment
gadget AG𝑖 , 𝑗 for each variable 𝑥 𝑗 and clause 𝐶𝑖 depending on how the

variable occurs in the clause.

AG𝑖 , 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0,−0.5) ⊔ (1, 0) if 𝑥 𝑗 is a literal of 𝐶𝑖 ,

(0, 0.5) ⊔ (1, 0) if ¬𝑥 𝑗 is a literal of 𝐶𝑖 ,

(0, 0) ⊔ (1, 0) otherwise.

Note that if the assignment 𝑥 𝑗 = True makes the clause 𝐶𝑖 true, then the

first precise point of the corresponding assignment gadget appears at

Chapter 3. Similarity of Uncertain Curves in 2D 41

ACG
AG

(0, 0)
(0, 0.5)

(0,−0.5)
(1, 0)(−1, 0)

VCG
VG(0, 0.5 + 𝜀)

(0,−0.5 − 𝜀)
(2, 0)(−2, 0)

Figure 3.1. Illustration of the gadgets used in the basic construction. Assign-

ment gadgets are repeated to make up the assignment clause gadgets; they are

repeated to make up the clause curve. Variable gadgets are repeated to make

up the variable clause gadget; it is prepended and appended by (0, 0) to make

up the variable curve.

distance 1 + 𝜀 from the realisation corresponding to setting 𝑥 𝑗 = True of

the indecisive point in VG𝑗 .

We now show the relation between the gadgets. To do so, we intro-

duce the one-to-one coupling as a valid coupling 𝑐 = ⟨(𝑝1 , 𝑞1), . . . , (𝑝𝑟 , 𝑞𝑟)⟩,
where the coupling is restricted to (𝑝𝑠+1 , 𝑞𝑠+1) = (𝑝𝑠 + 1, 𝑞𝑠 + 1) for all

𝑠 ∈ [𝑟 − 1]. Necessarily, such a coupling only exists for curves of equal

length.

Lemma 3.4. Suppose we are given a clause 𝐶𝑖 and a variable 𝑥 𝑗 that both occur
in a CNF-SAT formula 𝐶, and we restrict the set of valid couplings 𝒞 to only
contain one-to-one couplings. We only get the discrete Fréchet distance equal to
1 + 𝜀 if the realisation of VG𝑗 we pick corresponds to the assignment of 𝑥 𝑗 that
ensures the clause 𝐶𝑖 is satisfied; otherwise, the discrete Fréchet distance is 1.
In other words, if we consider 𝜋 ⋐ VG𝑗 that corresponds to setting 𝑎(𝑥 𝑗), then

𝑑dF(𝜋,AG𝑖 , 𝑗) =
{︄

1 + 𝜀 if assigning 𝑥 𝑗 satisfies 𝐶𝑖 ,
1 otherwise.

Chapter 3. Similarity of Uncertain Curves in 2D 42

(0, 0)
(−2, 0)

(0, 0.5 + 𝜀)

(2, 0)

(0, 0.5 + 𝜀)

(2, 0)

(0,−0.5 − 𝜀)

(2, 0) (0, 0)

(−1, 0)

(0,−0.5)

(1, 0)
(0, 0)

(1, 0)

(0,−0.5)

(1, 0)

(−1, 0)

(0, 0.5)

(1, 0)

(0,−0.5)

(1, 0)

(0, 0.5)

(1, 0)

(−1, 0)

(0,−0.5)

(1, 0)

(0, 0.5)

(1, 0)
(0, 0)

(1, 0)

𝐶1

𝐶1

𝐶1

𝐶2

𝐶2

𝐶2

𝐶3

𝐶3

𝐶3

VC

Figure 3.2. Realisation of VC for the assignment 𝑥1 = True, 𝑥2 = True,

𝑥3 = False and CC for the formula 𝐶 = (𝑥1∨𝑥3)∧(¬𝑥1∨𝑥2∨¬𝑥3)∧(𝑥1∨¬𝑥2). We

show the variable curve; and three times the clause curve, since we have three

feasible options for matching the curves, corresponding to the three clauses.

The other clauses are matched to (0, 0) and are collapsed to a point in the

figure. Note that 𝐶 = True with the given variable assignment. Also note that

we can choose any of 𝐶1, 𝐶2, 𝐶3 to couple to VC; we always get the bottleneck

distance of 1 + 𝜀, as all three are satisfied, so here 𝑑
dF

(VC,CC) = 1 + 𝜀.

Chapter 3. Similarity of Uncertain Curves in 2D 43

Proof. First of all, observe that as we only consider one-to-one couplings,

the second points of both gadgets must be coupled; the distance between

them is ∥(2, 0) − (1, 0)∥ = 1; thus, the discrete Fréchet distance between

the curves must be at least 1.

Now consider the possible realisations of VG𝑗 . Say, we pick the

realisation (0, 0.5 + 𝜀) ⊔ (2, 0), which corresponds to assigning 𝑎(𝑥 𝑗) =
True. If 𝑥 𝑗 is a literal of𝐶𝑖 , so𝐶𝑖[𝑎] = True, then by construction we know

that AG𝑖 , 𝑗 is (0,−0.5) ⊔ (1, 0). Since we consider only the one-to-one

couplings, we must couple the first points together, yielding the distance

∥(0, 0.5 + 𝜀) − (0,−0.5)∥ = 1 + 𝜀 > 1, so the discrete Fréchet distance in

this case is 1 + 𝜀, and indeed we picked the assignment that ensures

that 𝐶𝑖 is satisfied. If instead ¬𝑥 𝑗 is a literal of 𝐶𝑖 , so 𝐶𝑖[𝑎] = False,

then we know that AG𝑖 , 𝑗 is (0, 0.5) ⊔ (1, 0), and it is easy to see that,

as ∥(0, 0.5 + 𝜀) − (0, 0.5)∥ = 𝜀 < 1, we get the discrete Fréchet distance

of 1, and that we picked an assignment that does not ensure that 𝐶𝑖 is

satisfied.

A symmetric argument can be applied when we consider the real-

isation (0,−0.5 − 𝜀) ⊔ (2, 0) for VG𝑗 : if ¬𝑥 𝑗 is a literal of 𝐶𝑖 , then we get

the discrete Fréchet distance of 1 + 𝜀 and we picked an assignment that

surely satisfies 𝐶𝑖 .

Finally, consider the case when AG𝑖 , 𝑗 = (0, 0)⊔(1, 0). This implies that

assigning a value to 𝑥 𝑗 has no effect on 𝐶𝑖 , i.e. a literal involving 𝑥 𝑗 does

not occur in 𝐶𝑖 , so neither assignment (and neither realisation of VG𝑗)

would ensure that 𝐶𝑖 is satisfied. Also observe that ∥(0, 0.5+𝜀)−(0, 0)∥ =
∥(0,−0.5−𝜀)−(0, 0)∥ = 0.5+𝜀 < 1, so both realisations yield the discrete

Fréchet distance of 1.

So, we can conclude that we get the distance 1 + 𝜀 if and only if the

partial assignment of a value to 𝑥 𝑗 ensures that 𝐶𝑖 is satisfied; otherwise,

we get the distance 1. □

Clause level. We can repeat the construction, yielding a variable clause
gadget and an assignment clause gadget:

VCG = (−2, 0) ⊔
⨆︂
𝑗∈[𝑚]

VG𝑗 , ACG𝑖 = (−1, 0) ⊔
⨆︂
𝑗∈[𝑚]

AG𝑖 , 𝑗 .

Consider the Fréchet distance between the two gadgets. Observe that

coupling a synchronisation point from one gadget with a non-synchro-

nisation point in the other yields a distance larger than 1 + 𝜀, whereas

Chapter 3. Similarity of Uncertain Curves in 2D 44

coupling synchronisation points pairwise and non-synchronisation

points pairwise will yield the distance at most 1+ 𝜀. So we only consider

one-to-one couplings, i.e. we couple point 𝑖 on one curve to point 𝑖 on

the other curve, for all 𝑖.

Now if a realisation corresponds to a satisfying assignment, then

for some 𝑥 𝑗 , we have picked the realisation that is opposite from the

coupled point on the clause curve, yielding the bottleneck distance of

1 + 𝜀. If the realisation corresponds to a non-satisfying assignment,

then the synchronisation points establish the bottleneck, yielding the

distance 1. So we can clearly distinguish between a satisfying and a

non-satisfying assignment for a clause. It is crucial now that we show

the following.

Lemma 3.5. Given a CNF-SAT formula 𝐶 containing some clause 𝐶𝑖 and 𝑚
variables 𝑥1 , . . . , 𝑥𝑚 , consider curves 𝛼1 ⊔ VCG ⊔ 𝛼′

1
and 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′

2

for arbitrary precise curves 𝛼1, 𝛼′
1
, 𝛼2, 𝛼′

2
with |𝛼1 | = 𝑘 and |𝛼2 | = 𝑙. If

an optimal coupling between 𝛼1 ⊔ VCG ⊔ 𝛼′
1

and 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′
2

for any
realisation of VCG has a pair (𝑘 + 1, 𝑙 + 1), then there is an optimal coupling
that has pairs (𝑘 + 𝑠, 𝑙 + 𝑠) for all 𝑠 ∈ [2𝑚 + 1], i.e. there is an optimal coupling
that is one-to-one for any realisation of VCG.

Proof. Observe that both gadgets have exactly 2𝑚 + 1 points. Suppose

the optimal coupling Opt has a pair (𝑘 + 1, 𝑙 + 1), so it couples the first

points of VCG and ACG𝑖 . If Opt is already one-to-one for all 𝑠 ∈ [2𝑚+1],
there is nothing to be done. Suppose now that it is one-to-one until

some 1 ≤ 𝑟 < 2𝑚 + 1, so it has pairs (𝑘 + 𝑠, 𝑙 + 𝑠) for all 𝑠 ∈ [𝑟], but it

does not have a pair (𝑘 + (𝑟 + 1), 𝑙 + (𝑟 + 1)). Then one of the following

cases occurs.

• 𝑟 = 2𝑞 + 2 is even; then we know that the point (2, 0) in VG𝑞+1

is not coupled to the point (1, 0) in AG𝑖 ,𝑞+1, but the preceding

indecisive point is coupled to the assignment point. Then either

(2, 0) is coupled to an assignment point, with the distance at least

2, or (1, 0) is coupled to an indecisive point, yielding the distance

of

√︁
1 + (0.5 + 𝜀)2 > 1. If we eliminate that pair and instead couple

(2, 0) to (1, 0), we will still have a valid coupling and obtain the

distance of 1 on this pair; thus, the new coupling is not worse

that the original one, and so it is also an optimal coupling that is

one-to-one for all 𝑠 ∈ [𝑟 + 1].

Chapter 3. Similarity of Uncertain Curves in 2D 45

• 𝑟 = 2𝑞 + 1 is odd; then we know that the indecisive point in

VG𝑞+1 is not coupled to the assignment point in AG𝑖 ,𝑞+1, but the

preceding (2, 0) and (1, 0) (or (−2, 0) and (−1, 0)) are coupled. Then

either Opt has a pair of the indecisive point and (1, 0), or it has a

pair of the assignment point and (2, 0). (The cases for (−1, 0) and

(−2, 0) are symmetrical.) In either case, we want to eliminate that

pair from the coupling and instead add the pair of the indecisive

point and the assignment point, yielding a valid coupling that is

one-to-one for all 𝑠 ∈ [𝑟 + 1]. To complete the proof for this case,

we need to show that such a coupling is optimal.

Consider the first possible coupling. The distance between the

indecisive point and (1, 0) is

√︁
1 + (0.5 + 𝜀)2, whereas the distance

between the indecisive and the assignment point is 𝜀, 0.5 + 𝜀, or

1 + 𝜀. As 𝜀 < 0.25, note that

0.25 + 𝜀 > 2𝜀

1 + 0.25 + 𝜀 + 𝜀2 > 1 + 2𝜀 + 𝜀2

1 + (0.5 + 𝜀)2 > (1 + 𝜀)2√︁
1 + (0.5 + 𝜀)2 > 1 + 𝜀 ,

so our change to the optimal coupling will replace a pair with a

pair of lower distance, so the new coupling is at least as good as

the original one, and thus optimal.

Now consider the second coupling. The distance between the

assignment point and (2, 0) is at least 2, and 2 > 1+ 𝜀 > 0.5+ 𝜀 > 𝜀,

so again our change yields an optimal coupling.

By induction on 𝑟, we conclude that the statement of the lemma holds. □

We can now use the two previous results to show the following.

Lemma 3.6. Given a CNF-SAT formula 𝐶 containing some clause 𝐶𝑖 and 𝑚
variables 𝑥1 , . . . , 𝑥𝑚 , construct curves 𝛼1 ⊔ VCG ⊔ 𝛼′

1
and 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′

2

for arbitrary precise curves 𝛼1, 𝛼′
1
, 𝛼2, 𝛼′

2
with |𝛼1 | = 𝑘 and |𝛼2 | = 𝑙. If

some optimal coupling between 𝛼1 ⊔ VCG ⊔ 𝛼′
1

and 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′
2

for
any realisation of VCG has a pair (𝑘 + 1, 𝑙 + 1) and 𝑑dF(𝛼1 , 𝛼2) ≤ 1 and
𝑑dF(𝛼′

1
, 𝛼′

2
) ≤ 1, then the discrete Fréchet distance between the curves is 1 + 𝜀

for realisations of VCG that correspond to satisfying assignments for 𝐶𝑖 , and 1

Chapter 3. Similarity of Uncertain Curves in 2D 46

for realisations that do not. In other words, if 𝜋 ⋐ VCG corresponds to an
assignment 𝑎 and we only consider the restricted couplings, then

𝑑dF(𝛼1 ⊔ 𝜋 ⊔ 𝛼′
1
, 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′

2
) =

{︄
1 + 𝜀 if 𝐶𝑖[𝑎] = True,
1 otherwise.

Proof. First of all, since some optimal coupling between 𝛼1 ⊔ VCG ⊔ 𝛼′
1

and 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′
2

for any realisation of VCG has a pair (𝑘 + 1, 𝑙 + 1),
we can use Lemma 3.5 to find an optimal coupling Opt that is one to

one on the subcurves corresponding to the gadgets. That means that

we can, essentially, split the curves, if we consider only such restricted

couplings:

𝑑dF(𝛼1 ⊔ 𝜋 ⊔ 𝛼′
1
, 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′

2
)

= max(𝑑dF(𝛼1 , 𝛼2), 𝑑dF(𝜋,ACG𝑖), 𝑑dF(𝛼′
1
, 𝛼′

2
))

= max(1, 𝑑dF(𝜋,ACG𝑖)) ,

where the last equality follows from the fact that 𝑑dF(𝜋,ACG𝑖) ≥ 1, since

the first points are in a coupling and have the distance 1, and from the

assumption that 𝑑dF(𝛼1 , 𝛼2) ≤ 1 and 𝑑dF(𝛼′
1
, 𝛼′

2
) ≤ 1. Note that here we

do not restrict the coupling on 𝛼1, 𝛼2 and 𝛼′
1
, 𝛼′

2
.

To obtain the end result, we need to consider the distance between 𝜋
and ACG𝑖 under a one-to-one coupling. Using Lemma 3.4, it is easy to

see that if we have 𝑎(𝑥 𝑗) = True for some variable 𝑥 𝑗 and 𝑥 𝑗 is a literal in

𝐶𝑖 , then𝐶𝑖[𝑎] = True, and 𝑑dF(𝜋,ACG𝑖) = 1+𝜀; similarly, if 𝑎(𝑥 𝑗) = False

for some variable 𝑥 𝑗 and ¬𝑥 𝑗 is a literal in 𝐶𝑖 , then 𝐶𝑖[𝑎] = True, and

𝑑dF(𝜋,ACG𝑖) = 1 + 𝜀. If there is no such 𝑥 𝑗 , then 𝐶𝑖[𝑎] = False and

𝑑dF(𝜋,ACG𝑖) = 1. We conclude that the lemma holds. □

Formula level. Next, we define the variable curve and the clause curve
as follows:

VC = (0, 0) ⊔ VCG ⊔ (0, 0) , CC =
⨆︂
𝑖∈[𝑛]

ACG𝑖 .

Observe that the synchronisation points at (−2, 0) and (−1, 0) ensure

that for any optimal coupling, we match up VCG with some ACG𝑖

as described before. Also note that all the points on CC are within

distance 1 from (0, 0). Therefore, we can always pick any one of 𝑛

Chapter 3. Similarity of Uncertain Curves in 2D 47

clauses to couple to VCG, and couple the remaining points to (0, 0); the

bottleneck distance will then be determined by the distance between

VCG and the chosen ACG𝑖 .

Now consider a realisation of VCG. If the corresponding assignment

does not satisfy 𝐶, then we can synchronise VCG with a clause that is

false to obtain the distance of 1. If the assignment corresponding to the

realisation satisfies all the clauses, we must synchronise VCG with a

satisfied clause, which yields a distance of 1 + 𝜀. We show the following

important property of our construction.

Lemma 3.7. Given a CNF-SAT formula 𝐶 with 𝑛 clauses and 𝑚 variables,
construct the curves VC and CC as defined above and consider a realisation
(0, 0) ⊔ 𝜋 ⊔ (0, 0) of curve VC, corresponding to some assignment 𝑎. Then,
under no restrictions on the couplings except those imposed by the definition,

𝑑dF((0, 0) ⊔ 𝜋 ⊔ (0, 0),CC) =
{︄

1 + 𝜀 if 𝐶[𝑎] = True,
1 if 𝐶[𝑎] = False.

In other words, the discrete Fréchet distance is 1+𝜀 if the realisation corresponds
to a satisfying assignment, and is 1 otherwise.

Proof. We can show this by proving that the premises of Lemma 3.6 are

satisfied.

First of all, note that all the points of CC are within distance 1 from

(0, 0). Furthermore, note that we can always give a coupling with the

distance at most 1 + 𝜀: couple (0, 0) to (−1, 0) from ACG1, then walk

along the realisation of VCG and ACG1 in a one-to-one coupling, and

then couple the remaining points in CC to (0, 0). As all the points of CC

are within distance 1 from (0, 0) and as this is otherwise the construction

of Lemma 3.6, this coupling yields the discrete Fréchet distance of at

most 1 + 𝜀 for any realisation of VC. Therefore, any coupling that has

pairs further away than 1 + 𝜀 cannot be optimal. Observe that the only

point within that distance from (−2, 0) is (−1, 0). Therefore, we only

need to consider couplings that couple the first point of the realisation

of VCG to the first point of some ACG𝑖 as possibly optimal. Thus, for

each of the 𝑛 couplings we get, we can apply Lemma 3.6. There are two

cases to consider.

• There is some gadget ACG𝑖 with the distance 1 to 𝜋 under the

one-to-one coupling. Then we can choose that gadget to couple to

Chapter 3. Similarity of Uncertain Curves in 2D 48

𝜋 and couple all the other points in CC to (0, 0) at the beginning

or at the end of VC as suitable. As all the points of CC are within

distance 1 from (0, 0), this coupling will yield distance 1; as a

lower distance is impossible, this coupling is optimal, so then

𝑑dF((0, 0) ⊔ 𝜋 ⊔ (0, 0),CC) = 1. Observe that by our construction

this situation corresponds to the case when 𝐶𝑖[𝑎] = False, by

Lemma 3.6, and so indeed 𝐶[𝑎] = False.

• The distance between any gadget ACG𝑖 and 𝜋 under the one-to-

one coupling is 1 + 𝜀. Then, no matter which gadget we choose

to couple to 𝜋, we will get the distance of 1 + 𝜀, so in this case

𝑑dF((0, 0) ⊔ 𝜋 ⊔ (0, 0),CC) = 1 + 𝜀. Note that, by our construction,

this means that 𝐶𝑖[𝑎] = True for all 𝑖 ∈ [𝑛]; therefore, indeed

𝐶[𝑎] = True.

As we have covered all the possible cases, we conclude that the lemma

holds. □

We illustrate the gadgets of the construction in Figure 3.1. We also

show an example of the correspondence between a boolean formula

and our construction in Figure 3.2.

Upper Bound Discrete Fréchet Distance on Indecisive Points

Theorem 3.8. The problem Upper Bound Discrete Fréchet for indecisive
curves is NP-complete.

Proof. First of all, observe that if two realisations of lengths 𝑛 and

𝑚 are given as a certificate for a ‘Yes’-instance of the problem, then

one can verify the solution by computing the discrete Fréchet distance

between the realisations and checking that it is indeed larger than the

threshold 𝛿. The computation can be done in time Θ(𝑚𝑛), using the

algorithm proposed by Eiter and Mannila [100]. Therefore, the problem

is in NP.

Now suppose we are given an instance of CNF-SAT, i.e. a CNF-SAT

formula 𝐶 with 𝑛 clauses and 𝑚 variables. We construct the curves VC

and CC, as described previously, and get an instance of Upper Bound

Discrete Fréchet on curves VC and CC with the threshold 𝛿 = 1. If

the answer is ‘Yes’, then we also output ‘Yes’ as an answer to CNF-SAT;

otherwise, we output ‘No’.

Chapter 3. Similarity of Uncertain Curves in 2D 49

Using Lemma 3.7, we see that if there is some assignment 𝑎 such that

𝐶[𝑎] = True, then for the corresponding realisation, the discrete Fréchet

distance is 1+ 𝜀; the other way around, if for some realisation we get the

distance 1 + 𝜀, then by our construction, all the clauses are satisfied and

𝐶[𝑎] = True; and so 𝑑max

dF
(VC,CC) = 1 + 𝜀. On the other hand, if there

is no such assignment 𝑎, then for any assignment 𝑎, there is some 𝐶𝑖
with 𝐶𝑖[𝑎] = False, yielding 𝐶[𝑎] = False, and also for any realisation of

VC, there is some gadget ACG𝑖 that yields the discrete Fréchet distance

of 1; and so 𝑑max

dF
(VC,CC) = 1. Therefore, the formula 𝐶 is satisfiable if

and only if 𝑑max

dF
(VC,CC) > 1, and so our answer is correct.

Furthermore, observe that the curves have 2𝑚+2 and 2𝑚𝑛+𝑛 points,

respectively, and so the instance of Upper Bound Discrete Fréchet that

gives the answer to CNF-SAT can be constructed in polynomial time.

Thus, we conclude that Upper Bound Discrete Fréchet for indecisive

curves is NP-hard; combining it with the first part of the proof shows

that it is NP-complete. □

Upper Bound Fréchet Distance on Indecisive Points

We use the same construction as for the discrete Fréchet distance. To

follow the same proof structure, we need to present arguments for the

continuous case that lead up to an alternative to Lemma 3.7. For the

arguments to work, we need to further restrict the range of 𝜀 to be

[0.12, 0.25).
Consider the construction drawn in Figure 3.3. The key points here

are that (0, 0.5 + 𝜀) is far from any point on the clause curve, and that

(2, 0) is only close enough to (1, 0). We can obtain a lemma similar to

Lemma 3.4.

Lemma 3.9. Given a clause 𝐶𝑖 and a variable 𝑥 𝑗 that both occur in the CNF-
SAT formula 𝐶, we only get the Fréchet distance equal to (1 + 𝜀) · 2/√5 if the
realisation of VG𝑗 we pick corresponds to the assignment of 𝑥 𝑗 that ensures the
clause 𝐶𝑖 is satisfied; otherwise, the Fréchet distance is 1. In other words, if we
consider 𝜋 ⋐ VG𝑗 that corresponds to setting 𝑎(𝑥 𝑗), then

𝑑F(𝜋,AG𝑖 , 𝑗) =
{︄
(1 + 𝜀) · 2√

5

if assigning 𝑥 𝑗 satisfies 𝐶𝑖 ,

1 otherwise.

Chapter 3. Similarity of Uncertain Curves in 2D 50

(0, 0)

(0, 0.5)

(0,−0.5)

(1, 0)(−1, 0)

(0, 0.5 + 𝜀)

(0,−0.5 − 𝜀)

(2, 0)(−2, 0)

Figure 3.3. Construction for 𝜀 = 0.15. Shaded blue area shows the points within

distance 1 from the segment (0,−0.5)⊔ (1, 0). Observe that (0, 0.5+ 𝜀) is outside

that region, and that (1, 0) is the only blue point within distance 1 from (2, 0).

Proof. Consider the possible realisations of VG𝑗 . Suppose we pick

the realisation (0, 0.5 + 𝜀) ⊔ (2, 0), which corresponds to assigning

𝑎(𝑥 𝑗) = True. If 𝑥 𝑗 is a literal in 𝐶𝑖 , so 𝐶𝑖 = True, then by construction we

know that AG𝑖 , 𝑗 is (0,−0.5) ⊔ (1, 0). As noted in Figure 3.3, the distance

between (0, 0.5 + 𝜀) and any point on (0,−0.5) ⊔ (1, 0) is larger than 1.

To be more specific, the distance between the point (𝑥, 𝑦) and the line

defined by (𝑥1 , 𝑦1)⊔(𝑥2 , 𝑦2) can be determined using a standard formula

as

𝑑 =
|𝑥(𝑦2 − 𝑦1) − 𝑦(𝑥2 − 𝑥1) + 𝑥2𝑦1 − 𝑥1𝑦2 |√︁

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2
.

In our case, we get

𝑑 =
|0 − (0.5 + 𝜀) · (1 − 0) − 1 · 0.5 − 0|√︁

(1 − 0)2 + (0 + 0.5)2
=

2 · (1 + 𝜀)√
5

.

As the point (0, 0.5 + 𝜀) must be aligned with some point on AG𝑖 , 𝑗 ,

the Fréchet distance we get in this case cannot be smaller than 𝑑.

Furthermore, it is easy to see that the point (0, 0.5 + 𝜀) is the furthest

point from AG𝑖 , 𝑗 ; thus, we get that the Fréchet distance is exactly 𝑑.

On the other hand, if ¬𝑥 𝑗 is a literal in 𝐶𝑖 , then by construction we

know that AG𝑖 , 𝑗 is (0, 0.5) ⊔ (1, 0). As noted in Figure 3.3, the distance

between (2, 0) and any point on (0, 0.5) ⊔ (1, 0) is at least 1, with the

Chapter 3. Similarity of Uncertain Curves in 2D 51

smallest distance achieved at (1, 0). It is clear that this is the furthest

pair of points on the two gadgets in this case; thus, we get the Fréchet

distance of 1.

A symmetric argument can be applied when we consider the real-

isation (0,−0.5 − 𝜀) ⊔ (2, 0) for VG𝑗 : if ¬𝑥 𝑗 is a literal in 𝐶𝑖 , then we get

the Fréchet distance of 𝑑 and we picked an assignment that satisfies 𝐶𝑖 ;

and in the other case, we get that 𝐶𝑖 is not necessarily satisfied and the

Fréchet distance is 1.

Finally, consider the case when AG𝑖 , 𝑗 = (0, 0) ⊔ (1, 0). Again, this

implies that assigning a value to 𝑥 𝑗 has no effect on 𝐶𝑖 , so neither

assignment (and neither realisation of VG𝑗) would ensure that 𝐶𝑖 is

satisfied. Also observe that both realisations give rise to curves that are

entirely within distance 1 of (0, 0) ⊔ (1, 0), yielding the Fréchet distance

of 1. □

We can now naturally get a lemma similar to Lemma 3.6.

Lemma 3.10. Given a CNF-SAT formula 𝐶 containing some clause 𝐶𝑖 and 𝑚
variables 𝑥1 , . . . , 𝑥𝑚 , construct curves 𝛼1 ⊔ VCG ⊔ 𝛼′

1
and 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′

2

for arbitrary precise curves 𝛼1, 𝛼′
1
, 𝛼2, 𝛼′

2
with |𝛼1 | = 𝑘 and |𝛼2 | = 𝑙. If some

optimal alignment 𝜙1 , 𝜙2 between 𝛼1⊔VCG⊔𝛼′
1

and 𝛼2⊔ACG𝑖⊔𝛼′
2

for any
realisation of VCG has some value 𝑡 such that 𝜙1(𝑡) = 𝑘 + 1 and 𝜙2(𝑡) = 𝑙 + 1

and 𝑑F(𝛼1 , 𝛼2) ≤ 1 and 𝑑F(𝛼′
1
, 𝛼′

2
) ≤ 1, then the Fréchet distance between the

curves is (1 + 𝜀) · 2/√5 for the realisations of VCG that correspond to satisfying
assignments for 𝐶𝑖 , and 1 for other realisations. In other words, if 𝜋 ⋐ VCG

corresponds to assignment 𝑎 and we only consider the restricted alignments,
then

𝑑F(𝛼1 ⊔ 𝜋 ⊔ 𝛼′
1
, 𝛼2 ⊔ ACG𝑖 ⊔ 𝛼′

2
) =

{︄
(1 + 𝜀) · 2√

5

if 𝐶𝑖[𝑎] = True,

1 otherwise.

Proof. First of all, observe that as we traverse VCG, we need to align

(2, 0) with (1, 0) to obtain an optimal alignment. Therefore, essentially,

the traversal can be split into 𝑚 parts, each of which corresponds to

traversing VG𝑗 and AG𝑖 , 𝑗 at the same time for all 𝑗 ∈ [𝑚]. We can use

Lemma 3.9 to note that if some variable 𝑥 𝑗 is assigned a value that makes

the clause 𝐶𝑖 satisfied, then the Fréchet distance becomes (1 + 𝜀) · 2/√5;

if that is not the case for any variables, then we can traverse the entire

curve, as well as 𝛼1 and 𝛼′
1

by linearly interpolating our position between

Chapter 3. Similarity of Uncertain Curves in 2D 52

the vertices of the curves and otherwise using the alignment derived

from the coupling of the discrete case, while staying within distance 1

of the other curve, yielding the Fréchet distance of 1. The distance also

cannot be smaller than 1 due to aligning (2, 0) and (1, 0). □

Now we can provide a lemma that mirrors Lemma 3.7.

Lemma 3.11. Given a CNF-SAT formula 𝐶 with 𝑛 clauses and 𝑚 variables,
construct the curves VC and CC as defined above and consider a realisation
(0, 0) ⊔ 𝜋 ⊔ (0, 0) of curve VC, corresponding to some assignment 𝑎. Then

𝑑F((0, 0) ⊔ 𝜋 ⊔ (0, 0),CC) =
{︄
(1 + 𝜀) · 2√

5

if 𝐶[𝑎] = True,

1 if 𝐶[𝑎] = False.

In other words, the Fréchet distance is (1+𝜀)·2/√5 if the realisation𝜋 corresponds
to a satisfying assignment, and is 1 otherwise.

Proof. First of all, observe that any point of CC is within distance 1 of

(0, 0); furthermore, when starting to traverse 𝜋, we must match (−2, 0)
with (−1, 0) in an optimal alignment. Thus, the premise of Lemma 3.10 is

satisfied, and, using reasoning similar to that of Lemma 3.7, we observe

that an optimal alignment chooses one of the clauses to traverse in

parallel with the variable curve, and so if there is a clause that is not

satisfied, then we get the Fréchet distance of 1, and if all of them are

satisfied, then all of them yield the Fréchet distance of (1 + 𝜀) · 2/√5. □

Finally, we can show the main result.

Theorem 3.12. The problem Upper Bound Continuous Fréchet for inde-
cisive curves is NP-complete.

Proof. First of all, observe that if two realisations of lengths 𝑛 and 𝑚 are

given as a certificate for a ‘Yes’-instance of the problem, then one can

verify the solution by checking that the Fréchet distance between the

realisations is larger than the threshold 𝛿. The computation can be done

in time Θ(𝑚𝑛), using the algorithm by Alt and Godau [23, 117]; so the

problem is in NP.

Now suppose we are given an instance of CNF-SAT, i.e. a CNF-SAT

formula 𝐶 with 𝑛 clauses and 𝑚 variables. We construct the curves VC

and CC, as described previously, and get an instance of Upper Bound

Chapter 3. Similarity of Uncertain Curves in 2D 53

Continuous Fréchet on curves VC and CC with the threshold 𝛿 = 1. If

the answer is ‘Yes’, then we also output ‘Yes’ as an answer to CNF-SAT;

otherwise, we output ‘No’.

Using Lemma 3.11, we can see that if there is an assignment 𝑎 such

that 𝐶[𝑎] = True, then for the corresponding realisation, the Fréchet

distance is (1 + 𝜀) · 2/√5; the other way around, if for some realisation we

get the distance (1+ 𝜀) · 2/√5, then by our construction, all the clauses are

satisfied and 𝐶[𝑎] = True; and so 𝑑max

F
(VC,CC) = (1 + 𝜀) · 2/√5. On the

other hand, if there is no such assignment 𝑎, then for any assignment 𝑎,

there is some 𝐶𝑖 with 𝐶𝑖[𝑎] = False, yielding 𝐶[𝑎] = False, and also for

any realisation of VC, there is some gadget ACG𝑖 that yields the Fréchet

distance of 1; and so 𝑑max

F
(VC,CC) = 1. Therefore, the formula 𝐶 is

satisfiable if and only if 𝑑max

F
(VC,CC) > 1, and so our answer to the

CNF-SAT instance is correct.

Furthermore, as before, the instance of Upper Bound Discrete

Fréchet that gives the answer to CNF-SAT can be constructed in polyno-

mial time. Thus, we conclude that Upper Bound Continuous Fréchet

for indecisive curves is NP-hard; combining it with the first part of the

proof shows that it is NP-complete. □

Expected Fréchet Distance on Indecisive Points

We show that finding the expected discrete Fréchet distance is #P-

hard under the uniform distribution by providing a polynomial-time

reduction from #CNF-SAT, i.e. the problem of finding the number of

satisfying assignments to a CNF-SAT formula. Define the following

problem and its continuous counterpart.

Problem 3.13. Expected Discrete Fréchet: Find 𝑑
𝔼(𝕌)
dF

(𝒰 ,𝒱) for un-

certain curves 𝒰 , 𝒱.

Problem 3.14. Expected Continuous Fréchet: Find 𝑑
𝔼(𝕌)
F

(𝒰 ,𝒱) for

uncertain curves 𝒰 , 𝒱.

The main idea is to derive an expression for the number of satisfying

assignments in terms of 𝑑
𝔼(𝕌)
dF

(VC,CC). This works, since there is a

one-to-one correspondence between boolean variable assignment and

a choice of realisation of VC, so counting the number of satisfying

Chapter 3. Similarity of Uncertain Curves in 2D 54

assignments corresponds to finding the proportion of realisations yield-

ing a large Fréchet distance. We can establish the result for Expected

Continuous Fréchet similarly.

Theorem 3.15. The problems Expected Discrete Fréchet and Expected
Continuous Fréchet for indecisive curves are #P-hard.

Proof. Suppose we are given an instance of the #CNF-SAT problem,

i.e. a CNF-SAT formula 𝐶 with 𝑛 clauses and 𝑚 variables. Denote

the (unknown) number of satisfying assignments of 𝐶 by 𝑁 . We

can construct the curves VC and CC in the same way as previously.

We then get an instance of Expected Discrete Fréchet on indecisive

curves under the uniform distribution. Assuming we solve it and get

𝑑
𝔼(𝕌)
dF

(VC,CC) = 𝜇, we can now compute 𝑁 :

𝑁 = (𝜇 − 1) · 2
𝑚

𝜀
.

𝑁 is then the output for the instance of #CNF-SAT that we were given.

Clearly, construction of the curves can be done in polynomial time; so

can the computation of 𝑁 ; hence, the reduction takes polynomial time.

We still need to show that the result we obtain is correct. For each

assignment, there is exactly one realisation of the curve VC. Furthermore,

as we choose the realisation of each indecisive point uniformly and

independently, all the realisations of VC have equal probability of 2
−𝑚

.

There are 𝑁 satisfying assignments; and each of the corresponding

realisations yields the discrete Fréchet distance of 1+ 𝜀. In the remaining

2
𝑚 − 𝑁 cases, the distance is 1. Using the definition of expected value,

we can derive

𝜇 = 𝑑
𝔼(𝕌)
dF

(VC,CC) = 𝑁 · 2
−𝑚 · (1 + 𝜀) + (2𝑚 − 𝑁) · 2

−𝑚 · 1 = 1 + 𝑁 · 𝜀
2
𝑚

.

Then it is easy to see that indeed 𝑁 = (𝜇 − 1) · 2
𝑚

𝜀 . So, we get the correct

number of satisfying assignments, if we know the expected value under

the uniform distribution. Therefore, Expected Discrete Fréchet for

indecisive curves is #P-hard.

One can derive a very similar formula to show that Expected Con-

tinuous Fréchet is also #P-hard for indecisive curves. We can use

almost the same reduction as for the discrete case, so given an instance

of #CNF-SAT (CNF-SAT formula 𝐶 with 𝑛 clauses and 𝑚 variables), we

Chapter 3. Similarity of Uncertain Curves in 2D 55

construct the two curves, solve Expected Continuous Fréchet to obtain

the value of 𝜇, and compute

𝑁 = 2
𝑚 · (𝜇 − 1) ·

√
5

2(1 + 𝜀) −
√

5

as the output for #CNF-SAT. To show that the output is correct, note

that

𝜇 = 2
−𝑚 ·𝑁 · 2√

5

· (1+ 𝜀)+2
−𝑚 · (2𝑚 −𝑁) ·1 = 1+2

−𝑚 ·𝑁 ·
(︃

2√
5

(1+ 𝜀)−1

)︃
,

so we can express 𝑁 as

𝑁 = 2
𝑚 · (𝜇 − 1) ·

√
5

2(1 + 𝜀) −
√

5

.

Again, the reduction is correct and can be done in polynomial time, so

Expected Continuous Fréchet for indecisive curves is #P-hard. □

We use the uniform distribution; however, we only need to compute

the probability of picking a realisation that corresponds to a satisfying

assignment, 𝑁 · 2
−𝑚

above. If we can do so for a different distribution,

then the rest of the proof does not require modifications to show #P-

hardness.

Upper Bound Discrete Fréchet Distance on Imprecise Points

Here we consider imprecise points modelled as disks and as line seg-

ments; the results and their proofs turn out to be very similar. We

denote the disk with the centre at 𝑝 ∈ ℝ𝑑
and radius 𝑟 ≥ 0 as 𝐷(𝑝, 𝑟).

We denote the line segment between points 𝑝1 and 𝑝2 by 𝑆(𝑝1 , 𝑝2).

Disks. We use a construction very similar to that of the indecis-

ive points case, except now we change the gadget containing a non-

degenerate indecisive point so that it contains a non-degenerate impre-

cise point, for all 𝑗 ∈ [𝑚]:

VG𝑗 = 𝐷((0, 0), 0.5 + 𝜀) ⊔ (2, 0) .

Essentially, the two original indecisive points are now located on the

points realising the diameter of the disk.

Chapter 3. Similarity of Uncertain Curves in 2D 56

We can reuse the proof leading up to Theorem 3.8 if we can show

the following.

Lemma 3.16. Suppose 𝑑max

dF
(VC,CC) = 𝜈. If one considers all the realisations

𝜋 of VC that yield 𝑑dF(𝜋,CC) = 𝜈, then among them there will always be a
realisation that only places the imprecise point realisations at either (0, 0.5+ 𝜀)
or (0,−0.5 − 𝜀).

Proof. First of all, note that the points (2, 0) and (1, 0) are still in the

curves in the same quality as before, so they must be coupled, and hence

the lowest discrete Fréchet distance achievable with any realisation is 1.

Now consider a realisation of an imprecise point. Suppose that

all the clause assignment points for that imprecise point are placed at

(0,−0.5). Then geometrically it is obvious that the distance is maximised

by placing the realisation at (0, 0.5 + 𝜀); if there is a realisation that

achieves the best possible value 𝜈 without doing this, then we can move

this point and still get 𝜈.

Suppose that some clause assignment points are at (0,−0.5) and

some at (0, 0.5). As the realisation comes from the disk of radius 0.5 + 𝜀,

there is no realisation that is further than 1 away from both assignment

points; therefore, to maximise the distance we have to choose one of the

two locations, and then the previous case applies.

So, it is clear that, from an arbitrary optimal realisation, moving to the

(correct) indecisive point realisation will still yield an optimal realisation

for the maximum discrete Fréchet distance; thus, the statement of the

lemma holds. □

Line segments. We change the gadget to be, for all 𝑗 ∈ [𝑚]:

VG𝑗 = 𝑆((0,−0.5 − 𝜀), (0, 0.5 + 𝜀)) ⊔ (2, 0) .

Again, the two original indecisive points are now located on the ends of

the segment; moreover, the segment is a strict subset of the disk.

We can state a similar lemma.

Lemma 3.17. Suppose 𝑑max

dF
(VC,CC) = 𝜈. If one considers all the realisations

𝜋 of VC that yield 𝑑dF(𝜋,CC) = 𝜈, then among them there will always be a
realisation that only places the imprecise point realisations at either (0, 0.5+ 𝜀)
or (0,−0.5 − 𝜀).

Chapter 3. Similarity of Uncertain Curves in 2D 57

Proof. Since the line segments include these points and are subsets of the

disks, the statement of Lemma 3.16 immediately yields this result. □

Now we can state the following theorem for both models.

Theorem 3.18. The problem Upper Bound Discrete Fréchet for imprecise
curves modelled as line segments or as disks is NP-hard.

Proof. As shown in Lemma 3.16 and Lemma 3.17, for the same CNF-SAT

formula, the upper bound discrete Fréchet distance on indecisive and

imprecise points is equal for our construction. So, trivially, Upper Bound

Discrete Fréchet is NP-hard for imprecise curves. □

Upper Bound Fréchet Distance on Imprecise Points

We use exactly the same construction as in the previous section. The

argument here follows the previous ones very closely, so we can imme-

diately state the following theorem.

Theorem 3.19. The problem Upper Bound Continuous Fréchet for impre-
cise curves modelled as line segments or as disks is NP-hard.

Proof. Note that we can apply the same arguments as in Lemma 3.16

and Lemma 3.17 to reduce this problem to the one on indecisive points.

Then, we can apply the same argument as in the proof of Theorem 3.18

to conclude that the problem is NP-hard. □

Expected Discrete Fréchet Distance on Imprecise Points

We can also consider the value of the expected Fréchet distance on

imprecise points. We show the result only for points modelled as line

segments; in principle, we believe that for disks a similar result holds,

but the specifics of our reduction do not allow for clean computations.

We cannot immediately use our construction: we treat subsegments

at the ends of the imprecision segments as True and False, but we have

no interpretation for points in the centre part of a segment. So, we

want to separate the realisations that pick any such invalid points. To

that aim, we introduce extra gadgets to the clause curve that act as

clauses, but catch these invalid realisations, so each of them yields the

Chapter 3. Similarity of Uncertain Curves in 2D 58

(−1, 0) (1, 0)

(0,−0.5 − 𝜀)

(0, 0.5 + 𝜀)
(0, 0.5)

(0,−0.5)

Figure 3.4. The curve FG𝑗 hops between (0, 0) and (1, 0) for every variable 𝑥𝑘 (in

black) except when 𝑘 = 𝑗; in the latter case, the curve goes to (0, 0.5), (0,−0.5),
and back to (1, 0) (in blue). Consider the line segment on the variable curve

representing 𝑥 𝑗 (in red). As a consequence, for any realisation of the variable

clause gadget such that the realisation of 𝑥 𝑗 falls within 𝑆((0,−0.5), (0, 0.5)), the

gadget FG𝑗 can be aligned with VCG to obtain Fréchet distance 1.

distance of 1. Now we have three distinct cases: realisation is satisfying,

non-satisfying, or invalid. For every 𝑗 ∈ [𝑚], define

FG𝑗 = (−1, 0) ⊔
⨆︂

𝑘∈[𝑗−1]

(︂
(0, 0) ⊔ (1, 0)

)︂
⊔ (0, 0.5) ⊔ (0,−0.5) ⊔ (1, 0)

⊔
⨆︂

𝑘∈[𝑚]\[𝑗]

(︂
(0, 0) ⊔ (1, 0)

)︂
.

We define a clause gadget that ignores all the variables except for 𝑥 𝑗
and then features both ‘true’ and ‘false’ for 𝑥 𝑗 . The intuition is that any

realisation corresponding to the invalid state of a variable will be close

to both (0, 0.5) and (0,−0.5), and every other variable value is close to

(0, 0), so aligning the gadget FG𝑗 with the variable curve will yield a

small Fréchet distance if 𝑥 𝑗 is in an invalid state. See also Figure 3.4. We

then define the clause curve as

CC =
⨆︂
𝑖∈[𝑛]

ACG𝑖 ⊔
⨆︂
𝑗∈[𝑚]

FG𝑗 .

We can now choose to couple one of the FG clauses to the variable curve.

As before, due to the synchronisation points we can never get the Fréchet

distance below 1. If one of the realisations 𝑥 𝑗 of the segments falls into

Chapter 3. Similarity of Uncertain Curves in 2D 59

the interval [(0,−0.5), (0, 0.5)], then it will be not further away than 1

from both the corresponding points on FG𝑗 ; all the other points, being in

the middle at (0, 0), are guaranteed to be at most 0.5 + 𝜀 < 1 away from

their coupled point; so, the one-to-one coupling2 will yield the discrete

Fréchet distance of 1; thus, the optimal discrete Fréchet distance in this

case is 1. Therefore, we only need to consider the situations when all

the realisations happen to fall in either the interval ((0, 0.5), (0, 0.5 + 𝜀)]
or [(0,−0.5− 𝜀), (0,−0.5)). We will treat the first interval as True and the

second interval as False. Denote the number of satisfying assignments

by 𝑁 . To find the expression for the expected discrete Fréchet distance,

we need to consider three cases.

• At least one realisation of 𝑚 variables falls within the 𝑦-interval

[−0.5, 0.5]. Note that the realisation on each segment is uniform

and independent of other segments. Under the uniform distribu-

tion, we get

Pr[at least one realisation from [−0.5, 0.5]]

= 1 −
∏︂
𝑗∈[𝑚]

2𝜀
1 + 2𝜀

= 1 −
(︃

2𝜀
1 + 2𝜀

)︃𝑚
.

Note that in each such case we get the discrete Fréchet distance

of 1, as discussed before.

• All realisations fall outside the 𝑦-interval [−0.5, 0.5], and they

correspond to a non-satisfying assignment. Each specific non-

satisfying assignment corresponds to picking values on the specific

interval, either ((0, 0.5), (0, 0.5 + 𝜀)] or [(0,−0.5 − 𝜀), (0,−0.5)), so:

Pr[specific assignment] =
∏︂
𝑗∈[𝑚]

𝜀
1 + 2𝜀

=

(︃
𝜀

1 + 2𝜀

)︃𝑚
.

There are 2
𝑚 − 𝑁 such assignments, and each of them contributes

the value of 1.

• All realisations fall outside the 𝑦-interval [−0.5, 0.5], and they

correspond to a satisfying assignment. Again, the probability of

getting a particular assignment is (𝜀/(1 + 2𝜀))𝑚 , and there are 𝑁 such

2
Technically, it is one to one on all points except the realisation corresponding to 𝑥 𝑗 ;

that one has to be coupled to both (0, 0.5) and (0,−0.5) in FG𝑗 .

Chapter 3. Similarity of Uncertain Curves in 2D 60

assignments. Now they contribute values distinct from 1; still, the

optimum is contributed by one of the new clauses, and then it

will be defined by the realisation closest to (0, 0). We prove this

in Lemma 3.20. Assuming this statement is true, we need to find

𝔼[min𝑗∈[𝑚](1 + 𝜀′
𝑗
)] with 𝜀′

𝑗
sampled uniformly from (0, 𝜀]; we can

rephrase this to 1 + 𝜀 · 𝔼[min𝑗∈[𝑚] 𝑢𝑗] with 𝑢𝑗 sampled uniformly

from (0, 1]. It is a standard result that the minimum now is

geometrically distributed, so we get 𝔼[min𝑗∈[𝑚] 𝑢𝑗] = 1/(1 + 𝑚), and

hence the expected contribution is 1 + 𝜀/(1 + 𝑚).

Lemma 3.20. Consider some realisation 𝜋 ⋐ VC where each value can be
interpreted either as True or False and the corresponding assignment satisfies
the formula. Pick 𝑗 such that the subcurve of 𝜋 realising VG𝑗 contains the
point closest to (0, 0), at location (0, 0.5+ 𝜀′) or (0,−0.5− 𝜀′) for some 𝜀′ > 0.
Then the optimal coupling establishes a coupling between 𝜋 and FG𝑗 , and the
discrete Fréchet distance is 𝑑dF(𝜋,CC) = 1 + 𝜀′.

Proof. First of all, note that we still have to couple the synchronisation

points and we cannot have the discrete Fréchet distance below 1. Thus,

we need to consider only the couplings of 𝜋 with the gadgets of CC.

Note that if we couple FG𝑗 to 𝜋, we get the discrete Fréchet distance

of 1 + 𝜀′. Recall that we consider only satisfying assignments, so, if we

consider an arbitrary subcurve ACG𝑖 , then there is some variable 𝑥ℓ that

satisfies the corresponding clause, and so the realisation of that variable

is 1 + 𝜀′′ away from the corresponding assignment point. Therefore,

such a coupling will yield the discrete Fréchet distance of 1+ 𝜀′′ ≥ 1+ 𝜀′.
Finally, it is easy to see that choosing some FG𝑘 with 𝑘 ≠ 𝑗 will also yield

some distance 1+ 𝜀′′ ≥ 1+ 𝜀′. So, the statement of the lemma holds. □

We can bring the three cases together to find

𝑑
𝔼(𝕌)
dF

(VC,CC)

= 1 ·
(︃
1 −

(︂
2𝜀

1 + 2𝜀

)︂𝑚)︃
+ 1 · (2𝑚 − 𝑁) ·

(︂ 𝜀
1 + 2𝜀

)︂𝑚
+
(︂
1 + 𝜀

1 + 𝑚
)︂
· 𝑁 ·

(︂ 𝜀
1 + 2𝜀

)︂𝑚
= 1 + 𝑁 · 𝜀𝑚+1

(1 + 𝑚) · (1 + 2𝜀)𝑚 .

Chapter 3. Similarity of Uncertain Curves in 2D 61

So, if we were to compute 𝑑
𝔼(𝕌)
dF

(VC,CC) = 𝜇, then the number of

satisfying assignments would be

𝑁 = (𝜇 − 1) · (1 + 𝑚) · (1 + 2𝜀)𝑚
𝜀𝑚+1

.

This is easy to compute in polynomial time, and our construction can

still be done in polynomial time; hence, the result follows.

Theorem 3.21. The problem Expected Discrete Fréchet for imprecise
curves modelled as line segments under the uniform distribution is #P-hard.

We have stated the results for the uniform distribution; however, we

conjecture that this construction could work for some other distributions.

The requirements are that we need to be able to compute the probabil-

ities of falling into each region; that all realisations are equiprobable,

or we have some other way to compute the probability of getting a

satisfying realisation; and that we can compute 𝔼[min𝑗∈[𝑚] 𝑢𝑗] under

the appropriate distribution of 𝑢𝑗 .

3.1.2 Lower Bound Fréchet Distance

In this section, we prove that computing the lower bound continuous

Fréchet distance is NP-hard for uncertainty modelled with line seg-

ments. This contrasts with the algorithm for indecisive curves, given in

Section 3.2.1, and with the algorithm previously suggested by Ahn el

al. [18] for the discrete Fréchet distance. Unlike the upper bound proofs,

this reduction uses the NP-hard problem Subset-Sum. We consider the

following problems.

Problem 3.22. Lower Bound Continuous Fréchet: Given an uncertain

curve 𝒰 with 𝑚 vertices, a polygonal curve 𝜎 with 𝑛 vertices, and a

threshold 𝛿 > 0, decide if 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿.

Problem 3.23. Subset-Sum: Given a set 𝑆 = {𝑠1 , . . . , 𝑠𝑛} of 𝑛 positive

integers and a target integer 𝜏, decide if there exists an index set 𝐼 such

that

∑︁
𝑖∈𝐼 𝑠𝑖 = 𝜏.

As a polygonal curve is an uncertain curve, proving Problem 3.22 is

NP-hard implies the corresponding problem with two uncertain curves

is also NP-hard.

Chapter 3. Similarity of Uncertain Curves in 2D 62

(
2𝑖 − 1

2
)
𝛼 2𝑖𝛼

(
2𝑖 + 1

2
)
𝛼

𝑦𝑖

2𝑦𝑖

2𝛽𝑖−1 2𝛽𝑖−1

2𝛽𝑖−1 + 2𝑦𝑖

0

Figure 3.5. Passing through
(︁
(2𝑖 − 1/2)𝛼, 0

)︁
does not change the height, and

passing through
(︁
(2𝑖 − 1/2)𝛼,−𝑦𝑖

)︁
adds 2𝑦𝑖 .

An Intermediate Problem

We start by reducing Subset-Sum to a more geometric intermediate

curve-based problem.

Definition 3.24. Let 𝛼 > 0 be some value, and let 𝜋 = ⟨𝜋1 , . . . ,𝜋2𝑛+1⟩
be a polygonal curve. We call 𝜋 an 𝛼-regular curve if for all 𝑖 ∈ [2𝑛 + 1],
the 𝑥-coordinate of 𝜋𝑖 is 𝑖 · 𝛼. Let 𝑌 = {𝑦1 , . . . , 𝑦𝑛} be a set of 𝑛 positive

integers. Call 𝜋 a 𝑌-respecting curve if:

1. For all 𝑖 ∈ [𝑛], 𝜋 passes through the point

(︁
(2𝑖 + 1/2)𝛼, 0

)︁
.

2. For all 𝑖 ∈ [𝑛], 𝜋 either passes through the point

(︁
(2𝑖 − 1/2)𝛼, 0

)︁
or(︁

(2𝑖 − 1/2)𝛼,−𝑦𝑖
)︁
.

Intuitively, Definition 3.24 requires 𝜋 to pass through

(︁
(2𝑖 + 1/2)𝛼, 0

)︁
as it reflects the 𝑦-coordinate about the line 𝑦 = 0 (see Figure 3.5). Thus,

if the curve also passes through

(︁
(2𝑖− 1/2)𝛼, 0

)︁
, the two reflections cancel

each other. If it passes through

(︁
(2𝑖 − 1/2)𝛼,−𝑦𝑖

)︁
, the lemma below

argues that 𝑦𝑖 shows up in the final vertex height.

Lemma 3.25. Let 𝜋 be a𝑌-respecting 𝛼-regular curve, and let 𝐼 be the subset of
indices such that𝜋 passes through

(︁
(2𝑖−1/2)𝛼,−𝑦𝑖

)︁
for all 𝑖 ∈ 𝐼. If𝜋1 = (𝛼, 0),

then 𝜋2𝑛+1 =
(︁
(2𝑛 + 1)𝛼, 2∑︁𝑖∈𝐼 𝑦𝑖

)︁
.

Proof. For 𝑗 ∈ [𝑛], let 𝐼 𝑗 = {𝑖 ∈ 𝐼 | 𝑖 ≤ 𝑗}, and let 𝛽 𝑗 =
∑︁
𝑖∈𝐼𝑗 𝑦𝑖 , where

𝛽0 = 0. We argue by induction that 𝜋2𝑗+1 =
(︁
(2𝑗+1)𝛼, 2𝛽 𝑗

)︁
, thus yielding

Chapter 3. Similarity of Uncertain Curves in 2D 63

the lemma statement when 𝑗 = 𝑛. For the base case, 𝑗 = 0, the statement

becomes 𝜋1 = (𝛼, 0), which is true by assumption of the lemma.

Assume that 𝜋2𝑗−1 =
(︁
(2𝑗 − 1)𝛼, 2𝛽 𝑗−1

)︁
. Suppose that 𝑗 ∉ 𝐼. In this

case, since 𝜋 is 𝑌-respecting, it passes through points

(︁
(2𝑗 − 1/2)𝛼, 0

)︁
and

(︁
(2𝑗 + 1/2)𝛼, 0

)︁
. This implies 𝜋2𝑗 = (2𝑗𝛼,−2𝛽 𝑗−1) and 𝜋2𝑗+1 =

(︁
(2𝑗 +

1)𝛼, 2𝛽 𝑗−1

)︁
=

(︁
(2𝑗 + 1)𝛼, 2𝛽 𝑗

)︁
. Now suppose that 𝑗 ∈ 𝐼. In this case, it

must pass through points

(︁
(2𝑗 − 1/2)𝛼,−𝑦 𝑗

)︁
and

(︁
(2𝑗 + 1/2)𝛼, 0

)︁
. This

implies 𝜋2𝑗 =
(︁
2𝑗𝛼, 2𝛽 𝑗−1 − 2 · (2𝛽 𝑗−1 + 𝑦 𝑗)

)︁
=

(︁
2𝑗𝛼,−2(𝛽 𝑗−1 + 𝑦 𝑗)

)︁
and

𝜋2𝑗+1 =
(︁
(2𝑗 + 1)𝛼, 2(𝛽𝑖−1 + 𝑦 𝑗)

)︁
=
(︁
(2𝑗 + 1)𝛼, 2𝛽 𝑗

)︁
. See Figure 3.5. □

The following corollary is needed in the next section, and follows

from Lemma 3.25.

Corollary 3.26. For a set 𝑌 = {𝑦1 , . . . , 𝑦𝑛}, let 𝑀 =
∑︁𝑛
𝑖=1

𝑦𝑖 . For any vertex
𝜋𝑖 of a 𝑌-respecting 𝛼-regular curve, its 𝑦-coordinate is at most 2𝑀 and at
least −2𝑀.

Problem 3.27. RR-Curve: Given a set 𝑌 = {𝑦1 , . . . , 𝑦𝑛} of 𝑛 positive

integers, a value 𝛼 = 𝛼(𝑌) > 0, and an integer 𝜏, decide if there is a

𝑌-respecting 𝛼-regular curve 𝜋 = ⟨𝜋1 , . . . ,𝜋2𝑛+1⟩ such that 𝜋1 = (𝛼, 0)
and 𝜋2𝑛+1 =

(︁
(2𝑛 + 1)𝛼, 2𝜏

)︁
.

By Lemma 3.25, Subset-Sum immediately reduces to this problem by

setting 𝑌 = 𝑆. Note that for this reduction, it suffices to use any positive

constant for 𝛼; however, we allow 𝛼 to depend on 𝑌, as this is ultimately

required in our reduction to Problem 3.22.

Theorem 3.28. For any 𝛼(𝑌) > 0, RR-Curve is NP-hard.

Reduction to Lower Bound Fréchet Distance

Let 𝛼, 𝜏, 𝑌 = {𝑦1 , . . . , 𝑦𝑛} be an instance of RR-Curve. In this section,

we show how to reduce it to an instance (𝛿, 𝒰 , 𝜎) of Problem 3.22, where

the uncertain regions in 𝒰 are vertical line segments. The main idea

is to use 𝒰 to define an 𝛼-regular curve, and to use 𝜎 to enforce that

it is 𝑌-respecting. Let 𝑀 =
∑︁𝑛
𝑖=1

𝑦𝑖 . Then 𝒰 = ⟨𝑉1 , . . . , 𝑉2𝑛+1⟩, where

𝑉𝑖 is a vertical segment whose horizontal coordinate is 𝑖 · 𝛼 and whose

vertical extent is the interval [−2𝑀, 2𝑀]. By Corollary 3.26, we have the

following simple observation.

Chapter 3. Similarity of Uncertain Curves in 2D 64

𝛿

𝛿

𝑝

(a) g𝛿(𝑝)

𝑝
𝑝 𝑙𝛿 𝑝𝑟𝛿

(b) lcg𝛿(𝑝)

𝑞

𝑞 𝑙𝛿

(c) ucg𝛿(𝑞)

Figure 3.6. Depiction of the gadgets g𝛿(𝑝), lcg𝛿(𝑝), and ucg𝛿(𝑝). Dashed

circles represent zero-area points; the red (blue) square represents the starting

(ending) point.

Observation 3.29. The set of all 𝑌-respecting 𝛼-regular curves is a subset of
Real(𝒰).

Thus, the main challenge is to define 𝜎 to enforce that the realisation

is 𝑌-respecting. To that end, we first describe a gadget forcing the

realisation to pass through a specified point.

Definition 3.30. For any point 𝑝 = (𝑥, 𝑦) ∈ ℝ2
and value 𝛿 > 0, let the

𝛿-gadget at 𝑝, denoted by g𝛿(𝑝), be the curve (𝑥, 𝑦) ⊔ (𝑥, 𝑦 + 𝛿) ⊔ (𝑥, 𝑦 −
𝛿) ⊔ (𝑥, 𝑦 + 𝛿) ⊔ (𝑥, 𝑦). See Figure 3.6a.

Lemma 3.31. Let 𝑝 = (𝑥, 𝑦) ∈ ℝ2 be a point, and let 𝑆 be any line segment.
If 𝑑F(𝑆, g𝛿(𝑝)) ≤ 𝛿, then 𝑆 must pass through 𝑝.

Proof. In order, g𝛿(𝑝) visits the points (𝑥, 𝑦 + 𝛿), (𝑥, 𝑦 − 𝛿), and (𝑥, 𝑦 + 𝛿).
Let 𝑎 = (𝑎𝑥 , 𝑎𝑦), 𝑏 = (𝑏𝑥 , 𝑏𝑦), 𝑐 = (𝑐𝑥 , 𝑐𝑦) be the points from 𝑆 which get

Chapter 3. Similarity of Uncertain Curves in 2D 65

aligned with these respective points under an optimal Fréchet alignment.

If the Fréchet distance is at most 𝛿, then 𝑏𝑦 ≤ 𝑦 ≤ 𝑎𝑦 , 𝑐𝑦 . If 𝑆 has a

positive slope w.r.t. the order along 𝑆, then also 𝑐𝑦 ≥ 𝑏𝑦 ≥ 𝑎𝑦 , so we have

𝑎𝑦 = 𝑏𝑦 and so 𝑎 = 𝑏. However, if 𝑎 = 𝑏, then this point must be 𝑝 itself,

as 𝑝 is the only point with distance at most 𝛿 from both (𝑥, 𝑦 + 𝛿) and

(𝑥, 𝑦 − 𝛿). If 𝑆 has a negative slope, then 𝑐𝑦 ≤ 𝑏𝑦 ≤ 𝑎𝑦 , so now 𝑏𝑦 = 𝑐𝑦
and 𝑏 = 𝑐, and again this must be point 𝑝. Finally, if 𝑆 is horizontal, then

𝑎 = 𝑏 = 𝑐 = 𝑝, as this is the only point on a horizontal segment aligned

with both (𝑥, 𝑦 + 𝛿) and (𝑥, 𝑦 − 𝛿). □

For our uncertain curve to be 𝑌-respecting, it must pass through

all the points of the form

(︁
(2𝑖 + 1/2)𝛼, 0

)︁
. This condition is satisfied by

placing a 𝛿-gadget at each such point, as follows from Lemma 3.31. The

second condition for a curve to be 𝑌-respecting is that it passes through(︁
(2𝑖 − 1/2)𝛼, 0

)︁
or

(︁
(2𝑖 − 1/2)𝛼,−𝑦𝑖

)︁
. This condition is much harder to

encode, and requires putting several 𝛿-gadgets together to create a

composite gadget.

Definition 3.32. For any point 𝑝 = (𝑥, 𝑦) ∈ ℝ2
and value 𝛿 > 0, let

𝑝 𝑙𝛿 = (𝑥 − 𝛿/2, 𝑦) and 𝑝𝑟𝛿 = (𝑥 + 𝛿/2, 𝑦). Define the 𝛿-lower composite gadget
at 𝑝, denoted lcg𝛿(𝑝), to be the curve g𝛿(𝑝) ⊔ 𝑝𝑟𝛿 ⊔ g𝛿(𝑝) ⊔ 𝑝 𝑙𝛿 ⊔ 𝑝

𝑟
𝛿. See

Figure 3.6b. Define the 𝛿-upper composite gadget at 𝑞, denoted ucg𝛿(𝑞), to

be the curve g𝛿(𝑞) ⊔ 𝑞 𝑙𝛿 ⊔ g𝛿(𝑞). See Figure 3.6c. Define the 𝛿-composite
gadget of 𝑝 and 𝑞, denoted cg𝛿(𝑝, 𝑞), to be the curve lcg𝛿(𝑝) ⊔ ucg𝛿(𝑞).

To use the composite gadget, we centre the lower gadget at height

−𝑦𝑖 and place the upper gadget directly above it at height zero. As

the two gadgets are on top of each other, ultimately, we require our

uncertain curve to go back and forth once between consecutive vertical

line segments; we have the following key property.

Lemma 3.33. Let 𝑝 = (𝑝𝑥 ,−𝑝𝑦) and 𝑞 = (𝑝𝑥 , 0) be points in ℝ2. Let
𝜋 = ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ be a three-segment curve such that 𝑏𝑥 > 𝑝𝑥+𝛿 and 𝑐𝑥 < 𝑝𝑥−𝛿.
If 𝑑F(𝜋, cg𝛿(𝑝, 𝑞)) ≤ 𝛿, then:

1. the segment 𝑎𝑏 must pass through 𝑝,

2. the segment 𝑐𝑑 must pass through 𝑞, and

3. the segment 𝑏𝑐 must either pass through 𝑝 or through 𝑞.

Chapter 3. Similarity of Uncertain Curves in 2D 66

Proof. Recall from Definition 3.32 that cg𝛿(𝑝, 𝑞) = g𝛿(𝑝)⊔𝑝𝑟𝛿⊔g𝛿(𝑝)⊔𝑝 𝑙𝛿⊔
𝑝𝑟𝛿 ⊔ g𝛿(𝑞) ⊔ 𝑞 𝑙𝛿 ⊔ g𝛿(𝑞), and that the gadgets g𝛿(𝑝) and g𝛿(𝑞) lie entirely

on the vertical line at 𝑝𝑥 = 𝑞𝑥 . Thus, as 𝑏𝑥 > 𝑝𝑥 + 𝛿 and 𝑐𝑥 < 𝑝𝑥 − 𝛿, each

occurrence of g𝛿(𝑝) or g𝛿(𝑞) in cg𝛿(𝑝, 𝑞) must map either entirely before

or after 𝑏, and similarly entirely before or after 𝑐.

Moreover, as cg𝛿(𝑝, 𝑞) starts with g𝛿(𝑝) and 𝑏𝑥 > 𝑝𝑥 + 𝛿, this implies

that 𝑎 maps to 𝑝 and g𝛿(𝑝) maps to a subsegment of 𝑎𝑏, which by

Lemma 3.31 implies that 𝑎𝑏 passes through 𝑝. Similarly, as cg𝛿(𝑝, 𝑞)
ends with g𝛿(𝑞) and 𝑐𝑥 < 𝑞𝑥 − 𝛿, 𝑐𝑑 passes through 𝑞.

Finally, the portion of cg𝛿(𝑝, 𝑞) that maps to the segment 𝑏𝑐 must

contain a point on the vertical line at 𝑝𝑥 = 𝑞𝑥 (since 𝑏𝑥 > 𝑝𝑥 + 𝛿 and

𝑐𝑥 < 𝑝𝑥 − 𝛿). By the construction of cg𝛿(𝑝, 𝑞), this point must lie on

one of the (middle) g𝛿(𝑝) or g𝛿(𝑞) gadgets. As we already argued, such

gadgets must map entirely to one side of 𝑏 or 𝑐, so Lemma 3.31 implies

that 𝑏𝑐 must pass through 𝑝 or 𝑞. □

As 𝑏𝑐 shares an endpoint with 𝑎𝑏 and 𝑐𝑑, the following corollary is

immediate. It is used later to argue that while our uncertain curve goes

back and forth between consecutive vertical lines, it defines an 𝛼-regular

curve. (See Figure 3.7 used for Theorem 3.36.)

Corollary 3.34. If 𝑑F(𝜋, cg𝛿(𝑝, 𝑞)) ≤ 𝛿, then either 𝑎𝑏 and 𝑏𝑐 are on the
same line, or 𝑐𝑑 and 𝑏𝑐 are on the same line.

The following lemma acts as a rough converse of Lemma 3.33.

Lemma 3.35. Let 𝑝 = (𝑝𝑥 ,−𝑝𝑦) and 𝑞 = (𝑝𝑥 , 0) be points in ℝ2, with
𝑝𝑦 ≤ 𝛿/4. Let 𝜋 = ⟨𝑝, 𝑏, 𝑐, 𝑞⟩ be a curve such that 𝑝𝑥 + 𝛿 < 𝑏𝑥 ≤ 𝑝𝑥 + 1.1𝛿,
𝑝𝑥 − 1.1𝛿 ≤ 𝑐𝑥 < 𝑝𝑥 − 𝛿, and −𝛿/2 ≤ 𝑏𝑦 , 𝑐𝑦 ≤ 𝛿/2. If 𝑏𝑐 passes through either
𝑝 or 𝑞, then 𝑑F(𝜋, cg𝛿(𝑝, 𝑞)) ≤ 𝛿.

Proof. Recall that cg𝛿(𝑝, 𝑞) = g𝛿(𝑝)⊔𝑝𝑟𝛿⊔g𝛿(𝑝)⊔𝑝 𝑙𝛿⊔𝑝
𝑟
𝛿⊔g𝛿(𝑞)⊔𝑞 𝑙𝛿⊔g𝛿(𝑞).

First, observe that all the points on the prefix g𝛿(𝑝) ⊔ 𝑝𝑟𝛿 of cg𝛿(𝑝, 𝑞)
are at most 𝛿 away from 𝑝, and thus can all be mapped to the starting

point of 𝜋. Similarly, all points on the suffix 𝑞 𝑙𝛿 ⊔ g𝛿(𝑞) of cg𝛿(𝑝, 𝑞)
are at most 𝛿 away from 𝑞, and thus can all be mapped to the ending

point of 𝜋. Thus, it suffices to argue that 𝑑F(𝜋, 𝜎) ≤ 𝛿, where 𝜎 =

𝑝𝑟𝛿 ⊔ g𝛿(𝑝) ⊔ 𝑝 𝑙𝛿 ⊔ 𝑝
𝑟
𝛿 ⊔ g𝛿(𝑞) ⊔ 𝑞 𝑙𝛿.

It is easiest to describe the rest of the matching in a similar manner,

that is, as an alternating sequence of moves, where we stand still at a

Chapter 3. Similarity of Uncertain Curves in 2D 67

𝑞𝑖

𝑝𝑖

𝑞′
𝑖

𝑧2𝑖−1 𝑧2𝑖+1
𝑧2𝑖

𝑉2𝑖−1 𝑉2𝑖 𝑉2𝑖+1

(a) Pictorial representation of 𝜆𝑖 .

𝑝

𝑞

𝑈4𝑖−1𝑈4𝑖−3 𝑈4𝑖−2 𝑈4𝑖

𝑝

𝑞

𝑈4𝑖−1 𝑈4𝑖−2 𝑈4𝑖𝑈4𝑖−3

(b) The two solutions.

Figure 3.7. On the left, 𝜆𝑖 . On the right, the two possible solutions with the

Fréchet distance at most 𝛿. The top (resp. bottom) corresponds to an 𝛼-regular

curve passing through 𝑞 (resp. 𝑝).

single point on one curve while moving along a contiguous subcurve

from the other curve, and then switching curves. We now describe

this sequence, which differs based on whether 𝑏𝑐 passes through 𝑝 or

𝑞. Ultimately, the matchings are valid, since for each move, all points

on the subcurve have distance at most 𝛿 to the fixed point on the other

curve. Thus, we now simply describe the moves without reiterating this

property (distance at most 𝛿) which is validating each move.

First suppose that 𝑏𝑐 passes through 𝑝, then 𝜋 = ⟨𝑝, 𝑏, 𝑝, 𝑐, 𝑞⟩. In

this case, we first map the prefix ⟨𝑝, 𝑏, 𝑝⟩ of 𝜋 to 𝑝𝑟𝛿. Next, we map the

prefix 𝑝𝑟𝛿 ⊔ g𝛿(𝑝) ⊔ 𝑝 𝑙𝛿 of 𝜎 to 𝑝. Then we map the suffix ⟨𝑝, 𝑐, 𝑞⟩ of 𝜋 to

𝑝 𝑙𝛿. Finally, we map the suffix 𝑝 𝑙𝛿 ⊔ 𝑝
𝑟
𝛿 ⊔ g𝛿(𝑞) ⊔ 𝑞 𝑙𝛿 of 𝜎 to 𝑞.

Now suppose that 𝑏𝑐 passes through 𝑞, then 𝜋 = ⟨𝑝, 𝑏, 𝑞, 𝑐, 𝑞⟩. In

this case, we first map the prefix 𝑝𝑟𝛿 ⊔ g𝛿(𝑝) ⊔ 𝑝 𝑙𝛿 ⊔ 𝑝
𝑟
𝛿 of 𝜎 to 𝑝. Next, we

map the prefix ⟨𝑝, 𝑏, 𝑞⟩ of 𝜋 to 𝑝𝑟𝛿. Then we map the suffix 𝑝𝑟𝛿⊔g𝛿(𝑞)⊔ 𝑞 𝑙𝛿
of 𝜎 to 𝑞. Finally, we map the suffix ⟨𝑞, 𝑐, 𝑞⟩ of 𝜋 to 𝑞 𝑙𝛿. □

Theorem 3.36. Lower Bound Continuous Fréchet (Problem 3.22) is NP-
hard, even when the uncertain regions are all equal-length vertical segments
with the same height and the same horizontal distance (to the left or right)
between adjacent uncertain regions.

Chapter 3. Similarity of Uncertain Curves in 2D 68

Proof. To prove NP-hardness, we give a reduction from RR-Curve, which

is NP-hard by Theorem 3.28. Let 𝛼(𝑌), 𝜏,𝑌 = {𝑦1 , . . . , 𝑦𝑛} be an instance

of RR-Curve. For the reduction we set 𝛿 = 4𝑀, where 𝑀 =
∑︁𝑛
𝑖=1

𝑦𝑖 .

Note that Theorem 3.28 allows us to choose how to set 𝛼(𝑌), and in

particular we set 𝛼 = 2.1𝛿 = 8.4𝑀. (More precisely, the properties we

need are that 𝛼 > 2𝛿 and 𝛿 ≥ 4𝑀.) We now describe how to construct

𝒰 and 𝜎.

Let 𝑉 = {𝑉1 , . . . , 𝑉2𝑛+1} be a set of vertical line segments where all

upper (resp. lower) endpoints of the segments have height 2𝑀 (resp.

−2𝑀), and for all 𝑖, the 𝑥-coordinate of𝑉𝑖 is 𝑖𝛼. Let 𝒰 = ⟨𝑈1 , . . . , 𝑈4𝑛+1⟩
be the uncertain curve such that 𝑈4𝑛+1 = 𝑉2𝑛+1, and for all 𝑖 ∈ [𝑛],
𝑈4𝑖−3 = 𝑉2𝑖−1,𝑈4𝑖−2 = 𝑉2𝑖 ,𝑈4𝑖−1 = 𝑉2𝑖−1, and𝑈4𝑖 = 𝑉2𝑖 . For 𝑖 ∈ [2𝑛 + 1],
define the points 𝑧𝑖 = (𝑖𝛼, 0), and for 𝑖 ∈ [𝑛], define 𝑞𝑖 =

(︁
(2𝑖 − 1/2)𝛼, 0

)︁
,

𝑞′
𝑖
=
(︁
(2𝑖 + 1/2)𝛼, 0

)︁
, and 𝑝𝑖 =

(︁
(2𝑖 − 1/2)𝛼,−𝑦𝑖

)︁
. For a given value 𝑖 ∈ [𝑛],

consider the curve 𝜆𝑖 = 𝑧2𝑖−1 ⊔ cg𝛿(𝑝𝑖 , 𝑞𝑖) ⊔ 𝑧2𝑖 ⊔ g𝛿(𝑞′𝑖) (see Figure 3.7a).

Let 𝑠 = (𝛼, 0) and 𝑡 =
(︁
(2𝑛 + 1)𝛼, 2𝜏

)︁
. Then the curve 𝜎 is defined as

𝜎 = g𝛿(𝑠) ⊔ 𝜆1 ⊔ 𝜆2 ⊔ . . . ⊔ 𝜆𝑛 ⊔ g𝛿(𝑡) .

First, suppose there is a curve 𝜋′ = ⟨𝜋′
1
, . . . ,𝜋′

4𝑛+1
⟩ ⋐ 𝒰 such

that 𝑑F(𝜋′, 𝜎) ≤ 𝛿. Let 𝜋 = ⟨𝜋1 , . . . ,𝜋2𝑛+1⟩ be the curve such that

𝜋2𝑛+1 = 𝜋′
4𝑛+1

, and for all 𝑖 ∈ [𝑛], 𝜋2𝑖−1 = 𝜋4𝑖−3 and 𝜋2𝑖 = 𝜋4𝑖 . We argue

that 𝜋 is an 𝛼-regular 𝑌-respecting curve with 𝜋1 = 𝑠 and 𝜋2𝑛+1 = 𝑡.

Observe that 𝜋 is 𝛼-regular, as by the definition of 𝒰 , 𝜋𝑖 is a point on

the vertical segment 𝑉𝑖 . Also, as 𝜎 begins (resp. ends) with g𝛿(𝑠) (resp.

g𝛿(𝑡)), by Lemma 3.31, 𝜋1 = 𝜋′
1
= 𝑠 (resp. 𝜋2𝑛+1 = 𝜋′

4𝑛+1
= 𝑡). Thus,

it remains to argue that 𝜋 is 𝑌-respecting. To that end, consider the

portion 𝜆𝑖 of 𝜎 for some 𝑖.

First, consider the gadget g𝛿(𝑞′𝑖) from 𝜆𝑖 lying between 𝑧2𝑖 and 𝑧2𝑖+1.

By our choice of 𝛼, this gadget is strictly more than 𝛿 away from both𝑉2𝑖

and 𝑉2𝑖+1, and so the portion of 𝜋′
aligned with g𝛿(𝑞′𝑖) must lie between

𝜋′
4𝑖
= 𝜋2𝑖 and 𝜋′

4𝑖+1
= 𝜋2𝑖+1. Thus, by Lemma 3.31, 𝜋 must pass through

𝑞′
𝑖
.

Now consider the gadget cg𝛿(𝑝𝑖 , 𝑞𝑖) = lcg(𝑝𝑖) ⊔ucg(𝑞𝑖) from 𝜆𝑖 lying

between 𝑧2𝑖−1 and 𝑧2𝑖 . This gadget is strictly more than 𝛿 away from

both 𝑉2𝑖−1 and 𝑉2𝑖 , implying both that the portion of 𝜋′
aligned with

cg𝛿(𝑝𝑖 , 𝑞𝑖) lies between 𝜋′
4𝑖−3

and 𝜋′
4𝑖

, and that all three segments in the

subcurve from 𝜋′
4𝑖−3

to 𝜋′
4𝑖

must in part map to cg𝛿(𝑝𝑖 , 𝑞𝑖). Thus, by

Lemma 3.33, 𝜋′
4𝑖−3

𝜋′
4𝑖−2

passes through 𝑝𝑖 , and 𝜋′
4𝑖−1

𝜋′
4𝑖

passes through

Chapter 3. Similarity of Uncertain Curves in 2D 69

𝑞𝑖 . By Corollary 3.34, either 𝜋′
4𝑖−2

= 𝜋′
4𝑖

or 𝜋′
4𝑖−3

= 𝜋′
4𝑖−1

, and thus

𝜋′
4𝑖−3

𝜋′
4𝑖

= 𝜋2𝑖−1𝜋2𝑖 passes through either 𝑝𝑖 or 𝑞𝑖 (see Figure 3.7b).

Thus, 𝜋 is 𝑌-respecting.

Now suppose that there is an 𝛼-regular 𝑌-respecting curve 𝜋 =

⟨𝜋1 , . . . ,𝜋2𝑛+1⟩ such that 𝜋1 = 𝑠 and 𝜋2𝑛+1 = 𝑡. Let int(𝑝𝑖) be the

intersection with 𝑉2𝑖 of the line through 𝜋2𝑖−1 and 𝑝𝑖 , and let int(𝑞𝑖)
be the intersection with 𝑉2𝑖−1 of the line through 𝜋2𝑖 and 𝑞𝑖 . Let

𝜋′ = ⟨𝜋′
1
, . . . ,𝜋′

4𝑛+1
⟩ be the curve such that 𝜋′

4𝑛+1
= 𝜋2𝑛+1, and for all

𝑖 ∈ [𝑛], 𝜋′
4𝑖−3

= 𝜋2𝑖−1, 𝜋′
4𝑖−2

= int(𝑝𝑖), 𝜋′
4𝑖−1

= 𝜌, and 𝜋′
4𝑖

= 𝜋2𝑖 , where

𝜌 = 𝜋2𝑖−1 if 𝜋 passes through 𝑞𝑖 and 𝜌 = int(𝑞𝑖) if 𝜋 passes through 𝑝𝑖 .

(See Figure 3.7b.)

Let mid(𝑆) be the midpoint of a line segment 𝑆. By construction,

mid(𝜋′
4𝑖−3

𝜋′
4𝑖−2

) = 𝑝𝑖 , mid(𝜋′
4𝑖−1

𝜋′
4𝑖
) = 𝑞𝑖 , and mid(𝜋′

4𝑖−2
𝜋′

4𝑖−1
) = 𝑝𝑖

(resp. 𝑞𝑖) if 𝜋 passed through 𝑞𝑖 (resp. 𝑝𝑖). Let 𝛾𝑖 = ⟨𝑝𝑖 ,𝜋′
4𝑖−2

,𝜋′
4𝑖−1

, 𝑞𝑖⟩,
which by the previous argument is a subcurve of 𝜋′

.

To argue that 𝑑F(𝜋′, 𝜎) ≤ 𝛿, we now describe how to walk along the

curves 𝜋′
and 𝜎 so that at all times the distance between the positions on

the respective curves is at most 𝛿. Note that 𝛾𝑖 satisfies the conditions of

Lemma 3.35, implying that 𝑑F(cg𝛿(𝑝𝑖 , 𝑞𝑖), 𝛾𝑖) ≤ 𝛿, and thus for all 𝑖, we

can map cg𝛿(𝑝𝑖 , 𝑞𝑖) to 𝛾𝑖 . For the other parts of the curves, first observe

that with the exception of the cg𝛿(𝑝𝑖 , 𝑞𝑖) gadgets, 𝜎 is 𝑥-monotone, i.e.

as we walk along it, the 𝑥-coordinate never decreases. Moreover, with

the exception of the 𝛾𝑖 portions, 𝜋′
is 𝑥-monotone. Finally, observe that

cg𝛿(𝑝𝑖 , 𝑞𝑖) and 𝛾𝑖 have the same starting and ending points, and 𝜋′
and

𝜎 both start at 𝑠 and end at 𝑡. Thus, with the exception of the cg𝛿(𝑝𝑖 , 𝑞𝑖)
and 𝛾𝑖 portions, we can map all points from 𝜎 with a given 𝑥-coordinate

to the point on 𝜋′
with the same 𝑥-coordinate. It is easy to verify that

this maps points between the curves that are at most 𝛿 apart. First, as 𝜋′

is identical to 𝜋 outside of the 𝛾𝑖 , and since 𝜋 is 𝑌-respecting, 𝜋′
passes

through 𝑠, 𝑡, and 𝑞′
𝑖

for all 𝑖. Thus, the matching stands still on 𝜋′
at

these respective points as 𝜎 executes the g𝛿(𝑠), g𝛿(𝑡), and g𝛿(𝑞′𝑖) gadgets.

The vertical distance elsewhere between the curves is at most 4𝑀 by

Corollary 3.26, and by construction 4𝑀 ≤ 𝛿. □

Chapter 3. Similarity of Uncertain Curves in 2D 70

3.2 Algorithms for Lower Bound Fréchet Distance

In the previous section, we have shown that the decision problem

for 𝑑min

F
is hard, given an uncertain curve with line-segment-based

imprecision model and a polygonal curve. Interestingly, the same

problem is solvable in polynomial time for indecisive curves. This

result highlights a distinction between 𝑑min

F
and 𝑑max

F
and between the

different uncertainty models. To tackle 𝑑min

F
with general uncertain

curves, we develop approximation algorithms.

3.2.1 Exact Solution for Indecisive Curves

The key idea is that we can use a dynamic programming approach

similar to that for computing the Fréchet distance [23] and only keep

track of realisations of the last indecisive point considered so far. (Note

that one can also reduce the problem to the Fréchet distance between

paths in DAG complexes, studied by Har-Peled and Raichel [137], but

this yields a slower running time.) We present the approach for an

indecisive and a precise curve, and then generalise it to two indecisive

curves.

Indecisive and Precise

Consider the setting with an indecisive curve 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑚⟩ with 𝑚

points and a precise curve 𝜎 = ⟨𝑞1 , . . . , 𝑞𝑛⟩ with 𝑛 points; each indecisive

point has 𝑘 possible realisations, 𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
}. We want to solve

the decision problem ‘Is the lower bound Fréchet distance between the curves
at most some threshold 𝛿?’, so 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿?

In the free-space diagram for this problem, let 𝒰 be positioned along

the horizontal axis, and 𝜎 along the vertical axis. Just as for the precise

curve Fréchet distance, we are interested in the reachable intervals on

the cell boundary, since the free space in the cell interior is convex;

however, now we care about the different realisations of the points, so

we get a set of reachable boundaries instead of a single cell boundary.

We can adapt the standard dynamic program to deal with this problem.

We propagate reachability column by column. An important aspect

is that we only need to make sure that a reachable point is reachable

by a monotone path in the free-space diagram induced by some valid

realisation; we do not need to remember which one, since we never

Chapter 3. Similarity of Uncertain Curves in 2D 71

return to the previous points on the indecisive curve, and we also do

not care about the realisations that yield a distance higher than 𝛿—a

significant deviation from the upper bound Fréchet distance.

First of all, define Feas(𝑖 , ℓ) to be the feasibility column for the realisa-

tion 𝑝ℓ
𝑖

of𝑈𝑖 . This is a set of intervals on the vertical line containing a cell

boundary in the free-space diagram, corresponding to the subintervals

of one curve within distance 𝛿 from a point on the other curve. It is

computed exactly the same way as for the precise Fréchet distance—it

depends on the distance between a point and a line segment and gives a

single interval on each vertical cell boundary. We can compute feasibility

for the right boundary of all cells in a column for a given realisation,

thus obtaining Feas(𝑖 , ℓ).
Recall the standard dynamic program for computing the Fréchet

distance on precise curves. Represent it so that it operates column by

column, grouping propagation of reachable intervals between vertically

aligned cells. Call that procedure Prop(𝑅), where 𝑅 is the reachability
column for point 𝑖 and the result is the reachability column for point 𝑖 + 1

on one of the curves. Again, the reachability column is a set of intervals

on a vertical line, indicating the points in the free-space diagram that

are reachable from the lower left corner with a monotone path.

Define Reach(𝑖 , 𝑠) to be the reachability column induced by 𝑝𝑠
𝑖
, where

a point is in a reachability interval if it can be reached by a monotone

path for some realisation of the previous points. Then we compute

Reach(𝑖 + 1, ℓ) = Feas(𝑖 + 1, ℓ) ∩
⋃︂
ℓ ′∈[𝑘]

Prop(Reach(𝑖 , ℓ ′)) .

So, we iterate over all the realisations of the previous column, thus

getting precise cells, and simply propagate the reachable intervals as in

the precise Fréchet distance algorithm. For the column corresponding

to𝑈1, we set one reachable interval of a single point at the bottom for

all realisations 𝑝𝑠
1

for which ∥𝑝𝑠
1
− 𝑞1∥ ≤ 𝛿.

We now show correctness of this approach.

Lemma 3.37. For all 𝑖 > 1,

Reach(𝑖 , ℓ) =
{︂
𝑦
|︁|︁|︁ ∃

𝑝
ℓ
1

1
,...,𝑝

ℓ𝑖−1

𝑖−1

[︂
𝑑F

(︂ (︁ ⨆︂
𝑗∈[𝑖−1]

𝑝
ℓ 𝑗

𝑗

)︁
⊔𝑝ℓ𝑖 , 𝜎[1 : ⌊𝑦⌋]⊔𝜎(𝑦)

)︂
≤ 𝛿

]︂}︂
.

Chapter 3. Similarity of Uncertain Curves in 2D 72

So, a point is inside a reachability interval if and only if there is a realisation
that defines a free-space diagram and a monotone path through that diagram to
this point.

Proof. We show this by induction on 𝑖. To compute Reach(2, ℓ) for any

fixed ℓ ∈ [𝑘], we start from a single point in the bottom left corner of

the free space for the realisations of𝑈1 that are close enough to 𝑞1 and

we propagate the reachability through the resulting precise free-space

column. Clearly, the statement holds in this case; if some realisation of

𝑈1 is too far from 𝑞1, then the reachability column is correctly empty.

Now assume the statement holds for Reach(𝑖 , ℓ ′) for all ℓ ′ ∈ [𝑘]. Note

that all the values that we add to Reach(𝑖 + 1, ℓ) for some fixed ℓ are

feasible, since we explicitly take the feasibility column and intersect it

with the propagated reachability. Any point 𝑦 in Reach(𝑖 + 1, ℓ) comes

as a result of propagation from some Reach(𝑖 , ℓ ′) for some ℓ ′. So, there

is at least one point 𝑦′ in the reachability column 𝑖 for realisation 𝑝ℓ
′

𝑖

from which there is a monotone path to 𝑦. Since we know there was a

realisation up to that point of the two curves that enables a monotone

path from the start of the free space diagram to 𝑦′; and since point𝑈𝑖+1

is independent from the previous points; and since we have a fixed valid

realisation for points 𝑈𝑖 and 𝑈𝑖+1 that enables the continuation of the

monotone path from 𝑦′ to 𝑦, we conclude that the statement holds for

the column 𝑖 + 1. □

Therefore, querying the upper boundary of all reachability intervals

for𝑈𝑚 will give us the answer to the decision problem.

Now we analyse the complexity of the reachability column. A

particular right cell boundary is entirely reachable if the bottom of the

cell is reachable; combined with the feasibility interval, we get one

reachability interval per cell. Furthermore, if a cell is only reachable

from the left, since we consider monotone paths, each realisation of the

previous points induces a reachable interval of [𝑦′, 1] for some 0 ≤ 𝑦′ ≤ 1

if you assume the boundary coordinate range to be [0, 1]; therefore,

taking a union of such intervals still gives us at most one reachability

interval per cell. So, in the worst case we store Θ(𝑚𝑘) intervals. To

propagate, we consider all combinations of the two successive indecisive

points for all cells, yielding the running time of Θ(𝑚𝑛𝑘2).
Furthermore, observe that we can also store a realisation of the

previous point on the indecisive curve with the interval that corresponds

Chapter 3. Similarity of Uncertain Curves in 2D 73

to the lowest reachable point on the current interval. If we then store

all the reachability columns, we can later backtrack and find a specific

curve that realises the Fréchet distance below the threshold 𝛿. This

increases the storage requirements to Θ(𝑚𝑛𝑘); the running time stays

the same. We summarise the results:

Theorem 3.38. Given an indecisive curve 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑚⟩, where each
indecisive point has 𝑘 options, 𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
}, a precise curve 𝜎 =

⟨𝑞1 , . . . , 𝑞𝑛⟩, and a threshold 𝛿 > 0, we can decide if 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿 in

time Θ(𝑚𝑛𝑘2) in the worst case, using Θ(𝑚𝑘) space. We can also report
the realisation of 𝒰 realising the Fréchet distance at most 𝛿, using Θ(𝑚𝑛𝑘)
space instead. Call the algorithm that solves the problem and reports a fitting
realisation Decider(𝛿,𝒰 , 𝜎).

Indecisive and Indecisive

Now consider the setting where instead of 𝜎 we are given curve 𝒱 =

⟨𝑉1 , . . . , 𝑉𝑛⟩ with 𝑘 options per indecisive point, 𝑉𝑖 = {𝑞1

𝑖
, . . . , 𝑞𝑘

𝑖
}. We

can adapt the algorithm of the previous section by propagating in

column-major order, but cell by cell.

A cell boundary now depends on three indecisive points, since it

corresponds to a segment on one curve and a point on the other curve,

so there are 𝑘3
options per boundary to consider. We now store the

possibilities for 𝑚 − 1 right cell boundaries, 𝑘3
realisations per boundary,

and a single horizontal boundary, with also 𝑘3
options. So, we use

Θ(𝑚𝑘3) storage.

Whenever we propagate to one further cell, we need to find the

reachability for the top and the right boundary of the cell based on

the left and the lower boundary of the cell. We again go over all the

combinations of the realisations of the points that define the cell, yielding

𝑘4
possible precise cells to consider. We aggregate the values as before,

as for both the top and the right boundary only three points matter.

Since we solve the same problem as in the previous section and never

have to revisit a previously considered point, it should be clear that this

approach is correct. However, now we take Θ(𝑘4) time per cell, so in

the worst case we need Θ(𝑚𝑛𝑘4) time to complete the propagation.

Theorem 3.39. Given two indecisive curves 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑚⟩ and 𝒱 =

⟨𝑉1 , . . . , 𝑉𝑛⟩, where each indecisive point has 𝑘 options,𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
} and

Chapter 3. Similarity of Uncertain Curves in 2D 74

𝑉𝑖 = {𝑞1

𝑖
, . . . , 𝑞𝑘

𝑖
}, and a threshold 𝛿 > 0, we can decide if 𝑑min

F
(𝒰 ,𝒱) ≤ 𝛿

in time Θ(𝑚𝑛𝑘4) in the worst case, using Θ(𝑚𝑘3) space.

3.2.2 Approximation by Grids

Given a general uncertain curve 𝒰 and a polygonal curve 𝜎, in this

section, we show how to find a curve 𝜋 ⋐ 𝒰 such that 𝑑F(𝜋, 𝜎) ≤
(1 + 𝜀)𝑑min

F
(𝒰 , 𝜎). This is accomplished by carefully discretising the

regions, in effect approximately reducing the problem to the indecisive

case, for which we then can use Theorem 3.38.

For simplicity, assume the uncertain regions have constant complexity.

Throughout the section, we assume 𝑑min

F
(𝒰 , 𝜎) > 0, justified by the

following lemma.

Lemma 3.40. Let 𝒰 be an uncertain curve with 𝑚 vertices, and 𝜎 a polygonal
curve with 𝑛 vertices. Then one can determine whether 𝑑min

F
(𝒰 , 𝜎) = 0 in

𝒪(𝑚𝑛) time.

Proof. Observe that if for some 𝑗, 𝜎𝑗 lies on the segment 𝜎𝑗−1𝜎𝑗+1, then

𝑑F(𝜎, 𝜎′) = 0, where 𝜎′ = ⟨𝜎1 , . . . , 𝜎𝑗−1 , 𝜎𝑗+1 , . . . , 𝜎𝑛⟩. So we can assume

that no vertex of 𝜎 lies on the segment between its neighbours, as

otherwise we can remove that vertex and get the same result in terms

of the Fréchet distance. Thus, at every vertex 𝜎 turns, implying that

if there exists 𝜋 ⋐ 𝒰 such that 𝑑F(𝜋, 𝜎) = 0, then for all 𝑗, 𝜎𝑗 must be

aligned with some 𝜋𝑖 .
This observation leads to a simple decision procedure. Define

𝑠(𝑗) = {𝑖 ∈ [𝑚] | 𝑑F(𝜋[1 : 𝑖], 𝜎[1 : 𝑗]) = 0} ,

so a set of indices on 𝜎 that yield the zero Fréchet distance between the

corresponding prefix curves. Then we can go through 𝜎 one vertex at

a time, maintaining 𝑠(𝑗), and ultimately 𝑑min

F
(𝒰 , 𝜎) = 0 if and only if

𝑚 ∈ 𝑠(𝑛).
Initially, 𝑠(1) = {𝑖 ∈ [𝑚] | ∀𝑘 ∈ [𝑖] : 𝜎1 ∈ 𝑈𝑘}, which is easy to

test and compute. For 𝑗 > 1, 𝑠(𝑗) can be computed from 𝑠(𝑗 − 1) as

follows. Let Stab𝑗(𝑘) be the set of indices 𝑖 > 𝑘 such that there exist

points 𝑝𝑘+1 , . . . , 𝑝𝑖−1, appearing in order along 𝜎𝑗−1𝜎𝑗 , where 𝑝ℓ ∈ 𝑈ℓ for

all 𝑘 < ℓ < 𝑖. (Note that we always have 𝑘 + 1 ∈ Stab𝑗(𝑘).) So, Stab𝑗(𝑘) is

the set of indices 𝑖 of uncertainty regions, starting from 𝑘 + 1, such that

Chapter 3. Similarity of Uncertain Curves in 2D 75

all the regions between 𝑘 and 𝑖 are stabbed by the segment 𝜎𝑗−1𝜎𝑗 in the

correct order. Then we have

𝑠(𝑗) = {𝑖 | 𝜎𝑗 ∈ 𝑈𝑖 ∧ 𝑖 ∈ Stab𝑗(𝑘) with 𝑘 = max

ℓ<𝑖
{ℓ ∈ 𝑠(𝑗 − 1)}} .

From this definition of 𝑠(𝑗) it is easy to see that it can be computed in

𝒪(𝑚) time given 𝑠(𝑗 − 1), and thus the total time required is 𝒪(𝑚𝑛). In

particular, if 𝑠(𝑗 − 1) is non-empty, then let 𝑧 be the minimum value in

𝑠(𝑗 − 1). We now incrementally loop over values of 𝑖, where initially

𝑖 = 𝑧 + 1, and add 𝑖 to 𝑠(𝑗) if 𝜎𝑗 ∈ 𝑈𝑖 and 𝑖 ∈ Stab𝑗(𝑧). Note that in

constant time per iteration we can maintain sufficient information to

determine if 𝑖 ∈ Stab𝑗(𝑧), as we describe further. If at any iteration

𝑖 = 𝑧′ + 1 for 𝑧′ ∈ 𝑠(𝑗 − 1), we forget Stab𝑗(𝑧) (as we no longer need to

stab those regions) and start maintaining and checking Stab𝑗(𝑧′).
Note that the intersection of any𝑈ℓ with 𝜎𝑗−1𝜎𝑗 is a constant number

of intervals along 𝜎𝑗−1𝜎𝑗 . Then Stab𝑗(𝑘) can be computed incrementally

as follows. First, let 𝑝𝑘+1 be the earliest point of 𝜎𝑗−1𝜎𝑗 ∩𝑈𝑘+1. For some

𝑖 > 𝑘 + 1, let 𝑝𝑖 be the earliest point of 𝜎𝑗−1𝜎𝑗 ∩𝑈𝑖 , which is at least as

far along 𝜎𝑗−1𝜎𝑗 as 𝑝𝑖−1 (if it exists). If such 𝑝𝑖 exists, then we know that

𝑖 ∈ Stab𝑗(𝑘). Maintaining this information indeed takes constant time

per iteration. □

Decision Procedure

An algorithm is a (1+𝜀)-decider for Problem 3.22, if when 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿,

it returns a curve 𝜋 ⋐ 𝒰 such that 𝑑F(𝜋, 𝜎) ≤ (1 + 𝜀)𝛿, and when

𝑑min

F
(𝒰 , 𝜎) > (1 + 𝜀)𝛿, it returns False (in between either answer is

allowed). In this section, we present a (1 + 𝜀)-decider for Problem 3.22.

We make use of the following standard observation.

Observation 3.41. Given a curve 𝜋 = ⟨𝜋1 , . . . ,𝜋𝑛⟩, call a curve 𝜎 =

⟨𝜎1 , . . . , 𝜎𝑛⟩ an 𝑟-perturbation of 𝜋 if ∥𝜋𝑖 − 𝜎𝑖 ∥ ≤ 𝑟 for all 𝑖 ∈ [𝑛]. Since
∥𝜋𝑖 − 𝜎𝑖 ∥ , ∥𝜋𝑖+1 − 𝜎𝑖+1∥ ≤ 𝑟, all points of the segment 𝜎𝑖𝜎𝑖+1 are within
distance 𝑟 of 𝜋𝑖𝜋𝑖+1. For segments this implies that 𝑑F(𝜋𝑖𝜋𝑖+1 , 𝜎𝑖𝜎𝑖+1) ≤ 𝑟,
which implies that 𝑑F(𝜋, 𝜎) ≤ 𝑟 by composing the matchings for all 𝑖.

The high-level idea is to replace 𝒰 with the set of grid points it

intersects; however, as our uncertainty regions may avoid the grid points,

we need to include a slightly larger set of points.

Chapter 3. Similarity of Uncertain Curves in 2D 76

𝑈

Thick(𝑈, 𝑟)

Figure 3.8. An example of the sets from Definition 3.42. The region 𝑈 is shown

in blue, and Thick(𝑈, 𝑟) is in orange. The grid points of 𝐺𝑇𝑟 (𝑈) are in blue and

the corresponding set of expanded 𝑟-grid points EG𝑟 (𝑈) are in red.

Definition 3.42. Let𝑈 be a compact subset of ℝ𝑑
. We now define the

set of points EG𝑟(𝑈) which we call the expanded 𝑟-grid points of𝑈 (see

Figure 3.8). Let 𝐵(
√
𝑑𝑟) denote the ball of radius

√
𝑑𝑟, centred at the

origin. Let Thick(𝑈, 𝑟) = 𝑈 ⊕ 𝐵(
√
𝑑𝑟), where ⊕ denotes the Minkowski

sum. Let 𝐺𝑟 denote the regular grid of side length 𝑟, and let 𝐺𝑇𝑟(𝑈)
denote the subset of grid vertices from 𝐺𝑟 that fall in Thick(𝑈, 𝑟). Finally,

we define

EG𝑟(𝑈) = {𝑝 | 𝑝 = arg min

𝑞∈𝑈
∥𝑞 − 𝑥∥ for 𝑥 ∈ 𝐺𝑇𝑟(𝑈)} .

In the following observation we use the terms defined above.

Observation 3.43. For any 𝑥 ∈ 𝑈 , there is a point 𝑝 ∈ EG𝑟(𝑈) such that
∥𝑝 − 𝑥∥ ≤ 2

√
𝑑𝑟.

Proof. For any point 𝑥 ∈ 𝑈 , let 𝑔 be its nearest grid point in 𝐺𝑟 . Since

∥𝑥 − 𝑔∥ ≤
√
𝑑𝑟, we know that 𝑔 ∈ Thick(𝑈, 𝑟) = 𝑈 ⊕ 𝐵(

√
𝑑𝑟). So let 𝑝

be the point in 𝑈 which is closest to 𝑔; thus, 𝑝 ∈ EG𝑟(𝑈). Therefore,

∥𝑥 − 𝑝∥ ≤ ∥𝑥 − 𝑔∥ + ∥𝑔 − 𝑝∥ ≤
√
𝑑𝑟 +

√
𝑑𝑟 = 2

√
𝑑𝑟. □

Lemma 3.44. There is a (1+ 𝜀)-decider for Problem 3.22 in 𝑑 dimensions with
running time 𝒪(𝑚𝑛 · (1 + (Δ/𝜀𝛿)2𝑑)), for 0 < 𝜀 ≤ 1 and constant 𝑑, where
Δ = max𝑖∈[𝑚] diam(𝑈𝑖) is the maximum diameter of an uncertain region.

Proof. It helps with the analysis if 𝜀𝛿 < Δ. To ensure this, we first

do the following. Select an arbitrary curve 𝑥 ⋐ 𝒰 . Now using the

Chapter 3. Similarity of Uncertain Curves in 2D 77

standard 𝒪(𝑚𝑛)-time exact decider for the Fréchet distance [23], query

whether 𝑑F(𝑥, 𝜎) ≤ (1 + 𝜀)𝛿. If the decider returns 𝑑F(𝑥, 𝜎) ≤ (1 + 𝜀)𝛿,

then we can return 𝑥 as our solution. Otherwise, 𝑑F(𝑥, 𝜎) > (1 + 𝜀)𝛿,

and we next query whether 𝑑F(𝑥, 𝜎) ≤ Δ + 𝛿. By Observation 3.41 and

the triangle inequality, 𝑑F(𝑥, 𝜎) ≤ Δ + 𝑑min

F
(𝒰 , 𝜎). Thus, if the decider

returns Δ + 𝛿 < 𝑑F(𝑥, 𝜎), then 𝛿 < 𝑑min

F
(𝒰 , 𝜎), and so we return False.

Otherwise, the two decider calls tell us that (1 + 𝜀)𝛿 < 𝑑F(𝑥, 𝜎) ≤ Δ + 𝛿,

implying 𝜀𝛿 < Δ.

Let 𝑟 = 𝜀𝛿/2

√
𝑑, and for any 𝑈𝑖 of 𝒰 , let 𝐸𝑖 = EG𝑟(𝑈𝑖) denote the

expanded 𝑟-grid points of𝑈𝑖 , as defined in Definition 3.42. Consider the

indecisive curve 𝒰′ = ⟨𝐸1 , . . . , 𝐸𝑚⟩. We call the algorithm Decider((1+
𝜀)𝛿,𝒰′, 𝜎)of Theorem 3.38 and return whatever it returns, i.e. if it returns

a curve, then we return that curve, and if it returns that 𝑑min

F
(𝒰′, 𝜎) >

(1 + 𝜀)𝛿, then we return that 𝑑min

F
(𝒰 , 𝜎) > (1 + 𝜀)𝛿.

First, observe that 𝐸𝑖 ⊆ 𝑈𝑖 , and thus 𝑑min

F
(𝒰 , 𝜎) ≤ 𝑑min

F
(𝒰′, 𝜎). So

if 𝑑min

F
(𝒰 , 𝜎) > (1 + 𝜀)𝛿, then the decider must return 𝑑min

F
(𝒰′, 𝜎) >

(1 + 𝜀)𝛿, as desired. Now suppose that 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿. In this case, we

argue that our algorithm outputs a curve 𝜋′ ⋐ 𝒰 such that 𝑑F(𝜋′, 𝜎) ≤
(1+𝜀)𝛿. It suffices to argue that there exists some curve𝜋′ ⋐ 𝒰′

such that

𝑑F(𝜋′, 𝜎) ≤ (1+𝜀)𝛿, as then Theorem 3.38 guarantees the decider outputs

a curve (which is in Real(𝒰), as it is a superset of Real(𝒰′)). So let 𝜋 =

⟨𝜋1 , . . . ,𝜋𝑚⟩ be the curve in Real(𝒰) realising the lower bound Fréchet

distance to 𝜎, that is, 𝑑F(𝜋, 𝜎) = 𝑑min

F
(𝒰 , 𝜎). Let 𝜋′ = ⟨𝜋′

1
, . . . ,𝜋′

𝑚⟩ be

the curve such that 𝜋′
𝑖
= min𝑥∈𝐸𝑖 ∥𝑥−𝜋𝑖 ∥. Note that by Observation 3.43,

we have ∥𝜋𝑖 − 𝜋′
𝑖
∥ ≤ 2

√
𝑑𝑟 for all 𝑖. Thus, 𝜋′

is a 2

√
𝑑𝑟-perturbation of

𝜋 as described in Observation 3.41, and so 𝑑F(𝜋,𝜋′) ≤ 2

√
𝑑𝑟 = 𝜀𝛿. As

the Fréchet distance satisfies the triangle inequality, we therefore have

𝑑F(𝜋′, 𝜎) ≤ 𝑑F(𝜋, 𝜎) + 𝑑F(𝜋,𝜋′) ≤ 𝛿 + 𝜀𝛿 = (1 + 𝜀)𝛿. Thus, as 𝜋′ ⋐ 𝒰′
,

when our algorithm calls Decider((1 + 𝜀)𝛿,𝒰′, 𝜎), it returns a curve.

For the running time, recall we first spent 𝒪(𝑚𝑛) time to ensure

𝜀𝛿 < Δ, in which case we must bound the number of points in each 𝐸𝑖 .

By Definition 3.42, for all 𝑖, the number of points in 𝐸𝑖 is bounded by

the number of grid points in the region Thick(𝑈𝑖 , 𝑟). This region is the

Minkowski sum of a compact set of diameter at most Δ with a radius√
𝑑𝑟 ball, so its diameter is at most Δ + 2

√
𝑑𝑟. Recall that 𝑑 is a constant;

Chapter 3. Similarity of Uncertain Curves in 2D 78

thus, the number of grid points and hence |𝐸𝑖 | is

𝑂

(︃(︂
Δ + 2

√
𝑑𝑟

𝑟

)︂𝑑)︃
= 𝑂

(︃(︂
2

√
𝑑Δ

𝜀𝛿
+2

√
𝑑
)︂𝑑)︃

= 𝑂

(︃(︂
Δ

𝜀𝛿
+1

)︂𝑑)︃
= 𝑂

(︃(︂
Δ

𝜀𝛿

)︂𝑑)︃
.

Thus, by Theorem 3.38, the call to Decider takes time 𝑂
(︁
𝑚𝑛(Δ/𝜀𝛿)2𝑑

)︁
,

which bounds the total time of our algorithm. □

Optimisation

Theorem 3.45. Let 𝒰 be an uncertain curve with 𝑚 vertices, 𝜎 a polygonal
curve with 𝑛 vertices, and 𝛿 = 𝑑min

F
(𝒰 , 𝜎). Then for any 0 < 𝜀 ≤ 1, there

is an algorithm which returns a curve 𝜋 ⋐ 𝒰 such that 𝑑F(𝜋, 𝜎) ≤ (1 + 𝜀)𝛿,
whose running time is 𝑂

(︁
𝑚𝑛(log(𝑚𝑛) + (Δ/𝜀𝛿)2𝑑)

)︁
for constant 𝑑, where

Δ = max𝑖∈[𝑚] diam(𝑈𝑖) is the maximum diameter of an uncertain region.

Proof. Fix an arbitrary curve 𝑥 ⋐ 𝒰 . First, we compute the Fréchet

distance between 𝑥 and 𝜎. If 𝑑F(𝑥, 𝜎) ≥ Δ + Δ/𝜀, then we return 𝑥 as

our solution. Intuitively, this means that the Fréchet distance is large

when compared to the diameter of the uncertain regions, and so any

realisation we can pick works as a (1+𝜀)-approximation. To see why this

is valid, let 𝜋̂ ⋐ 𝒰 be an optimal solution, that is, 𝑑F(𝜋̂, 𝜎) = 𝑑min

F
(𝒰 , 𝜎).

Note that 𝑥 is a Δ-perturbation of 𝜋̂, and thus by the triangle inequality

and Observation 3.41,

𝑑F(𝑥, 𝜎) ≤ 𝑑F(𝑥, 𝜋̂) + 𝑑F(𝜋̂, 𝜎) ≤ Δ + 𝑑F(𝜋̂, 𝜎) .

If Δ + Δ/𝜀 ≤ 𝑑F(𝑥, 𝜎), then plugging in the inequality above implies that

Δ ≤ 𝜀 · 𝑑F(𝜋̂, 𝜎), which in turn implies that

𝑑F(𝑥, 𝜎) ≤ Δ + 𝑑F(𝜋̂, 𝜎) ≤ (1 + 𝜀) · 𝑑F(𝜋̂, 𝜎) .

So suppose that 𝑑F(𝑥, 𝜎) < (1 + 1/𝜀)Δ, in which case

𝑑min

F
(𝒰 , 𝜎) = 𝑑F(𝜋̂, 𝜎) ≤ 𝑑F(𝑥, 𝜎) + 𝑑F(𝜋̂, 𝑥)

<
(︂
1 + 1

𝜀

)︂
Δ + Δ =

(︂
2 + 1

𝜀

)︂
Δ = 𝛾 .

Let GridDecider(𝒰 , 𝜎, 𝜀′, 𝛿) be the (1 + 𝜀′)-decider of Lemma 3.44,

which correctly returns either False (which implies 𝑑min

F
(𝒰 , 𝜎) > 𝛿)

or a curve in Real(𝒰) with the Fréchet distance at most (1 + 𝜀′)𝛿 to

Chapter 3. Similarity of Uncertain Curves in 2D 79

𝜎. We perform a decreasing exponential search using GridDecider.

Specifically, starting at 𝑖 = 0, we call GridDecider(𝒰 , 𝜎, 𝜀/4, 𝛾/(1 + 𝜀/4)𝑖).
If GridDecider returns a curve (i.e. True), we increment 𝑖 by 1 and

repeat, otherwise if GridDecider outputs False, we return the curve

from iteration 𝑖 − 1. (Note that GridDecider cannot return False when

𝑖 = 0, as this would imply that 𝑑min

F
(𝒰 , 𝜎) > 𝛾.)

Let 𝑗 denote the index when the algorithm stops. So we know that

GridDecider(𝒰 , 𝜎, 𝜀/4, 𝛾/(1 + 𝜀/4)𝑗) returned False, and we also know

that GridDecider(𝒰 , 𝜎, 𝜀/4, 𝛾/(1 + 𝜀/4)𝑗−1) returned a curve 𝜋 ⋐ 𝒰 such

that 𝑑F(𝜋, 𝜎) ≤ (1 + 𝜀/4) · 𝛾/(1 + 𝜀/4)𝑗−1
. Therefore,

𝛾

(1 + 𝜀/4)𝑗
< 𝑑min

F
(𝒰 , 𝜎) ≤ 𝑑F(𝜋, 𝜎) ≤ (1 + 𝜀/4) 𝛾

(1 + 𝜀/4)𝑗−1

=
𝛾

(1 + 𝜀/4)𝑗−2

,

which implies that

𝑑F(𝜋, 𝜎) ≤
(︂
1 + 𝜀

4

)︂
2

𝑑min

F
(𝒰 , 𝜎) =

(︂
1 + 𝜀

2

+ 𝜀2

16

)︂
· 𝑑min

F
(𝒰 , 𝜎)

< (1 + 𝜀) · 𝑑min

F
(𝒰 , 𝜎) .

As for the running time, by Lemma 3.44, the time for the 𝑖-th call to

GridDecider is

𝑂

(︃
𝑚𝑛

(︂ (1 + 𝜀/4)𝑖Δ
𝜀𝛾

)︂
2𝑑
)︃
= 𝑂

(︃
𝑚𝑛

(︂ (1 + 𝜀/4)𝑖Δ
𝜀(2 + 1/𝜀)Δ

)︂
2𝑑
)︃
= 𝑂

(︃
𝑚𝑛

(︂
1 + 𝜀

4

)︂
2𝑑𝑖

)︃
.

Recall that 𝛿 = 𝑑min

F
(𝒰 , 𝜎) and 𝑗 is the index the last time GridDe-

cider is called. By the argument above, 𝛿 ≤ 𝛾/(1+ 𝜀/4)𝑗−2
, which implies

that 𝑗 − 2 ≤ log
1+𝜀/4

(𝛾/𝛿). Recall that 𝑑 is a constant; as GridDecider is

called 𝑗+1 times, and the running times for the calls to GridDecider form

an increasing geometric series, the total time for all calls to GridDecider

is

𝑂

(︃
𝑚𝑛

(︂
1 + 𝜀

4

)︂
2𝑑·

(︁
3+log

1+𝜀/4
(𝛾/𝛿)

)︁)︃
= 𝑂

(︃
𝑚𝑛

(︂
1 + 𝜀

4

)︂
6𝑑 (︂

1 + 𝜀
4

)︂
2𝑑·log

1+𝜀/4
(𝛾/𝛿)

)︃
= 𝑂

(︃
𝑚𝑛

(︂
1 + 𝜀

4

)︂
2𝑑·log

1+𝜀/4
(𝛾/𝛿)

)︃
= 𝑂

(︃
𝑚𝑛

(︂𝛾
𝛿

)︂
2𝑑·log

1+𝜀/4
(1+𝜀/4)

)︃
= 𝑂

(︃
𝑚𝑛

(︂𝛾
𝛿

)︂
2𝑑
)︃
= 𝑂

(︃
𝑚𝑛

(︂ (2 + 1/𝜀)Δ
𝛿

)︂
2𝑑
)︃
= 𝑂

(︃
𝑚𝑛

(︂
Δ

𝜀𝛿

)︂
2𝑑
)︃
.

Chapter 3. Similarity of Uncertain Curves in 2D 80

As it takes 𝒪(𝑚𝑛 log(𝑚𝑛)) time to initially compute 𝑑F(𝑥, 𝜎) using the al-

gorithm of Alt and Godau [23], the total running time is𝑂
(︁
𝑚𝑛(log(𝑚𝑛)+

(Δ/𝜀𝛿)2𝑑)
)︁
. □

If the polygonal curve 𝜎 is replaced with an uncertain curve 𝒱, it

is easy to see that by discretising both 𝒰 and 𝒱, the same analysis

gives an algorithm to compute 𝑑min

F
(𝒰 ,𝒱). The only difference now is

that we must use Theorem 3.39 instead of Theorem 3.38, yielding the

following.

Corollary 3.46. Let 𝒰 and 𝒱 be uncertain curves with 𝑚 and 𝑛 vertices,
respectively, and 𝛿 = 𝑑min

F
(𝒰 ,𝒱). Then for any 0 < 𝜀 ≤ 1, there is an

algorithm returning curves 𝜋 ⋐ 𝒰 and 𝜎 ⋐ 𝒱 such that 𝑑F(𝜋, 𝜎) ≤ (1+ 𝜀)𝛿,
whose running time is 𝑂

(︁
𝑚𝑛(log(𝑚𝑛) + (Δ/𝜀𝛿)4𝑑)

)︁
for constant 𝑑, where Δ is

the maximum diameter of an uncertain region.

3.2.3 Greedy Algorithm

Here we argue that there is a simple 3-decider as defined in Section 3.2.2

for Problem 3.22, running in near-linear time in the plane for separated

regions. Roughly speaking, the idea is to greedily and iteratively pick

𝜋𝑖 ∈ 𝑈𝑖 so as to allow us to get as far as possible along 𝜎. Without

any assumptions on 𝒰 , this greedy procedure may walk too far ahead

and get stuck. Thus, in this section, we assume that consecutive𝑈𝑖 are

separated, so as to ensure optimal solutions do not lag too far behind.

Here we also assume that𝑈𝑖 are convex, i.e. imprecise, and have constant

complexity, as it simplifies certain definitions. Throughout this section,

let 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑚⟩ be an uncertain curve and let 𝜎 = ⟨𝜎1 , . . . , 𝜎𝑛⟩ be

a polygonal curve.

Definition 3.47. Call 𝒰 𝛾-separated if for all 𝑖 ∈ [𝑚 − 1], ∥𝑈𝑖 −𝑈𝑖+1∥ > 𝛾
and each𝑈𝑖 is convex. Define an 𝑟-visit of𝑈𝑖 to be any maximal-length

contiguous portion of 𝜎∩
(︁
𝑈𝑖 ⊕ 𝐵(2𝑟)

)︁
which intersects𝑈𝑖 ⊕ 𝐵(𝑟), where

⊕ denotes the Minkowski sum. If 𝒰 is 𝛾-separated for 𝛾 ≥ 4𝑟, then

any 𝑟-visit of𝑈𝑖 is disjoint from any 𝑟-visit of𝑈 𝑗 for 𝑖 ≠ 𝑗, in which case

define the true 𝑟-visit of𝑈𝑖 to be the first 𝑟-visit of𝑈𝑖 which occurs after

the true 𝑟-visit of𝑈𝑖−1. (For𝑈1 it is the first 𝑟-visit.)

Chapter 3. Similarity of Uncertain Curves in 2D 81

Lemma 3.48. If 𝒰 is 𝛾-separated for 𝛾 ≥ 4𝑟, then for any curve 𝜋 ⋐ 𝒰 and
any reparametrisations 𝑓 and 𝑔 such that cost 𝑓 ,𝑔(𝜋, 𝜎) ≤ 𝑟, 𝜋𝑖 must map to a
point on the true 𝑟-visit of𝑈𝑖 for all 𝑖.

Proof. First, note that since cost 𝑓 ,𝑔(𝜋, 𝜎) ≤ 𝑟, 𝜋𝑖 must map to a point in

an 𝑟-visit of𝑈𝑖 , and thus we only need to prove it is the true 𝑟-visit.

We prove the claim by induction on 𝑖. For 𝑖 = 1, the claim holds, as

𝜋1 must map to 𝜎1, and 𝜎1 is in the first 𝑟-visit of 𝑈1, which is its true

𝑟-visit.

Now suppose the claim holds for 𝑖 − 1. 𝜋𝑖 must map to a point on an

𝑟-visit of 𝑈𝑖 , and by the induction hypothesis, this visit must happen

after the true 𝑟-visit of𝑈𝑖−1 on 𝜎. Moreover, as 𝒰 is 4𝑟-separated, the

first point in𝑈𝑖 ⊕ 𝐵(𝑟) of the first 𝑟-visit of𝑈𝑖 that occurs after the true

𝑟-visit of 𝑈𝑖−1 (i.e. true 𝑟-visit of 𝑈𝑖) must map to a point 𝑥 on 𝜋𝑖−1𝜋𝑖 .
Note, however, that as both 𝑥 and 𝜋𝑖 map to points in 𝑈𝑖 ⊕ 𝐵(𝑟), the

portion of 𝜎 that the segment 𝑥𝜋𝑖 maps to must lie within 𝑈𝑖 ⊕ 𝐵(2𝑟),
i.e. the same 𝑟-visit. Therefore, all of 𝑥𝜋𝑖 is mapped to the true 𝑟-visit of

𝑈𝑖 , completing the proof. □

For two points 𝛼 and 𝛽 on 𝜎, let 𝛼 ≤ 𝛽 denote that 𝛼 occurs before 𝛽,

and for any points 𝛼 ≤ 𝛽 let 𝜎(𝛼, 𝛽) denote the subcurve between 𝛼 and 𝛽.

Definition 3.49. The 𝛿-greedy sequence of 𝜎 with respect to 𝒰 , denoted

gs(𝒰 , 𝜎, 𝛿), is the longest possible sequence 𝛼 = ⟨𝛼1 , . . . , 𝛼𝑘⟩ of points

on 𝜎, where 𝛼1 = 𝜎1, and for any 𝑖 > 1, 𝛼𝑖 is the point furthest along 𝜎
such that ∥𝛼𝑖 −𝑈𝑖 ∥ ≤ 𝛿 and 𝑑F(𝛼𝑖−1𝛼𝑖 , 𝜎(𝛼𝑖−1 , 𝛼𝑖)) ≤ 2𝛿.

Observation 3.50. For any 𝑖 ≤ 𝑘, let 𝛼𝑖 = ⟨𝛼1 , . . . , 𝛼𝑖⟩ be the 𝑖-th prefix
of gs(𝒰 , 𝜎, 𝛿). Then 𝑑F(𝛼𝑖 , 𝜎(𝛼1 , 𝛼𝑖)) ≤ 2𝛿, and 𝛼𝑖 ⋐ 𝒰 𝑖 ⊕ 𝐵(𝛿), where
𝒰 𝑖 ⊕ 𝐵(𝛿) = ⟨𝑈1 ⊕ 𝐵(𝛿), . . . , 𝑈𝑖 ⊕ 𝐵(𝛿)⟩.

Lemma 3.51. If 𝒰 is 10𝛿-separated and 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿, then gs(𝒰 , 𝜎, 𝛿)

has length 𝑚 and 𝛼𝑚 = 𝜎𝑛 .

Proof. Let gs(𝒰 , 𝜎, 𝛿) = 𝛼 = ⟨𝛼1 , . . . , 𝛼𝑘⟩. Let opt = ⟨opt
1
, . . . , opt𝑚⟩ be

any curve in Real(𝒰) such that 𝑑F(opt, 𝜎) = 𝑑min

F
(𝒰 , 𝜎). Throughout

this proof, we fix a matching realising 𝑑F(opt, 𝜎) and let 𝛽𝑖 be the point

on 𝜎 which opt𝑖 maps to under this matching. For the curve 𝛼, we fix the

Chapter 3. Similarity of Uncertain Curves in 2D 82

matching which is the composition of the reparametrisations realising

𝑑F(𝛼𝑖−1𝛼𝑖 , 𝜎(𝛼𝑖−1 , 𝛼𝑖)) ≤ 2𝛿, and, in particular, 𝛼𝑖 on 𝛼 maps to 𝛼𝑖 on 𝜎.

We prove by induction that for 𝑖 ≤ 𝑚, 𝛼𝑖 exists and 𝛽𝑖 ≤ 𝛼𝑖 . For 𝑖 = 1,

we have 𝛼1 = 𝛽1 = 𝜎1. So assume that 𝛼𝑖−1 exists. By Observation 3.50,

𝛼𝑖−1 ⋐ 𝒰 𝑖−1 ⊕ 𝐵(𝛿), and, moreover, 𝑑F(𝜎(𝛼1 , 𝛼𝑖−1), 𝛼𝑖−1) ≤ 2𝛿. Since 𝒰
is 10𝛿-separated, 𝒰 𝑖−1 ⊕ 𝐵(𝛿) is 8𝛿-separated, and thus by Lemma 3.48,

𝛼𝑖−1 is on the true 2𝛿-visit of𝑈𝑖−1 ⊕ 𝐵(𝛿) by the prefix curve 𝜎(𝛼1 , 𝛼𝑖−1).
Observe that the true 2𝛿-visit of𝑈𝑖−1⊕𝐵(𝛿)by the prefix curve 𝜎(𝛼1 , 𝛼𝑖−1)
is a subset of the true 2𝛿-visit of 𝑈𝑖−1 ⊕ 𝐵(𝛿) by 𝜎, and thus 𝛼𝑖−1 is on

the true 2𝛿-visit of𝑈𝑖−1 ⊕ 𝐵(𝛿) by 𝜎. We also have that opt ⋐ 𝒰 ⊕ 𝐵(𝛿),
as 𝑈 𝑗 ⊂ 𝑈 𝑗 ⊕ 𝐵(𝛿) for all 𝑗, so by Lemma 3.48, 𝛽𝑖−1 and 𝛽𝑖 are on the

true 2𝛿-visit of𝑈𝑖−1 ⊕ 𝐵(𝛿) and𝑈𝑖 ⊕ 𝐵(𝛿). In particular, this implies that

𝛽𝑖−1 ≤ 𝛼𝑖−1 ≤ 𝛽𝑖 , as the true 2𝛿-visits of 𝑈𝑖−1 ⊕ 𝐵(𝛿) and 𝑈𝑖 ⊕ 𝐵(𝛿)
are disjoint. Thus, some point 𝑥 on the segment opt𝑖−1

opt𝑖 must

map to 𝛼𝑖−1. Note that 𝑑F(𝑥opt𝑖 , 𝜎(𝛼𝑖−1 , 𝛽𝑖)) ≤ 𝛿. As ∥𝑥 − 𝛼𝑖−1∥ ≤ 𝛿,

𝑑F(𝑥opt𝑖 , 𝛼𝑖−1opt𝑖) ≤ 𝛿, and so by the triangle inequality for the Fréchet

distance, 𝑑F(𝛼𝑖−1opt𝑖 , 𝜎(𝛼𝑖−1 , 𝛽𝑖)) ≤ 2𝛿. Since ∥𝛽𝑖 − opt𝑖 ∥ ≤ 𝛿, 𝛽𝑖 is a

possible choice for 𝛼𝑖 , and thus 𝛼𝑖 exists and 𝛽𝑖 ≤ 𝛼𝑖 . Finally, since 𝛼𝑖
exists for all 𝑖 ≤ 𝑚, 𝛼 = gs(𝒰 , 𝜎, 𝛿) has length 𝑚, and moreover, since

𝛽𝑚 ≤ 𝛼𝑚 and 𝛽𝑚 = 𝜎𝑛 , we conclude that 𝛼𝑚 = 𝜎𝑛 . □

The following lemma is the only place where we require the points

to be in ℝ2
. The proof uses a result from Guibas et al. [132].

Lemma 3.52. For 𝒰 and 𝜎 in ℝ2, where 𝒰 is 10𝛿-separated, gs(𝒰 , 𝜎, 𝛿) is
computable in time 𝒪(𝑚 + 𝑛 log 𝑛).

Proof. Given 𝛼𝑖 from gs(𝒰 , 𝜎, 𝛿), we describe how to compute 𝛼𝑖+1, if

it exists. Let 𝜎𝑗 be the smallest-index vertex such that 𝛼𝑖 < 𝜎𝑗 . Let

⟨𝐷𝑗 , . . . , 𝐷𝑛⟩ be the sequence of 2𝛿-radius disks, where 𝐷𝑙 is centred

at 𝜎𝑙 . Observe that for 𝛼𝑖+1 to be able to lie on 𝜎𝑧𝜎𝑧+1, for any 𝑧 ≥ 𝑗,

we first require that 𝑑F(𝛼𝑖𝛼𝑖+1 , 𝜎(𝛼𝑖 , 𝛼𝑖+1)) ≤ 2𝛿, which occurs if and

only if there exist points 𝑝 𝑗 , . . . , 𝑝𝑧 that appear in order along 𝛼𝑖𝛼𝑖+1

such that 𝑝𝑙 ∈ 𝐷𝑙 . Clearly, such points are necessary, but they are also

sufficient, as 𝑑F(𝑝𝑙𝑝𝑙+1 , 𝜎𝑙𝜎𝑙+1) ≤ 2𝛿. (As 𝛼𝑖 and 𝛼𝑖+1 lie on 𝜎, the same

holds for 𝛼𝑖𝜎𝑗 and 𝜎𝑧𝛼𝑖+1.) gs(𝒰 , 𝜎, 𝛿) also requires that 𝛼𝑖+1 lie within

distance 𝛿 of𝑈𝑖+1. This is equivalent to requiring that 𝜎𝑧𝜎𝑧+1 intersects

𝑈𝑖+1 ⊕ 𝐵(𝛿). As both 𝜎𝑧𝜎𝑧+1 and 𝑈𝑖+1 ⊕ 𝐵(𝛿) are convex regions, their

intersection is convex, i.e. a single subsegment of 𝜎𝑧𝜎𝑧+1. Let 𝑆𝑖+1(𝑧)

Chapter 3. Similarity of Uncertain Curves in 2D 83

denote this segment, which we can compute in constant time, as 𝑈𝑖+1

is a constant-complexity convex region. Note that 𝛼𝑖+1 may lie on the

same segment of 𝜎 as 𝛼𝑖 , i.e. 𝑧 = 𝑗 − 1, which is an easier case, as no

disks need to be intersected and 𝑑F(𝛼𝑖𝛼𝑖+1 , 𝜎(𝛼𝑖 , 𝛼𝑖+1)) ≤ 2𝛿 holds.

Given a sequence of 𝑘 equal-radius disks ⟨𝐷1 , . . . , 𝐷𝑘⟩, say that a

line ℓ stabs the disks if for all 𝑗 ≤ 𝑘, there exists a point 𝑝 𝑗 ∈ ℓ ∩ 𝐷𝑗

such that the 𝑝 𝑗 appear in order along ℓ . Guibas et al. [132] give an

𝒪(𝑘 log 𝑘)-time algorithm that determines the set of all stabbing lines.

As follows from the description of our problem, their algorithm can be

used to determine 𝛼𝑖+1 given 𝛼𝑖 by restricting the stabbing line to first

pass through 𝛼𝑖 and requiring it to intersect 𝑆𝑖+1(𝑘) at the end.

We now sketch the necessary changes. Their algorithm inserts the

disks in order, maintaining three objects—the support hull, the limiting

lines, and the line stabbing wedge. The support hull consists of a pair of

upper and lower concave chains that all stabbers must pass between, and

the limiting lines represent the largest and the smallest slope stabbers.

The wedge is the set of all points 𝑝 such that there is a stabber that passes

through 𝑝 after passing through the required points from the disks. To

modify their approach for our setting, we require the stabber to initially

pass through 𝛼𝑖 . This actually simplifies the problem by joining and

collapsing the chains of the support hull,3 and thus we can focus on the

wedge. After 𝑗 insertions, the wedge boundary consists of 𝒪(𝑗) pieces

from the disks, flanked by the limiting lines. These ordered boundary

pieces are stored in a binary tree to facilitate logarithmic-time updates

when a new disk is inserted, and we can simply reuse this structure to

determine the intersection of the wedge with 𝑆𝑖+1(𝑗).
By Definition 3.49, the line segment 𝜎𝑧𝜎𝑧+1 that 𝛼𝑖+1 lies on must

have 𝑧 be as large as possible. Thus, we run the incremental procedure

above, where in the 𝑗-th round we check for intersection with 𝑆𝑖+1(𝑗). If

no such intersection is found before we reach the end of 𝜎 or the wedge

becomes empty, then 𝛼𝑖+1 does not exist. Otherwise, 𝛼𝑖+1 is defined.

However, the rounds which have intersection with 𝑆𝑖+1(𝑗) need not be

contiguous; thus, care is needed to determine the last such intersection

efficiently.

3
Alternatively, one can enforce the condition by defining an initial zero-radius disk 𝐷0

at 𝛼𝑖 , and indeed the referenced work [132] considers stabbers for more general collections

of convex objects.

Chapter 3. Similarity of Uncertain Curves in 2D 84

Let 𝑘 be the largest index such that 𝛼𝑘 is defined. By Observation 3.50,

for any 𝑖 ≤ 𝑘, we have 𝑑F(𝛼𝑖 , 𝜎(𝛼1 , 𝛼𝑖)) ≤ 2𝛿 and 𝛼𝑖 ⋐ 𝒰 𝑖 ⊕ 𝐵(𝛿). Since

𝒰 is 10𝛿-separated, 𝒰 𝑖 ⊕ 𝐵(𝛿) is 8𝛿-separated, and so by Lemma 3.48,

𝛼𝑖 must be in the true 2𝛿-visit of 𝑈𝑖 ⊕ 𝐵(𝛿) by 𝜎(𝛼1 , 𝛼𝑘). Thus, when

computing 𝛼𝑖 , we only need to consider vertices from 𝜎 which occur after

𝛼𝑖−1 and before the end of the true 2𝛿-visit of𝑈𝑖⊕𝐵(𝛿). If 𝑛𝑖 is the number

of such vertices, it therefore takes 𝒪(1+𝑛𝑖 log 𝑛𝑖) time to compute 𝛼𝑖 with

the algorithm above. Moreover, as the true 2𝛿-visits for𝑈𝑖 ⊕ 𝐵(𝛿) and

𝑈 𝑗 ⊕ 𝐵(𝛿) for 𝑖 ≠ 𝑗 ≤ 𝑘 are disjoint, any vertex of 𝜎 contributes to at most

two counts 𝑛𝑖 , as we have 𝛼 𝑗 ∈ 𝑈 𝑗 ⊕ 𝐵(𝛿), and we may process vertices

from 𝛼 𝑗 to the end of 𝑈 𝑗 ⊕ 𝐵(𝛿) twice; so

∑︁
𝑖 𝑛𝑖 ≤ 2𝑛. Thus, the total

running time is 𝒪(𝑚 + 𝑛 log 𝑛) +∑︁𝑘
𝑖=1

𝒪(1 + 𝑛𝑖 log 𝑛𝑖) = 𝒪(𝑚 + 𝑛 log 𝑛),
where the leading 𝒪(𝑚+𝑛 log 𝑛) term accounts for the time to determine

if 𝛼𝑘+1 does not exist for 𝑘 < 𝑚. □

Theorem 3.53. Let 𝒰 be 10𝑟-separated for some 𝑟 > 0. There is a 3-decider
for Problem 3.22 in the plane with the running time 𝒪(𝑚 + 𝑛 log 𝑛) that works
for any query value 0 < 𝛿 ≤ 𝑟.

Proof. Compute gs(𝒰 , 𝜎, 𝛿). If it has length𝑚, then let 𝜋 = ⟨𝜋1 , . . . ,𝜋𝑚⟩
be any curve in Real(𝒰) such that ∥𝜋𝑖 − 𝛼𝑖 ∥ ≤ 𝛿 for all 𝑖. If this occurs

and if 𝛼𝑚 = 𝜎𝑛 , we output 𝜋 as our solution, and otherwise we output

False. Thus, the running time follows from Lemma 3.52.

Observe that if we output a curve 𝜋, then 𝑑F(𝜋, 𝜎) ≤ 3𝛿, using the

triangle inequality:

𝑑F(𝜋, 𝜎) ≤ 𝑑F(𝜋, 𝛼) + 𝑑F(𝛼, 𝜎) ≤ 𝛿 + 2𝛿 = 3𝛿 .

Thus, we only need to argue that when 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿, a curve is

produced, which is immediate from Lemma 3.51. □

It is also possible to turn this procedure into a 9-approximation

algorithm for 𝑑min

F
. Suppose we are given a 10𝑟-separated uncertain

curve. We can use decreasing exponential search with a factor of 3,

starting with 𝛿 = 𝑟. Suppose that for 𝛿 = 𝑟, we get True; eventually,

we switch to False. Let the last True value be 𝑥; then 3𝑥 must be True,

and 𝑥/3 and 𝑥/9 must be False. Note that at most one value of 𝛿 can fall

into the interval with the uncertain answer of the 3-decider. Then we

know that 𝑑min

F
(𝒰 , 𝜎) ≤ 3𝑥 and 𝑑min

F
(𝒰 , 𝜎) > 3 · 𝑥/9 = 𝑥/3. Let 𝛿′ = 3𝑥

Chapter 3. Similarity of Uncertain Curves in 2D 85

be the returned distance, then 𝑑min

F
(𝒰 , 𝜎) ≤ 𝛿′ < 9𝑑min

F
(𝒰 , 𝜎), so 𝛿′ is a

9-approximation to the lower bound Fréchet distance.

3.3 Algorithms for Upper Bound and Expected Fréchet
Distance

As shown in Section 3.1.1, finding the upper bound and the expected

discrete and continuous Fréchet distance is hard even for simple uncer-

tainty models. However, restricting the possible couplings or alignments

between the curves makes the problem solvable in polynomial time.

In this section, we use indecisive curves. Define a Sakoe–Chiba time

band [194] in terms of reparametrisations of the curves: for a band of

width 𝑤 and all 𝑡 ∈ [0, 1], if 𝜙1(𝑡) = 𝑥, then 𝜙2(𝑡) ∈ [𝑥 − 𝑤, 𝑥 + 𝑤]. In

the discrete case, we can only couple point 𝑖 on one curve to points 𝑖 ±𝑤
on the other curve.

3.3.1 Upper Bound Discrete Fréchet Distance: Precise and Indecisive

First of all, let us discuss a simple setting. Suppose we are given a

curve 𝜎 = ⟨𝑞1 , . . . , 𝑞𝑛⟩ of 𝑛 precise points and 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ of 𝑛

indecisive points, each of them having ℓ options, so for all 𝑖 ∈ [𝑛], we

have𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝ℓ

𝑖
}. We would like to answer the following decision

problem: ‘If we restrict the couplings to a Sakoe–Chiba band of width 𝑤, is
it true that 𝑑max

dF
(𝒰 , 𝜎) ≤ 𝛿 for some given threshold 𝛿 > 0?’ So, we want

to solve the complement of the decision problem for the upper bound

discrete Fréchet distance between a precise and an indecisive curve

discussed previously, which is co-NP-hard in the unrestricted setting.

In a fully precise setting the discrete Fréchet distance can be computed

using dynamic programming [100]. We create a table where the rows

correspond to vertices of one curve, say 𝜎, and columns correspond to

vertices of the other curve, say 𝜋. Each table entry (𝑖 , 𝑗) then contains a

True or False value indicating if there is a coupling between 𝜋[1 : 𝑖] and

𝜎[1 : 𝑗] with maximum distance at most 𝛿. We use a similar approach.

Suppose we position 𝒰 to go horizontally along the table, and 𝜎 to

go vertically. Consider an arbitrary column in the table and suppose

that we fix the realisation of 𝒰 up to the previous column. Then

we can simply consider the new column ℓ times, each time picking a

different realisation for the new point on 𝒰 , and compute the resulting

Chapter 3. Similarity of Uncertain Curves in 2D 86

1

2

1
𝑎

1
𝑏

2
𝑎

2
𝑏

3
𝑎

3
𝑏

F F F T T T

T T T F F F

F

T

→ F T

T F

→ T

F

Figure 3.9. Left: An indecisive and a precise curve. Middle: Distance matrix. ‘T

T’ in the bottom left cell means ∥1−1
𝑎 ∥ ≤ 𝛿 and ∥1−1

𝑏 ∥ ≤ 𝛿. Right: Computing

reachability matrix, column by column. Note two reachability vectors for the

second column.

reachability. As we do this for the entire column at once, we can

ensure consistency of our choice of realisation. This procedure will

give us a set of binary reachability vectors for the new column, each

vector corresponding to a realisation. The reachability vector is a boolean

vector that, for the cell (𝑖 , 𝑗) of the table, states whether for a particular

realisation 𝜋 of 𝒰[1 : 𝑖] the discrete Fréchet distance between 𝜋 and

𝜎[1 : 𝑗] is below some threshold 𝛿.

An important observation is that we do not need to distinguish

between the realisations that give the same reachability vector: once

we start filling out the next column, all we care about is the existence

of some realisation leading to that particular reachability vector. So,

we can keep a set of binary vectors corresponding to reachability in the

column.

This procedure was suggested for a specific realisation. However, we

can also repeat this for each previous reachability vector, only keeping

the unique results. As all the realisation choices happen along 𝒰 , by

treating the table column by column we ensure that we do not have

issues with inconsistent choices. Therefore, repeating this procedure

𝑛 times, we fill out the last column of the table. At that point, if any

vector from the last column has False in the top cell, then there is some

realisation 𝜋 ⋐ 𝒰 such that 𝑑dF(𝜋, 𝜎) > 𝛿, and hence 𝑑max

dF
(𝒰 , 𝜎) > 𝛿.

In more detail, we use two tables: the distance matrix 𝐷, where cell

(𝑖 , 𝑘, 𝑗) is True if and only if ∥𝑝𝑘
𝑖
− 𝑞 𝑗 ∥ ≤ 𝛿; and the dynamic program,

referred to as the reachability matrix 𝑅. First of all, we initialise the

distance matrix𝐷 and the reachability of the first column for all possible

locations of 𝑈1. Then we fill out 𝑅 column by column. We take the

reachability of the previous column and note that any cell can be reached

Chapter 3. Similarity of Uncertain Curves in 2D 87

either with a horizontal step or with a diagonal step. We need to consider

various extensions of the curve 𝒰 with one of the ℓ realisations of the

current point; the distance matrix should allow the specific coupling.

Assume we find that a certain cell is reachable; if allowed by the distance

matrix, we can then go upwards, marking the cells above the current cell

reachable, even if they are not directly reachable with a horizontal or a

diagonal step. Then we just remember the newly computed vector; we

make sure to only add distinct vectors. The computation is illustrated

in Figure 3.9; the pseudocode is given in Algorithm 3.1.

Correctness. We use the following loop invariant to show correctness.

Lemma 3.54. Consider column 𝑖. Every reachability vector of this column
corresponds to at least one realisation of 𝒰[1 : 𝑖] and the discrete Fréchet
distance between that realisation and 𝜎[1 : min(𝑛, 𝑖+𝑤)]; and every realisation
corresponds to some reachability vector.

Proof. The statement is trivial for the first column: we consider all ℓ

possible realisations of 𝑈1 and compute reachability of cells (1, 1) to

(1, 1 + 𝑤) in a straightforward way.

Now suppose the statement holds for column 𝑖. As follows from the

recurrence establishing the discrete Fréchet distance, the reachability of

column 𝑖 + 1 only depends on the distance matrix for column 𝑖 + 1 and

the reachability of column 𝑖. We consider every possible extension of

𝒰[1 : 𝑖] to 𝒰[1 : 𝑖 + 1], as for every reachability vector of column 𝑖, we

consider all ℓ options from the distance matrix for column 𝑖 + 1. Thus,

we only consider valid realisations for column 𝑖 + 1, and we consider all

of them from the point of view of reachability. □

Running time. First of all, populating the distance matrix takes time

Θ(ℓ𝑛𝑤). A call to Propagate takes Θ(𝑤) time, so initialisation of the first

column of the reachability matrix takes Θ(ℓ𝑤) time. Note that, at any

further point, we may have at most 2
2𝑤+1

distinct reachability vectors;

for each of them, we make ℓ calls to Propagate, taking Θ(4𝑤ℓ𝑤) time per

column, so over all the columns we need Θ(4𝑤ℓ𝑤𝑛) time. If we assume

that adding an element to the set takes amortised constant time, then the

previous value dominates. Finally, the check at the end takes Θ(4𝑤) time.

Chapter 3. Similarity of Uncertain Curves in 2D 88

Algorithm 3.1. Finding the time-banded upper bound discrete Fréchet distance

on an indecisive and a precise curve.

1 function TimeBandDFDIndPr(𝒰 , 𝜎, 𝑤, 𝛿)
2 ▷ Input constraint: |𝒰 | = |𝜎 | = 𝑛 and 0 ≤ 𝑤 < 𝑛

3 Initialise matrix 𝐷 of size 𝑛 × ℓ × (2𝑤 + 1)
4 for all 𝑖 ∈ [𝑛] do
5 for all 𝑘 ∈ [ℓ] do
6 for all 𝑗 ∈ {max(1, 𝑖 − 𝑤), . . . ,min(𝑛, 𝑖 + 𝑤)} do
7 𝐷𝑖 ,𝑘, 𝑗 ≔ [𝑑(𝑝𝑘

𝑖
, 𝑞 𝑗) ≤ 𝛿?]

8 Initialise matrix 𝑅 of size 𝑛 × 2
2𝑤+1 × (2𝑤 + 1)

9 𝑅0 ≔ ⟨𝑟1 = True, 𝑟2 = False, 𝑟3 = False, . . . , 𝑟𝑤+1 = False⟩
10 for all 𝑘 ∈ [ℓ] do
11 𝑅

1,𝑘 ≔ Propagate(𝑅0, 𝐷
1,𝑘 , 1, 𝑤, 𝑛)

12 for all 𝑖 ∈ [𝑛] \ {1} do
13 for all 𝐴 ∈ 𝑅𝑖−1 do ▷ For each reachability vector

14 𝐵 ≔ 𝐴 ∨ (𝐴 shifted by 1) ▷ Horizontal or diagonal step

15 for all 𝑘 ∈ [ℓ] do
16 𝐶 ≔ Propagate(𝐵, 𝐷𝑖 ,𝑘 , 𝑖 , 𝑤, 𝑛)
17 Add 𝐶 to set 𝑅𝑖
18 𝑟 ≔ True

19 for all 𝐴 ∈ 𝑅𝑛 do
20 𝑟 ≔ 𝑟 ∧ 𝐴𝑛
21 return 𝑟
22

23 function Propagate(𝐴, 𝐵, 𝑖, 𝑤, 𝑛)
24 ▷ Propagate the reachability upwards in a column

25 𝐶 ≔ 𝐴 ∧ 𝐵 ▷ Step and distance matrix

26 𝑟 ≔ False

27 for all 𝑗 ∈ {max(1, 𝑖 − 𝑤), . . . ,min(𝑛, 𝑖 + 𝑤) do
28 if 𝐵𝑗 ∧ 𝐶 𝑗 then 𝑟 ≔ True ▷ Current cell already reachable

29 else if 𝐵𝑗 ∧ ¬𝐶 𝑗 ∧ 𝑟 then 𝐶 𝑗 ≔ True ▷ Vertical step

30 else if ¬𝐵𝑗 then 𝑟 ≔ False

31 return 𝐶

Chapter 3. Similarity of Uncertain Curves in 2D 89

So, overall the algorithm runs in time Θ(4𝑤ℓ𝑛𝑤). This agrees with our

hardness result: for a small fixed-width time band, we get the running

time of Θ(ℓ𝑛), whereas if we set 𝑤 = 𝑛 − 1 to compute the unrestricted

distance, the algorithm runs in exponential time—Θ(4𝑛ℓ𝑛2). We can

also only store vectors that dominate in terms of False values, as we are

interested in the worst case. This improvement reduces the running

time by a factor of

√
𝑤.

Theorem 3.55. Problem Upper Bound Discrete Fréchet restricted to a
Sakoe–Chiba time band of width 𝑤 on a precise curve and an uncertain curve
comprised of indecisive points with ℓ options, both of length 𝑛, can be decided
in time Θ(4𝑤ℓ𝑛

√
𝑤) in the worst case.

3.3.2 Upper Bound Discrete Fréchet Distance: Indecisive

Now we extend our previous result to the setting where both curves

are indecisive, so instead of 𝜎 we have 𝒱 = ⟨𝑉1 , . . . , 𝑉𝑛⟩, with, for each

𝑗 ∈ [𝑛], 𝑉𝑗 = {𝑞1

𝑗
, . . . , 𝑞ℓ

𝑗
}. Suppose we pick a realisation for curve

𝒱—then we can apply the algorithm we just described. We cannot

run it separately for every realisation; instead, note that the part of the

realisation that matters for column 𝑖 is the points from 𝑖 − 𝑤 to 𝑖 + 𝑤,

since any previous or further points are outside the time band. So, we

can fix these 2𝑤 + 1 points and compute the column. We do so for each

possible combination of these 2𝑤 + 1 points.

Lemma 3.56. Any reachability vector we store in column 𝑖 corresponds to
some realisation of the subcurves 𝒰[1 : 𝑖] and 𝒱[1 : min(𝑖 + 𝑤, 𝑛)], and
every such realisation has the resulting reachability vector stored in column 𝑖.

Proof. First of all, consider the statement for column 1. Clearly, we

consider all possible realisations of both subcurves, so the statement

holds.

Now, as we move from column 𝑖 to column 𝑖+1, we fix the realisation

of points 𝑖 + 1 − 𝑤 to 𝑖 + 1 + 𝑤 on curve 𝒱 and consider all the vectors

stemming from the possible values of point 𝑖 − 𝑤; as in Lemma 3.54, we

cover all realisations of curve 𝒰 .

As for curve 𝒱, note that we, again, only need the reachability from

the previous column and the distance matrix from the current column,

so the points before 𝑖 + 1 − 𝑤 do not play a role for the consistency

between the two, and thus they can be ignored.

Chapter 3. Similarity of Uncertain Curves in 2D 90

So, we only get reachability vectors corresponding to valid realisa-

tions, and we do not miss any, as required. □

The running time is now Θ(4𝑤ℓ 2𝑤+1𝑛𝑤), as we consider all combina-

tions of the 2𝑤 + 1 relevant points on 𝒱 with ℓ options per point. For

small constants𝑤 and ℓ , we getΘ(𝑛); for𝑤 = 𝑛−1, we getΘ(4𝑛𝑛2ℓ 2𝑛−1)—
exponential time in 𝑛. As in the previous algorithm, we can store the

boolean vectors more efficiently, reducing the running time by a factor

of

√
𝑤.

Theorem 3.57. Suppose we are given two indecisive curves of length 𝑛 with
ℓ options per indecisive point. Then we can decide whether the upper bound
discrete Fréchet distance restricted to a Sakoe–Chiba band of width 𝑤 is below
the threshold in time Θ(4𝑤ℓ 2𝑤+1𝑛

√
𝑤).

3.3.3 Expected Discrete Fréchet Distance

To compute the expected discrete Fréchet distance with time bands, we

need two observations:

1. For any two precise curves, there is a single threshold 𝛿 where

the answer to the decision problem changes from True to False—a

critical value. That threshold corresponds to the distance between

some two points on the curves.

2. We can modify our algorithm to store associated counts with each

reachability vector, obtaining the fraction of realisations that yield

the answer True for a given threshold 𝛿.

We can execute our algorithm for each critical value and get the cu-

mulative distribution function ℙ(𝑑dF(𝜋, 𝜎) > 𝛿) for 𝜋, 𝜎 ⋐𝕌 𝒰 ,𝒱. As

explained in the rest of this section, using the fact that the cumulative

distribution function is a step function, we compute 𝑑𝔼
dF

.

Consider first the setting of one precise and one indecisive curve.

Previously, we stored the reachability vectors in a set; instead, we can

store a counter with each reachability vector, so that every time we get

an element that is already stored, we increment the counter. We cannot

use the improvement that would allow us to discard some vectors, as

that would eschew the count, and we are not interested in the worst

possible result now. We can implement a similar mechanism in the

setting of two indecisive curves. Moreover, we can propagate the count

Chapter 3. Similarity of Uncertain Curves in 2D 91

Algorithm 3.2. Finding the time-banded upper bound discrete Fréchet distance

on two indecisive curves.

1 function TimeBandDFDIndInd(𝒰 ,𝒱 , 𝑤, 𝛿)
2 ▷ Input constraint: |𝒰 | = |𝒱| = 𝑛 and 0 ≤ 𝑤 < 𝑛

3 Initialise matrix 𝐷 of size 𝑛 × ℓ × (2𝑤 + 1) × ℓ
4 for all 𝑖 ∈ [𝑛] do
5 for all 𝑘 ∈ [ℓ] do
6 for all 𝑗 ∈ {max(1, 𝑖 − 𝑤), . . . ,min(𝑛, 𝑖 + 𝑤)} do
7 for all 𝑠 ∈ [ℓ] do
8 𝐷𝑖 ,𝑘, 𝑗,𝑠 ≔ [𝑑(𝑝𝑘

𝑖
, 𝑞𝑠
𝑗
) ≤ 𝛿?]

9 Initialise matrix 𝑅 of size 𝑛 × ℓ2𝑤+1 × 2
2𝑤+1 × 2𝑤 + 1

10 𝑅0 ≔ ⟨𝑟1 = True, 𝑟2 = False, 𝑟3 = False, . . . , 𝑟𝑤+1 = False⟩
11 for all 𝑠 ∈ [ℓ𝑤+1] do
12 for all 𝑘 ∈ [ℓ] do
13 𝑅

1,𝑠 ,𝑘 ≔ Propagate(𝑅0, 𝐷
1,𝑘[𝑠], 1, 𝑤, 𝑛)

14 for all 𝑖 ∈ [𝑛] \ {1} do
15 for all 𝑠 ∈ [ℓ2𝑤+1] do ▷ Or fewer in edge cases

16 ▷ For each reachability vector with fixed realisation

17 for all 𝐴 ∈ 𝑅𝑖−1[𝑠] do
18 𝐵 ≔ 𝐴 ∨ (𝐴 shifted by 1)
19 for all 𝑘 ∈ [ℓ] do
20 𝐶 ≔ Propagate(𝐵, 𝐷𝑖 ,𝑘[𝑠], 𝑖 , 𝑤, 𝑛)
21 Add 𝐶 to set 𝑅𝑖[𝑠]
22 𝑟 ≔ True

23 for all 𝐴 ∈ 𝑅𝑛 do
24 for all 𝑠 ∈ [ℓ2𝑤+1] do
25 𝑟 ≔ 𝑟 ∧ 𝐴𝑛[𝑠]
26 return 𝑟
27

28 function Propagate(𝐴, 𝐵, 𝑖, 𝑤, 𝑛)
29 ▷ Propagate the reachability upwards in a column

30 𝐶 ≔ 𝐴 ∧ 𝐵
31 𝑟 ≔ False

32 for all 𝑗 ∈ {max(1, 𝑖 − 𝑤), . . . ,min(𝑛, 𝑖 + 𝑤) do
33 if 𝐵𝑗 ∧ 𝐶 𝑗 then 𝑟 ≔ True

34 else if 𝐵𝑗 ∧ ¬𝐶 𝑗 ∧ 𝑟 then 𝐶 𝑗 ≔ True

35 else if ¬𝐵𝑗 then 𝑟 ≔ False

36 return 𝐶

Chapter 3. Similarity of Uncertain Curves in 2D 92

through the algorithm and in the end find the counts associated with

answers True and False to the decision problem.

So, if we store the count of realisations that give us a certain reachab-

ility vector, we essentially obtain, for some value of 𝛿,

ℙ(𝑑dF(𝜋, 𝜎) > 𝛿) when 𝜋, 𝜎 ⋐𝕌 𝒰 ,𝒱.

For any realisation, there is a specific value of 𝛿—a critical value—that acts

as a threshold between the answers True and False for that realisation,

since if we fix the realisation, we just compute the regular discrete

Fréchet distance. Note that that threshold must be a distance between

some two points on different curves. In the case of a precise and an

indecisive curve, there are ℓ𝑛(2𝑤 + 1) such distances with the time band

of width𝑤; in the case of two indecisive curves, there are ℓ 2𝑛(2𝑤+1) such

distances. Therefore, if we run our algorithm for each of these critical

values and record the counts of True and False for each threshold, we

obtain the complete cumulative distribution function ℙ(𝑑dF(𝜋, 𝜎) > 𝛿)
for 𝜋, 𝜎 ⋐𝕌 𝒰 ,𝒱.

Then we can simply find, under the time band restriction,

𝑑
𝔼(𝕌)
dF

(𝒰 ,𝒱) =
∫ ∞

0

ℙ𝜋,𝜎⋐𝕌𝒰 ,𝒱(𝑑dF(𝜋, 𝜎) > 𝛿)d𝛿 .

For any realisation the answer may change from True to False only at one

of the critical values. So, the distribution of True and False only changes

at a finite set of critical values and is constant between them; therefore,

ℙ(𝑑dF(𝜋, 𝜎) > 𝛿) is a step function. Hence, finding the integral of interest

amounts to multiplying the value of ℙ(𝑑dF(𝜋, 𝜎) > 𝛿) by the distance

between two successive values of 𝛿 that match, and summing all the

results, i.e. to finding the area under the step function by summing up

the areas of the rectangles that make it up.

So, clearly, under the time band restriction, we can run one of our

algorithms either ℓ𝑛(2𝑤 + 1) or ℓ 2𝑛(2𝑤 + 1) times to obtain the expected

discrete Fréchet distance. We show the details in Algorithm 3.3 for the

two settings. We summarise this result as follows.

Theorem 3.58. Suppose we are given an indecisive curve 𝒰 and a precise
curve 𝜎 of length 𝑛 with ℓ options per indecisive point and we want to compute
the expected discrete Fréchet distance constrained to a Sakoe–Chiba band of
width 𝑤. Then we can run ExpTimeBandDFDIndPr(𝒰 , 𝜎, 𝑤) to obtain the
result in time Θ(4𝑤ℓ 2𝑛2𝑤2) in the worst case.

Chapter 3. Similarity of Uncertain Curves in 2D 93

Algorithm 3.3. Finding the time-banded expected discrete Fréchet distance on

an indecisive and a precise curve and two indecisive curves.

1 function ExpTimeBandDFDIndPr(𝒰 , 𝜎, 𝑤)
2 ▷ Input constraint: |𝒰 | = |𝜎 | = 𝑛 and 0 ≤ 𝑤 < 𝑛

3 Initialise sorted set 𝐸

4 for all 𝑖 ∈ [𝑛] do
5 for all 𝑘 ∈ [ℓ] do
6 for all 𝑗 ∈ {max(1, 𝑖 − 𝑤), . . . ,min(𝑛, 𝑖 + 𝑤)} do
7 Add 𝑑(𝑝𝑘

𝑖
, 𝑞 𝑗) to sorted set 𝐸

8 𝑠 ≔ 𝐸[1]
9 for 𝑖 ≔ 1 to 𝑙(𝐸) − 1 do

10 𝛿 ≔ 𝐸[𝑖], 𝛿′ ≔ 𝐸[𝑖 + 1]
11 𝑝 ≔ CntTimeBandDFDIndPr(𝒰 , 𝜎, 𝑤, 𝛿)
12 𝑠 ≔ 𝑠 + (1 − 𝑝) · (𝛿′ − 𝛿)
13 return 𝑠
14

15 function ExpTimeBandDFDIndInd(𝒰 ,𝒱 , 𝑤)
16 ▷ Input constraint: |𝒰 | = |𝒱| = 𝑛 and 0 ≤ 𝑤 < 𝑛

17 Initialise sorted set 𝐸

18 for all 𝑖 ∈ [𝑛] do
19 for all 𝑘 ∈ [ℓ] do
20 for all 𝑗 ∈ {max(1, 𝑖 − 𝑤), . . . ,min(𝑛, 𝑖 + 𝑤)} do
21 for all 𝑠 ∈ [ℓ] do
22 Add 𝑑(𝑝𝑘

𝑖
, 𝑞𝑠
𝑗
) to sorted set 𝐸

23 𝑠 ≔ 𝐸[1]
24 for 𝑖 ≔ 1 to 𝑙(𝐸) − 1 do
25 𝛿 ≔ 𝐸[𝑖], 𝛿′ ≔ 𝐸[𝑖 + 1]
26 𝑝 ≔ CntTimeBandDFDIndInd(𝒰 ,𝒱 , 𝑤, 𝛿)
27 𝑠 ≔ 𝑠 + (1 − 𝑝) · (𝛿′ − 𝛿)
28 return 𝑠
29

30 function CntTimeBandDFDIndPr(𝒰 , 𝜎, 𝑤, 𝛿)
31 ▷ Like TimeBandDFDIndPr, but returns the fraction of count of True over

False for the final cell.

32

33 function CntTimeBandDFDIndInd(𝒰 ,𝒱 , 𝑤, 𝛿)
34 ▷ Like TimeBandDFDIndInd, but returns the fraction of count of True over

False for the final cell.

Chapter 3. Similarity of Uncertain Curves in 2D 94

Proof. First of all, note that from the discussion above it immediately

follows that the algorithm is correct. In the worst case, every 𝛿 that

we have to add to 𝐸 will be distinct, so we have ℓ𝑛(2𝑤 + 1) insertions,

taking in total Θ(ℓ𝑛𝑤 log ℓ𝑛𝑤) time. Then we run CntTimeBandDF-

DIndPr once per value in 𝐸, and its running time is the same as that of

TimeBandDFDIndPr, so here we take time Θ(ℓ𝑛𝑤 · 4𝑤ℓ𝑛𝑤) in the worst

case, as claimed. □

We can formalise the result similarly for the other setting.

Theorem 3.59. Suppose we are given two indecisive curves 𝒰 and 𝒱 of
length 𝑛 with ℓ options per indecisive point and want to find the expected
discrete Fréchet distance when constrained to a Sakoe–Chiba band of width 𝑤.
Then we can run ExpTimeBandDFDIndInd(𝒰 ,𝒱 , 𝑤) to obtain the result in
time Θ(4𝑤ℓ 2𝑤+3𝑛2𝑤2) in the worst case.

Proof. Again, note that from the discussion above it immediately follows

that the algorithm is correct. In the worst case, we have ℓ 2𝑛𝑤 insertions,

taking in total Θ(ℓ 2𝑛𝑤 log ℓ𝑛𝑤) time. Then we run CntTimeBandDF-

DIndInd once per value in 𝐸, and its running time is the same as that of

TimeBandDFDIndInd, so here we take time Θ(ℓ 2𝑛𝑤 · 4𝑤ℓ 2𝑤+1𝑛𝑤) in the

worst case, as claimed. □

3.3.4 Upper Bound Continuous Fréchet Distance

We can adapt our time band algorithms to handle the continuous Fréchet

distance. Instead of the boolean reachability vectors, we use vectors

of free space cells, introduced by Alt and Godau [23, 117]. We now

need to store reachability intervals on cell borders. The number of

these intervals is limited: for any cell, the upper value of the interval

is determined by the distance matrix, yielding at most ℓ 2
values; the

lower value of the interval is determined by the distance matrix or by

one of the cells from the same row, yielding exponential dependency on

𝑤. However, the algorithm is still polynomial-time in 𝑛.

In more detail, one could adapt the algorithms for the upper bound

discrete Fréchet distance to the case when either both curves are indecis-

ive or one is precise and one is indecisive, and we are interested in the

decision problem for the Fréchet distance and not the discrete Fréchet

Chapter 3. Similarity of Uncertain Curves in 2D 95

Figure 3.10. Reachability adjustments. Left: Although the dotted interval is

free according to the distance matrix, only the solid interval is reachable from

the cell on the left with a monotone path, assuming entire cell on the left is

free. Right: The entire interval that is marked as free according to the distance

matrix is reachable with a monotone path from the cell below, assuming the

cell below is free.

distance. Since we are going column by column, we would need to store

the reachability intervals on the vertical border of each cell.

It is simpler to see how this would work in the setting of a precise

and an indecisive curve: each column now is a column of a free-space

diagram, and we only need to store the intervals on the right side of the

column. As we progress to the next column, we need to consider all the

options from the previous column, so we need to run the same algorithm,

except we store and process vectors of free-space intervals instead of

True and False. One other distinction is that we do not consider diagonal

steps—for the Fréchet distance doing so would not be meaningful, as

the path is continuous, and the diagonal step is not distinguishable from

a horizontal step followed by a vertical step, if such situation occurs.

In particular, we now take the intervals stored in the distance matrix

and compute reachability based on the previous column: if a cell can

be reached horizontally from the previous cell, then the lower bound

of the interval in this cell may need to go up, since we can only use

monotone paths. Propagate will now take the intervals that correspond

to the distance matrix and the precomputed reachability and make the

following adjustment: if a cell is reachable from below, then the entire

interval on the right is actually reachable. See Figure 3.10 for an example

of both cases.

Other than that, the algorithm is exactly the same; clearly, we can

make the same adjustments to the algorithm handling two indecisive

curves.

Chapter 3. Similarity of Uncertain Curves in 2D 96

Notice that we now do not have at most 2
2𝑤+1

vectors per column,

since we store intervals instead of boolean values, and they can be more

varied. However, the number of values is still limited: for any cell, the

upper value of the interval is determined by the distance matrix, so

there can be at most ℓ or ℓ 2
values for the two settings. The lower value

of the interval is determined by the distance matrix or by one of the

cells from the same row; these may have at most ℓ or ℓ 2
values each, and

there are at most 2𝑤 of them, so per cell we can have at most Θ(ℓ𝑤) or

Θ(ℓ 2𝑤) lower interval values and Θ(ℓ) or Θ(ℓ 2) upper interval values,

instead of just two possible values in the discrete case. Note that for an

interval, we only pick one of the possible lower bound values, and a

lower bound value ultimately comes from the distance between some

pair of points; and we pick one upper bound value, giving us Θ(ℓ 2𝑤)
and Θ(ℓ 4𝑤) possible unique intervals. We also need to modify the set

operations, e.g. by enumerating the possible boundaries and storing

intervals as pairs of indices; adding a vector to a set would then take

𝒪(𝑤+ log ℓ𝑤) time. The running time changes accordingly, replacing 4
𝑤

with (ℓ 2𝑤)2𝑤+1
and replacing 4

𝑤ℓ 2𝑤+1
with (ℓ 4𝑤)2𝑤+1

, but, importantly,

we still have linear dependency on 𝑛, so the running time is polynomial

for fixed 𝑤 and ℓ .

3.3.5 Expected Continuous Fréchet Distance

We can, of course, again store the associated counts with the vectors of

intervals in the algorithm. As we look at the final cell, we can sum up

the counts associated with the cases where the upper right corner of

this cell is reachable, and so we can find the proportion of True to False

for a particular threshold 𝛿.

We can find the critical values; now they follow in line with those

discussed by Alt and Godau [23, 117]. The number of the critical values

is different: case 1, where we look at the start and end points, now yields

Θ(ℓ 2) events; case 2, where we look at two neighbouring cells, so at the

distance between a segment and a point, yields Θ(ℓ 3𝑛𝑤) events; and

case 3, where we look at the distance between a segment and two points,

yields Θ(ℓ 4𝑛𝑤2) events.

Otherwise, we can run Algorithm 3.3 on the new critical values,

calling instead the counting version for the continuous Fréchet distance.

Chapter 3. Similarity of Uncertain Curves in 2D 97

This way we can compute the expected Fréchet distance restricted to a

Sakoe–Chiba band in time polynomial in 𝑛 for fixed 𝑤 and ℓ .

Theorem 3.60. Suppose we are given two indecisive curves of length 𝑛 with
ℓ options per indecisive point. Then we can decide the upper bound Fréchet
distance and compute the expected Fréchet distance restricted to a Sakoe–Chiba
band of fixed width 𝑤 in time polynomial in 𝑛.

3.4 Conclusions

In this chapter, we have studied the upper bound, the lower bound, and

the expected Fréchet distance under various uncertainty models, namely,

with uncertainty modelled as indecisive points, as line segments, and

as disks. We conclude that deciding if the upper bound is above a

given threshold is NP-hard in all the models we consider. This seems to

translate to #P-hardness for computing the expected Fréchet distance

under the uniform distribution. We do not have reason to believe that

the variants of the expected Fréchet distance not covered here are easier.

The lower bound problem presents an interesting trade-off, though:

while the problem of deciding whether the lower bound is below a

given threshold is still NP-hard for the continuous Fréchet distance

for uncertain points modelled as line segments, the problem becomes

tractable when either the uncertainty regions or the distance measure (or

both) are discrete. We conjecture that the continuous Fréchet distance

for uncertain points modelled as disks (or other continuous regions) is

no easier than for line segments.

In Chapter 4, we continue our discussion on the topic. As it turns

out, in one dimension, some problems remain NP-hard, while others

become solvable in polynomial time.

CHAPTER 4
Similarity of Uncertain

Curves in 1D

We have hopefully convinced the reader in Chapter 3 that it is important

to consider the Fréchet distance under uncertainty. Unfortunately, as we

have discovered, many variants turn out to be NP-hard or even #P-hard.

In this chapter, we turn our attention to one-dimensional curves in order

to find the source of the computational complexity of the problem. We

present an efficient algorithm for computing the lower bound Fréchet

distance with imprecision modelled as intervals, a setting akin to the

one where the problem was NP-hard in two dimensions. We further

generalise this approach to a framework applicable in higher dimensions

and restricted settings; it does not guarantee polynomial-time solutions.

We also study the weak Fréchet distance, which, to our know-

ledge, has not been studied in the uncertain setting before. We give a

polynomial-time algorithm that solves the lower bound problem in 1D.

In contrast to that, we show that the problem is NP-hard in 2D, and

that the discrete weak Fréchet distance is NP-hard already in 1D. We

summarise these results in Table 4.1.

The table provides an interesting insight. First of all, it appears

that for continuous distances the dimension matters, whereas for the

discrete ones the results are the same both in 1D and 2D. Moreover, it

98

Chapter 4. Similarity of Uncertain Curves in 1D 99

Table 4.1. Complexity results for the lower bound problems for uncertain

curves.

Fréchet distance weak Fréchet distance

discrete continuous discrete continuous

1D polynomial [18] polynomial NP-hard polynomial

2D polynomial [18] NP-hard (Ch. 3) NP-hard NP-hard

may be surprising that discretising the problem has a different effect:

for the Fréchet distance it makes it easier, while for the weak Fréchet

distance the problem becomes harder. We discuss the polynomial-time

algorithm for the Fréchet distance in 1D in Section 4.2. We give the

algorithm for the weak Fréchet distance in 1D in Section 4.4.1 and show

NP-hardness for the weak (discrete) Fréchet distance in Section 4.4.2.

Finally, we also turn our attention to the problem of maximising

the Fréchet distance, or finding the upper bound. We have shown

that the problem is NP-hard in 2D for several uncertainty models,

including indecisive points, both for the discrete and the continuous

Fréchet distance (Chapter 3). We strengthen that result by presenting

a similar construction that already shows NP-hardness in 1D. While

the NP-hardness in the indecisive model supersedes the same result

in 2D, other models are not directly comparable between one and two

dimensions. The proof is given in Section 4.3.

Preliminaries. Building up on the general definitions of Chapter 2,

observe that an uncertain point in one dimension is a set 𝑢 ⊆ ℝ.1 An

indecisive point is a finite set of numbers 𝑢 = {𝑥1 , . . . , 𝑥ℓ }. An imprecise
point is a closed interval 𝑢 = [𝑥1 , 𝑥2]. Note that a precise point is a

special case of both types of points.

4.1 Lower Bound Fréchet Distance: General Approach

In this section, we consider the following decision problem.

Problem 4.1. Given two uncertain curves 𝒰 = ⟨𝑢1 , . . . , 𝑢𝑚⟩ and 𝒱 =

⟨𝑣1 , . . . , 𝑣𝑛⟩ in 𝑌 = ℝ𝑑
for some 𝑑, 𝑚, 𝑛 ∈ ℕ and a threshold 𝛿 > 0,

decide if 𝑑min

F
(𝒰 ,𝒱) ≤ 𝛿.

1
To enable natural naming, we denote uncertain points with lowercase letters here.

Chapter 4. Similarity of Uncertain Curves in 1D 100

Note that this problem formulation is general both in terms of the

shape of uncertainty regions and the dimension of the problem. We

propose an algorithmic framework that solves this problem. As shown

previously (Chapter 3), the problem is NP-hard in 2D for vertical line

segments as uncertainty regions, but admits a simple dynamic program

for indecisive points in 2D. So, in many uncertainty models, especially

in higher dimensions, the following approach will not result in an

efficient algorithm. However, our approach is general in that it can be

instantiated in restricted settings, e.g. in 2D assuming that the segments

of the curves can only be horizontal or vertical. The inherent complexity

of the problem appears to be related to the number of directions to

consider, with the infinite number in 2D without restrictions and two

directions in 1D. We conjecture that in this restricted setting the approach

yields a polynomial-time algorithm; verifying this and making a more

general statement delineating the hardness of restricted settings are

both interesting open problems. Our approach shows a straightforward

way to engineer an algorithm for various restricted settings in arbitrary

dimension, but we cannot make any statements about its efficiency in

most settings. To illustrate the approach, we instantiate it in 1D and

analyse its efficiency in Section 4.2. The interested reader might refer to

that section for a more intuitive explanation of the approach.

First we introduce some extra notation. Recall 𝑌 = ℝ𝑑
. For 𝑖 ∈ [𝑚],

denote 𝒰𝑖 = ⟨𝑢1 , . . . , 𝑢𝑖⟩ and 𝒰 ∗
𝑖
= ⟨𝑢1 , . . . , 𝑢𝑖 , 𝑌⟩. We call 𝒰𝑖 and 𝒰 ∗

𝑖

the subcurve and the free subcurve of 𝒰 at 𝑖, respectively. Intuitively, a

realisation of 𝒰 ∗
𝑖

extends a realisation of 𝒰𝑖 by a single edge whose final

vertex position is unrestricted. Let 𝑆 ≔ 𝑆𝑑−1
be the unit (𝑑 − 1)-sphere.

Denote the direction of the 𝑖th edge 𝜋[𝑖 : 𝑖 + 1] of a realisation 𝜋 by

d𝑖(𝜋) ⊆ 𝑆. For example, in 1D there are only two options, in 2D the

directions can be picked from a unit circle, in 3D from a unit sphere,

etc. In the degenerate case where the edge has length 0 (or 𝜋 has no 𝑖th

edge), let d𝑖(𝜋) = 𝑆.

We want to find realisations 𝜋 ⋐ 𝒰 and 𝜎 ⋐ 𝒱 such that 𝜋 and 𝜎
have Fréchet distance at most 𝛿. Call such a pair (𝜋, 𝜎) a 𝛿-realisation

of (𝒰 ,𝒱). Intuitively, we want to create a dynamic program on the

two curves that keeps track of the possible realisations of the current

uncertain points and the allowed edge directions to extend the prefix

curves, so that the entire prefix curves have the Fréchet distance at

most 𝛿. Recall that two polygonal curves 𝜋 : [1, 𝑖] → 𝑌 and 𝜎 : [1, 𝑗] →

Chapter 4. Similarity of Uncertain Curves in 1D 101

ℛ𝑖 , 𝑗 ℛ𝑖+1, 𝑗

ℛ𝑖 , 𝑗+1 ℛ𝑖+1, 𝑗+1

ℛ𝑖∗ , 𝑗

ℛ𝑖∗ , 𝑗+1

ℛ𝑖 , 𝑗∗ ℛ𝑖+1, 𝑗∗ℛ𝑖∗ , 𝑗∗

(a) The sets on a cell of a regular free-
space diagram.

ℛ𝑖∗ , 𝑗+1 ℛ𝑖+1, 𝑗+1

ℛ𝑖 , 𝑗∗ ℛ𝑖∗ , 𝑗∗ ℛ𝑖+1, 𝑗∗

ℛ𝑖 , 𝑗 ℛ𝑖∗ , 𝑗

(b) Dependencies of the dynamic program.
𝑎 → 𝑏 means 𝑎 depends on 𝑏.

Figure 4.1. Illustration for the dynamic program of Lemma 4.2.

𝑌 have Fréchet distance 𝑑F(𝜋, 𝜎) at most 𝛿 if and only if there exist

reparametrisations (non-decreasing surjections) 𝛼 : [0, 1] → [1, 𝑖] and

𝛽 : [0, 1] → [1, 𝑗] such that the path (𝜋 ◦ 𝛼, 𝜎 ◦ 𝛽) lies in the 𝛿-free space,

defined as ℱ𝛿 = {(𝑝, 𝑞) ∈ 𝑌 × 𝑌 | ∥𝑝 − 𝑞∥ ≤ 𝛿}. For 𝛿-close (free)

subcurves of 𝒰 at 𝑖 and 𝒱 at 𝑗, we capture their pairs of endpoints and

final directions using ℛ𝑖 , 𝑗 ,ℛ𝑖 , 𝑗∗ ,ℛ𝑖∗ , 𝑗 ,ℛ𝑖∗ , 𝑗∗ ⊆ 𝑌 × 𝑌 × 𝑆 × 𝑆:

ℛ𝑖 , 𝑗 =
{︁
(𝜋(𝑖), 𝜎(𝑗), 𝑠 , 𝑡)

|︁|︁ 𝜋 ⋐ 𝒰𝑖 , 𝜎 ⋐ 𝒱𝑗 ,

𝑠 ∈ d𝑖(𝜋), 𝑡 ∈ d𝑗(𝜎), 𝑑F(𝜋, 𝜎) ≤ 𝛿
}︁
,

ℛ𝑖 , 𝑗∗ =
{︁
(𝜋(𝑖), 𝜎(𝑗 + 1), 𝑠 , 𝑡)

|︁|︁ 𝜋 ⋐ 𝒰𝑖 , 𝜎 ⋐ 𝒱∗
𝑗 ,

𝑠 ∈ d𝑖(𝜋), 𝑡 ∈ d𝑗(𝜎), 𝑑F(𝜋, 𝜎) ≤ 𝛿
}︁
,

ℛ𝑖∗ , 𝑗 =
{︁
(𝜋(𝑖 + 1), 𝜎(𝑗), 𝑠 , 𝑡)

|︁|︁ 𝜋 ⋐ 𝒰 ∗
𝑖 , 𝜎 ⋐ 𝒱𝑗 ,

𝑠 ∈ d𝑖(𝜋), 𝑡 ∈ d𝑗(𝜎), 𝑑F(𝜋, 𝜎) ≤ 𝛿
}︁
,

ℛ𝑖∗ , 𝑗∗ =
{︁
(𝜋(𝑖 + 1), 𝜎(𝑗 + 1), 𝑠 , 𝑡)

|︁|︁ 𝜋 ⋐ 𝒰 ∗
𝑖 , 𝜎 ⋐ 𝒱∗

𝑗 ,

𝑠 ∈ d𝑖(𝜋), 𝑡 ∈ d𝑗(𝜎), 𝑑F(𝜋, 𝜎) ≤ 𝛿
}︁
.

Note that for 𝜋 ⋐ 𝒰𝑖 , 𝑖 is the final vertex, so d𝑖(𝜋) = 𝑆. Therefore, ℛ𝑖 , 𝑗

captures the reachable subset of 𝑌 × 𝑌 for the realisations of the last

points of the prefixes, and the two other dimensions contain all points

from 𝑆 to capture that we may proceed in any allowed direction. The

reachable subset of 𝑌 × 𝑌 here refers to the subset of 𝑌 × 𝑌 where the

realisations of the last points may be, taking into account the entire

prefixes of the curves. The set ℛ𝑖∗ , 𝑗 captures the reachable subset of𝑌×𝑌

Chapter 4. Similarity of Uncertain Curves in 1D 102

for the point in the reparametrisation where we are between vertices

𝑖 and 𝑖 + 1 on 𝒰 and at 𝑗 on 𝒱; we have not restricted the range to 𝑢𝑖+1

yet. The allowed directions for parameter 𝑠 now depend on how we

reached this point in the reparametrisation, since segments connecting

realisations are straight line segments, and the direction needs to be kept

consistent once chosen. From this description the reader can deduce

what the other sets capture by symmetry. See also Figure 4.1a, where

the sets are positioned as in a regular free-space diagram, replacing the

edges, vertices, and cells.

To solve the decision problem, we must decide whether ℛ𝑚,𝑛 is

non-empty. If so, then there are realisations of 𝒰𝑚 ≡ 𝒰 and 𝒱𝑛 ≡
𝒱 that, after placing all the previous realisations, result in curves

with the Fréchet distance at most 𝛿. We compute ℛ·,· using dynamic

programming. We illustrate the propagation dependencies in Figure 4.1b

and make them explicit in Lemma 4.2.

Lemma 4.2. Define the set

★(𝐴) ≔
{︁
(𝑝 + 𝜆𝑠, 𝑞 + 𝜇𝑡 , 𝑠 , 𝑡)

|︁|︁ (𝑝, 𝑞, 𝑠, 𝑡) ∈ 𝐴 and 𝜆, 𝜇 ≥ 0

}︁
.

We have

ℛ·,0 = ℛ0,· = ∅ ,
ℛ𝑖+1, 𝑗∗ =

{︁
(𝑝, 𝑞, 𝑠, 𝑡) ∈ 𝑢𝑖+1 × 𝑌 × 𝑆 × 𝑆

|︁|︁ (𝑝, 𝑞, · , 𝑡) ∈ ℛ𝑖∗ , 𝑗∗
}︁
,

ℛ𝑖∗ , 𝑗+1 =
{︁
(𝑝, 𝑞, 𝑠, 𝑡) ∈ 𝑌 × 𝑣 𝑗+1 × 𝑆 × 𝑆

|︁|︁ (𝑝, 𝑞, 𝑠, ·) ∈ ℛ𝑖∗ , 𝑗∗
}︁
,

ℛ𝑖+1, 𝑗+1 =
{︁
(𝑝, 𝑞, 𝑠, 𝑡) ∈ 𝑢𝑖+1 × 𝑣 𝑗+1 × 𝑆 × 𝑆

|︁|︁ (𝑝, 𝑞, · , ·) ∈ ℛ𝑖∗ , 𝑗∗
}︁
,

ℛ0
∗ ,0∗ = ℱ𝛿 × 𝑆 × 𝑆 ,

ℛ𝑖∗ , 𝑗∗ = (ℱ𝛿 × 𝑆 × 𝑆) ∩★(ℛ𝑖 , 𝑗 ∪ ℛ𝑖∗ , 𝑗 ∪ ℛ𝑖 , 𝑗∗) for 𝑖 > 0 or 𝑗 > 0 .

Proof. The first equation holds because the empty function has no

reparametrisation, so the Fréchet distance of any pair of realisations is

infinite. The equation for ℛ𝑖+1, 𝑗∗ holds because for 𝜋 ⋐ 𝒰𝑖+1, d𝑖+1(𝜋) = 𝑆,

and the only additional constraint that a realisation of 𝒰𝑖+1 has over one

of 𝒰 ∗
𝑖

is that the final vertex lies in 𝑢𝑖+1. Using symmetric properties

on 𝒱, we obtain the equations for ℛ𝑖∗ , 𝑗+1 and ℛ𝑖+1, 𝑗+1. The equation

for ℛ0
∗ ,0∗ concerns curves 𝜋 and 𝜎 consisting of a single vertex, so

d0(𝜋) = d0(𝜎) = 𝑆, and 𝑑F(𝜋, 𝜎) ≤ 𝛿 if and only if (𝜋(1), 𝜎(1)) ∈ ℱ𝛿.

The equation for ℛ𝑖∗ , 𝑗∗ remains. First we show that the right-hand

Chapter 4. Similarity of Uncertain Curves in 1D 103

side is contained in ℛ𝑖∗ , 𝑗∗ . Suppose that 𝜋 and 𝜎 form a witness for

(𝑝, 𝑞, 𝑠, 𝑡) ∈ ℛ𝑖 , 𝑗 ∪ ℛ𝑖∗ , 𝑗 ∪ ℛ𝑖 , 𝑗∗ . We obtain realisations 𝜋∗ ⋐ 𝒰 ∗
𝑖

and

𝜎∗ ⋐ 𝒱∗
𝑗

by extending the last edge of 𝜋 and 𝜎 in the direction it

is already going (or adding a new edge in an arbitrary direction if

𝜋 ⋐ 𝒰𝑖 or 𝜎 ⋐ 𝒱𝑗), to (𝑝 + 𝜆𝑠, 𝑞 + 𝜇𝑡). If (𝑝 + 𝜆𝑠, 𝑞 + 𝜇𝑡) ∈ ℱ𝛿, then, by

convexity of ℱ𝛿, the extensions of the last edges have Fréchet distance at

most 𝛿 (since the points at which the extension starts have distance at

most 𝛿), so (𝑝 + 𝜆𝑠, 𝑞 + 𝜇𝑡 , 𝑠 , 𝑡) ∈ ℛ𝑖∗ , 𝑗∗ . Conversely, we show that the

right-hand side contains ℛ𝑖∗ , 𝑗∗ . Let 𝜋∗ ⋐ 𝒰 ∗
𝑖

and 𝜎∗ ⋐ 𝒱∗
𝑗

together with

reparametrisations 𝛼 : [0, 1] → [1, 𝑖 + 1] and 𝛽 : [0, 1] → [1, 𝑗 + 1] form a

witness that (𝑝, 𝑞, 𝑠, 𝑡) ∈ ℛ𝑖∗ , 𝑗∗ . Then, for any 𝑥 ∈ [0, 1], the restrictions

𝜋𝑥 of 𝜋∗
and 𝜎𝑥 of 𝜎∗

to the domains [1, 𝛼(𝑥)] and [1, 𝛽(𝑥)] have Fréchet

distance at most 𝛿. Because 𝛼 and 𝛽 are non-decreasing surjections,

whenever 𝑖 > 0 or 𝑗 > 0, there exists some 𝑥 such that

1. 𝛼(𝑥) = 𝑖 and 𝛽(𝑥) = 𝑗, in which case 𝜋𝑥 ⋐ 𝒰𝑖 and 𝜎𝑥 ⋐ 𝒱𝑗 , or

2. 𝛼(𝑥) > 𝑖 and 𝛽(𝑥) = 𝑗, in which case 𝜋𝑥 ⋐ 𝒰 ∗
𝑖

and 𝜎𝑥 ⋐ 𝒱𝑗 , or

3. 𝛼(𝑥) = 𝑖 and 𝛽(𝑥) > 𝑗, in which case 𝜋𝑥 ⋐ 𝒰𝑖 and 𝜎𝑥 ⋐ 𝒱∗
𝑗
.

Note that if 𝑖 = 0, only the second case applies, and if 𝑗 = 0, only the

third case applies. In each case, the last edge of 𝜋∗
and 𝜎∗

extends the

𝑖th and 𝑗th edge of 𝜋𝑥 and 𝜎𝑥 , respectively. So (𝜋𝑥 , 𝜎𝑥) forms a witness

that (𝑝, 𝑞, 𝑠, 𝑡) is contained in the right-hand side. □

Simplifying the approach. Due to their dimension, the sets above can

be impractical to work with. However, for the majority of these sets, at

least one of the factors 𝑆 carries no additional information, as formulated

below. Denote by Pr𝑐 the projection map of the 𝑐-th component, so that

Pr1 : (𝑝, 𝑞, 𝑠, 𝑡) ↦→ 𝑝, and in general Pr𝑐1 ,...,𝑐𝑘 (𝑥) = (Pr𝑐1
(𝑥), . . . , Pr𝑐𝑘 (𝑥)).

The equations of Lemma 4.2 imply the equivalences

(𝑝, 𝑞, 𝑠, 𝑡) ∈ ℛ𝑖 , 𝑗 ⇐⇒ (𝑝, 𝑞) ∈ Pr1,2(ℛ𝑖 , 𝑗) ,
(𝑝, 𝑞, 𝑠, 𝑡) ∈ ℛ𝑖∗ , 𝑗 ⇐⇒ (𝑝, 𝑞, 𝑠) ∈ Pr1,2,3(ℛ𝑖∗ , 𝑗) ,
(𝑝, 𝑞, 𝑠, 𝑡) ∈ ℛ𝑖 , 𝑗∗ ⇐⇒ (𝑝, 𝑞, 𝑡) ∈ Pr1,2,4(ℛ𝑖 , 𝑗∗) .

Consequently, to find ℛ𝑖 , 𝑗 , ℛ𝑖∗ , 𝑗 , and ℛ𝑖 , 𝑗∗ , it suffices to compute the

projections above. This simplifies the prior dependencies, see Figure 4.2.

Chapter 4. Similarity of Uncertain Curves in 1D 104

Pr1,2,3(ℛ𝑖∗ , 𝑗+1) Pr1,2(ℛ𝑖+1, 𝑗+1)

Pr1,2,4(ℛ𝑖 , 𝑗∗) ℛ𝑖∗ , 𝑗∗ Pr1,2,4(ℛ𝑖+1, 𝑗∗)

Pr1,2(ℛ𝑖 , 𝑗) Pr1,2,3(ℛ𝑖∗ , 𝑗)

Figure 4.2. Simplified dependencies with projections following Lemma 4.2.

Pr1,2(ℛ𝑖+1, 𝑗+1) = (𝑢𝑖+1 × 𝑣 𝑗+1) ∩ Pr1,2(ℛ𝑖∗ , 𝑗∗)
= (𝑢𝑖+1 × 𝑌) ∩ Pr1,2(ℛ𝑖∗ , 𝑗+1)
= (𝑌 × 𝑣 𝑗+1) ∩ Pr1,2(ℛ𝑖+1, 𝑗∗) .

Instantiating the approach. The dynamic program of Lemma 4.2 can

naturally be adapted to constrained realisations whose edge directions

are to be drawn from a subset 𝑆′ ⊆ 𝑆𝑑−1
, by replacing 𝑆 by 𝑆′, so the

framework can be used for restricted settings in 2D. For 𝑆 = 𝑆𝑑−1
the

complexity of ℛ𝑖 , 𝑗 can be exponential, so it can be useful to restrict the

problem.

We can look at the construction used to prove NP-hardness of

the problem in 2D (Section 3.1.2) as an example for our approach.

There the curve 𝒱 is precise, so each 𝑣 𝑗 is a single point and each 𝑡 is

predetermined, and curve 𝒰 consists of uncertainty regions that are

vertical line segments, so each 𝑢𝑖 has a fixed 𝑥-coordinate and a range of

𝑦-coordinates. If we now exclude the fixed values from our propagation,

we get to track pairs (𝑦, 𝑠) of the feasible 𝑦-coordinates on the current

interval and the directions. We start with a single region. The hardness

construction uses gadgets on the precise curve to force the uncertain

curve to go through certain points. In our approach, this means that we

keep restricting the set of feasible directions while passing by vertices

on 𝒱, and eventually each point in the starting region gives rise to two

disjoint reachable points on one of the following uncertainty regions.

So we can use our algorithm to correctly track the feasible 𝑦-coordinates

through the construction; however, we would need to keep track of

regions of exponential complexity, which is, predictably, inefficient.

Chapter 4. Similarity of Uncertain Curves in 1D 105

Therefore, it is important to analyse the complexity of the propagated

regions to determine whether our approach gives rise to an efficient

algorithm. To illustrate our approach, we use it in the 1D case to devise

an efficient algorithm in Section 4.2.

4.2 Lower Bound Fréchet Distance: One Dimension

In this section, we instantiate the approach of Section 4.1 in 1D and

analyse its efficiency. We first show the formal definitions that result

from this process, and then give some intuition for how the resulting

algorithm works in 1D.

We use 𝑆0
for 𝑆, so there are only two directions: positive 𝑥-direction

and negative 𝑥-direction. We make use of the projections interpretation

and split the projections into two regions based on the value of the

relevant direction; then all the regions we maintain are in ℝ2
and have

a geometric interpretation as feasible combinations of realisations of

the last uncertain points on the prefixes of the curves. We omit ℛ𝑖 , 𝑗

from our computations except for checking whether ℛ𝑚,𝑛 is non-empty.

As follows from the definition of the sets, ℛ𝑖 , 𝑗 ⊆ ℛ𝑖∗ , 𝑗 and ℛ𝑖 , 𝑗 ⊆ ℛ𝑖 , 𝑗∗ ,

so we can simplify the computation of ℛ𝑖∗ , 𝑗∗ , and then we do not need

the explicit computation of ℛ𝑖 , 𝑗 . Furthermore, we do not compute any

of ℛ𝑖∗ , 𝑗∗ explicitly, opting instead to substitute them into the relevant

expressions. Therefore, we maintain the sets ℛ𝑖 , 𝑗∗ and ℛ𝑖∗ , 𝑗 , splitting

each into two based on the relevant direction. Based on our earlier

free-space cell interpretation (see Figure 4.1a), call the directions along

𝒰 right and left and call the directions along 𝒱 up and down. We

then have the following mapping from the regions of Section 4.1 to the

simpler intuitive regions of this section.

𝑈𝑖 , 𝑗 = {(𝑝, 𝑞) | (𝑝, 𝑞, ·, 𝑡) ∈ ℛ𝑖 , 𝑗∗ ∧ 𝑡 = 1} ,
𝐷𝑖 , 𝑗 = {(𝑝, 𝑞) | (𝑝, 𝑞, ·, 𝑡) ∈ ℛ𝑖 , 𝑗∗ ∧ 𝑡 = −1} ,
𝑅𝑖 , 𝑗 = {(𝑝, 𝑞) | (𝑝, 𝑞, 𝑠, ·) ∈ ℛ𝑖∗ , 𝑗 ∧ 𝑠 = 1} ,
𝐿𝑖 , 𝑗 = {(𝑝, 𝑞) | (𝑝, 𝑞, 𝑠, ·) ∈ ℛ𝑖∗ , 𝑗 ∧ 𝑠 = −1} .

It is also easier to express the ★ operator of Lemma 4.2 in this setting.

Depending on which of the directions we consider fixed because we

already committed to a direction, the propagation through the cell

interior works by adding either a quadrant or a half-plane to every point

Chapter 4. Similarity of Uncertain Curves in 1D 106

in the starting region; we can denote this with a Minkowski sum. Based

on these considerations, we give the following simplified definition.

Formal definition. Denote ℝ− = {𝑥 ∈ ℝ | 𝑥 ≤ 0} and ℝ+ = {𝑥 ∈ ℝ |
𝑥 ≥ 0}. Consider the space ℝ ×ℝ of the coordinates of the two curves

in 1D. We are interested in what is feasible within the interval free space,
which in this space turns out to be a band around the line 𝑦 = 𝑥 of

width 2𝛿 in 𝐿1-distance called ℱ𝛿. For notational convenience, define

the following regions (see Figure 4.3):

ℱ𝛿 =
{︁
(𝑥, 𝑦) ∈ ℝ2

|︁|︁ |𝑥 − 𝑦 | ≤ 𝛿
}︁
,

𝐼𝑖 = (𝑢𝑖 ×ℝ) ∩ ℱ𝛿 , 𝐽𝑗 = (ℝ × 𝑣 𝑗) ∩ ℱ𝛿 .

We use dynamic programming, similarly to the standard free-space

diagram for the Fréchet distance; however, we propagate reachable

subsets of uncertainty regions on the two curves. The propagation in

the interval-free-space diagram consists of starting anywhere within the

current region and going in restricted directions, since we need to distin-

guish between going in the positive and the negative 𝑥-direction along

both curves. We introduce the notation for restricting the directions in

the form of quadrants, half-planes, and slabs:

𝑄𝐿𝐷 = ℝ− ×ℝ− , 𝑄𝐿𝑈 = ℝ− ×ℝ+ , 𝑄𝑅𝐷 = ℝ+ ×ℝ− ,𝑄𝑅𝑈 = ℝ+ ×ℝ+ ,

𝐻𝐿 = ℝ− ×ℝ , 𝐻𝑅 = ℝ+ ×ℝ , 𝐻𝐷 = ℝ ×ℝ− , 𝐻𝑈 = ℝ ×ℝ+ ,

𝑆𝐿 = ℝ− × {0} , 𝑆𝑅 = ℝ+ × {0} , 𝑆𝐷 = {0} ×ℝ− , 𝑆𝑈 = {0} ×ℝ+.

We introduce notation for propagating in these directions from a region

by taking the appropriate Minkowski sum, denoted with ⊕. For 𝑎, 𝑏 ∈
{𝐿, 𝑅,𝑈, 𝐷} and a region 𝑋,

𝑋 𝑎 = 𝑋 ⊕ 𝐻𝑎 , 𝑋 𝑎𝑏 = 𝑋 ⊕ 𝑄𝑎𝑏 , 𝑋 𝑎0 = 𝑋 ⊕ 𝑆𝑎 .

Now we can discuss the propagation. We start with the base case,

where we compute the feasible combinations for the boundaries of the

cells of a regular free-space diagram corresponding to the first vertex

on one of the curves. For the sake of better intuition we do not use (0, 0)
as the base case here. We fix our position to the first vertex on 𝒰 and

see how far we can go along 𝒱; and the other way around. As we are

bound to the same vertex on 𝒰 , as we go along 𝒱, we keep restricting

Chapter 4. Similarity of Uncertain Curves in 1D 107

𝑦 = 𝑥 + 1

𝑦 = 𝑥 − 1

−2 −1 1 2

−1

1

𝑦 = 𝑥 + 1

𝑦 = 𝑥 − 1

−2 −1 1 2

−1

1

Figure 4.3. On the left, the filled region is 𝐼𝑖 = (𝑢𝑖 ×ℝ) ∩ ℱ𝛿 for 𝑢𝑖 = [0, 1]. On

the right, the filled region is 𝐽𝑗 = (ℝ × 𝑣 𝑗) ∩ ℱ𝛿 for 𝑣 𝑗 = [0.5, 1.5]. Here 𝛿 = 1.

the feasible realisations of 𝑢1. Thus, we cut off unreachable parts of

the interval as we propagate along the other curve. We do not care

about the direction we were going in after we cross a vertex on the curve

where we move. So, if we stay at 𝑢1 and we cross over 𝑣 𝑗 , then we are

free to go both in the negative and the positive direction of the 𝑥-axis

to reach a realisation of 𝑣 𝑗+1. We get the following expressions, where

𝑈𝑖 , 𝑗 denotes the propagation upwards from the pair of vertices 𝑢𝑖 and

𝑣 𝑗 and propagation down, left, and right is defined similarly:

𝑈1,1 = (𝐼1 ∩ 𝐽1)𝑈0 ∩ ℱ𝛿 , 𝐷1,1 = (𝐼1 ∩ 𝐽1)𝐷0 ∩ ℱ𝛿 ,

𝑅1,1 = (𝐼1 ∩ 𝐽1)𝑅0 ∩ ℱ𝛿 , 𝐿1,1 = (𝐼1 ∩ 𝐽1)𝐿0 ∩ ℱ𝛿 ,

𝑈1, 𝑗+1 = ((𝑈1, 𝑗 ∪ 𝐷1, 𝑗) ∩ 𝐽𝑗+1)𝑈0 ∩ ℱ𝛿 ,

𝐷1, 𝑗+1 = ((𝑈1, 𝑗 ∪ 𝐷1, 𝑗) ∩ 𝐽𝑗+1)𝐷0 ∩ ℱ𝛿 ,

𝑅𝑖+1,1 = ((𝑅𝑖 ,1 ∪ 𝐿𝑖 ,1) ∩ 𝐼𝑖+1)𝑅0 ∩ ℱ𝛿 ,

𝐿𝑖+1,1 = ((𝑅𝑖 ,1 ∪ 𝐿𝑖 ,1) ∩ 𝐼𝑖+1)𝐿0 ∩ ℱ𝛿 .

Once the boundary regions are computed, we can propagate:

𝑈𝑖+1, 𝑗 = (𝑈𝑈
𝑖,𝑗 ∪ 𝑅

𝑅𝑈
𝑖,𝑗 ∪ 𝐿𝐿𝑈𝑖,𝑗) ∩ 𝐼𝑖+1 , 𝐷𝑖+1, 𝑗 = (𝐷𝐷

𝑖,𝑗 ∪ 𝑅
𝑅𝐷
𝑖,𝑗 ∪ 𝐿𝐿𝐷𝑖,𝑗) ∩ 𝐼𝑖+1 ,

𝑅𝑖 , 𝑗+1 = (𝑅𝑅𝑖,𝑗 ∪𝑈
𝑅𝑈
𝑖,𝑗 ∪ 𝐷𝑅𝐷

𝑖,𝑗) ∩ 𝐽𝑗+1 , 𝐿𝑖 , 𝑗+1 = (𝐿𝐿𝑖,𝑗 ∪𝑈
𝐿𝑈
𝑖,𝑗 ∪ 𝐷𝐿𝐷

𝑖,𝑗) ∩ 𝐽𝑗+1 .

Finally, we check if the last vertex combination is feasible:(︁
(𝑅𝑚−1,𝑛 ∪ 𝐿𝑚−1,𝑛) ∩ 𝐼𝑚

)︁
∪
(︁
(𝑈𝑚,𝑛−1 ∪ 𝐷𝑚,𝑛−1) ∩ 𝐽𝑛

)︁
≠ ∅ .

Intuition. If the consecutive regions are always disjoint, we do not need

to consider the possible directions: we always know (in 1D) where the

Chapter 4. Similarity of Uncertain Curves in 1D 108

next region is, and thus what direction we take. However, if the regions

may overlap, it may be that for different realisations of a curve a segment

goes in the positive or in the negative direction. The propagation we

compute is based on the parameter space where we look at whether

we have reached a certain vertex on each curve yet, inspired by the

traditional free-space diagram. It may be that we pass by several vertices

on, say, 𝒱 while moving along a single segment on 𝒰 . The direction we

choose on 𝒰 needs to be kept consistent as we compute the next regions,

otherwise we might include realisations that are invalid as feasible

solutions. Therefore, we need to keep track of the chosen direction,

reflected by the pair (𝑠, 𝑡) in the general approach and the separate sets

in this section. Otherwise, these regions in 1D are simply the feasible

pairs of realisations of the last vertices on the prefixes of the curves.

It is helpful to think of the approach in terms of interval-free-space

diagrams. Consider a combination of specific vertices on the two curves,

say, 𝑢𝑖 and 𝑣 𝑗 , and suppose that we want to stay at 𝑢𝑖 but move to 𝑣 𝑗+1.

Which realisations of 𝑢𝑖 , 𝑣 𝑗 , and 𝑣 𝑗+1 can we pick that allow this move

to stay within the 2𝛿-band?

Suppose the 𝑥-coordinate of the diagram corresponds to the 𝑥-

coordinate of 𝒰 . Then we may pick a realisation for 𝑢𝑖 anywhere in the

vertical slab corresponding to the uncertainty interval for 𝑢𝑖 , namely, in

the slab 𝑢𝑖 ×ℝ. The fixed realisation for 𝑢𝑖 would then yield a vertical

line. Now suppose the 𝑦-coordinate of the diagram corresponds to the

𝑥-coordinate of 𝒱. For 𝑣 𝑗 , picking a realisation corresponds to picking

a horizontal line from the slab ℝ × 𝑣 𝑗 ; for 𝑣 𝑗+1, it corresponds to picking

a horizontal line from ℝ × 𝑣 𝑗+1. Picking a realisation for the pair (𝑢𝑖 , 𝑣 𝑗)
thus corresponds to a point in 𝑢𝑖 × 𝑣 𝑗 .

Of course, we may only maintain the matching as long the distance

between the matched points is at most 𝛿. For a fixed point on 𝒰 , this

corresponds to a 2𝛿-window for the coordinates along 𝒱. Therefore, the

allowed matchings are contained within the band defined by 𝑦 = 𝑥 ± 𝛿,

and when we pick the realisations for (𝑢𝑖 , 𝑣 𝑗), we only pick points from

𝑢𝑖 × 𝑣 𝑗 for which |𝑦 − 𝑥 | ≤ 𝛿 holds.

As we consider the propagation to 𝑣 𝑗+1, note that we may not move

within 𝑢𝑖 , so the allowed realisations for the pair (𝑢𝑖 , 𝑣 𝑗+1) are limited.

In particular, we can find that region by taking the subset of 𝑢𝑖 × 𝑣 𝑗+1

for which |𝑦 − 𝑥 | ≤ 𝛿 holds and restricting the 𝑥-coordinate further to

be feasible for the pair (𝑢𝑖 , 𝑣 𝑗). See Figure 4.4 for an illustration of this.

Chapter 4. Similarity of Uncertain Curves in 1D 109

𝑦 = 𝑥 + 1

𝑦 = 𝑥 − 1

−2 −1 1 2

−1

1

Figure 4.4. An interval-free-space diagram for 𝑢𝑖 = [0, 1], 𝑣 𝑗 = [−1.5,−0.2], and

𝑣 𝑗+1 = [1.5, 2] with 𝛿 = 1. Note that the feasible realisations for 𝑢𝑖 are [0.5, 0.8].

In this figure, we know that 𝑣 𝑗+1 lies above 𝑣 𝑗 ; if we did not know that,

we would have to attempt propagation both upwards and downwards.

For the second curve, the same holds.

Complexity. We now discuss the complexity of the regions we are

propagating to analyse the efficiency of the algorithm presented above.

We will perform the following steps.

1. Define complexity of the regions and establish the complexity of

the base case.

2. Study the possible complex regions that can arise from all simple

regions.

3. Study what happens to the complex regions as we propagate and

conclude that the complexity is bounded by a constant.

The boundaries of the regions are always horizontal, vertical, or coincide

with the boundaries of ℱ𝛿. A region can be thus represented as a

union of (possibly unbounded) axis-aligned rectangular regions, further

intersected with the interval free space. We define the complexity of a

region as the minimal required number of such rectangular regions.

Define a simple region as a region of complexity at most 1. Observe that

a simple region is necessarily convex; and a non-simple region has to

be non-convex. The illustration in Figure 4.5 shows the most general

example of a simple region. An empty region is also a simple region. To

enumerate the possible non-simple regions, we need to examine where

higher region complexity may come from in our algorithm. To that aim,

we first prove some simple statements about the propagation procedure.

Chapter 4. Similarity of Uncertain Curves in 1D 110

Figure 4.5. An example simple region. We get less general ones by setting any

side length to 0.

First, we discuss the complexity of the regions we can get in the base

case of the propagation.

Lemma 4.3. For all 𝑖 ∈ [𝑚 − 1] and 𝑗 ∈ [𝑛 − 1], regions𝑈1, 𝑗 , 𝐷1, 𝑗 , 𝑅𝑖 ,1, and
𝐿𝑖 ,1 are simple.

Proof. Consider first the intersection 𝐼1 ∩ 𝐽1. It is the intersection of

a vertical slab, a horizontal slab, and the diagonal slab (interval free

space). All three are convex sets, hence their intersection is also convex

and uses only vertical, horizontal, and diagonal line segments, so the

result is a simple region. To obtain𝑈1,1, 𝐷1,1, 𝑅1,1, and 𝐿1,1, we take the

Minkowski sum of the region with the corresponding half-slab. Both

are convex, so the result again is convex; we then intersect it with the

interval free space again, getting a simple region.

Now assume that𝑈1, 𝑗 is simple; we show that𝑈1, 𝑗+1 is simple. Note

that for some region 𝑋,𝑈1, 𝑗 = 𝑋𝑈0 ∩ ℱ𝛿 and 𝐷1, 𝑗 = 𝑋𝐷0 ∩ ℱ𝛿. Then

𝑈1, 𝑗 ∪ 𝐷1, 𝑗 = (𝑋𝑈0 ∪ 𝑋𝐷0) ∩ ℱ𝛿 = (𝑋 ⊕ ({0} ×ℝ)) ∩ ℱ𝛿 .

So, we get a vertical slab the width of𝑋, intersected with ℱ𝛿, so the result

is convex. We then intersect the region with the simple region 𝐽𝑗+1; take

Minkowski sum with a slab; and again intersect with the interval free

space. Clearly, the result is convex and uses only the allowed boundaries,

so we get a simple region.

The argument for 𝐷1, 𝑗 is symmetric; the arguments for 𝑅𝑖 ,1 and 𝐿𝑖 ,1
are equally straightforward. Hence, all the regions we get in the base

case are simple. □

Chapter 4. Similarity of Uncertain Curves in 1D 111

To proceed, we need to make the relation in pairs (𝑈, 𝐷) and (𝑅, 𝐿)
clear, so we know where the complexity may come from. Denote a

half-plane with a vertical or horizontal boundary starting at coordinate 𝑠

and going in direction 𝑋 by 𝐻𝑋
𝑠 . For example, a half-plane bounded on

the left by the line 𝑥 = 2 is denoted 𝐻𝑅
2

.

Lemma 4.4. Take two imprecise curves 𝒰 and 𝒱 of lengths 𝑚 and 𝑛,
respectively, and let 𝑖 ∈ [𝑚 − 1] and 𝑗 ∈ [𝑛 − 1]. Consider the pair 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗
and assume the regions are simple. Then exactly one of the following options
holds:

1. 𝑅𝑖 , 𝑗 = 𝐿𝑖 , 𝑗 = ∅, so both regions are empty;
2. 𝑅𝑖 , 𝑗 = 𝐽𝑗 ∩𝐻𝑅

𝑠 ≠ ∅ ∧ 𝐿𝑖 , 𝑗 = ∅ for some 𝑠, so one region is empty and the
other spawns the entire feasible range, except that it may be cut with a
vertical line on the left;

3. 𝐿𝑖 , 𝑗 = 𝐽𝑗 ∩𝐻𝐿
𝑠 ≠ ∅ ∧ 𝑅𝑖 , 𝑗 = ∅ for some 𝑠, so one region is empty and the

other spawns the entire feasible range, except that it may be cut with a
vertical line on the right;

4. 𝐿𝑖 , 𝑗 ∩ 𝑅𝑖 , 𝑗 ≠ ∅, so both regions are non-empty, and they intersect.
We can make the same statement for the pair𝑈𝑖 , 𝑗 , 𝐷𝑖 , 𝑗 , replacing the half-planes
with 𝐻𝑈

𝑠 and 𝐻𝐷
𝑠 .

Proof. We show the statement for the pair 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗 . We prove the

statement by induction on 𝑗. First of all, for 𝑗 = 1, we know that either

both regions are empty (case 1), or they are both non-empty and intersect

(case 4), showing the claim. So let 𝑗 = 𝑗′ + 1 for the rest of the proof and

assume that the lemma holds for the pair 𝑅𝑖 , 𝑗′ , 𝐿𝑖 , 𝑗′ .

We go over the possible combinations of the previous regions that are

combined in the propagation and show that for any such combination,

we end up in one of the cases. Recall that 𝑅𝑖 , 𝑗 = 𝑅𝑖 , 𝑗′+1 = (𝑅𝑅
𝑖,𝑗′ ∪𝑈

𝑅𝑈
𝑖,𝑗′ ∪

𝐷𝑅𝐷
𝑖,𝑗′) ∩ 𝐽𝑗′+1. Similarly, 𝐿𝑖 , 𝑗 = (𝐿𝐿

𝑖,𝑗′ ∪𝑈
𝐿𝑈
𝑖,𝑗′ ∪ 𝐷

𝐿𝐷
𝑖,𝑗′) ∩ 𝐽𝑗′+1. Consider the

following cases.

• 𝑈𝑖 , 𝑗′ ≠ ∅. Note that 𝑈𝐿𝑈
𝑖,𝑗′ ∩ 𝑈

𝑅𝑈
𝑖,𝑗′ = 𝑈𝑈0

𝑖 , 𝑗′ , so a vertical half-slab

from a lower boundary. If 𝑈𝑈0

𝑖 , 𝑗′ ∩ 𝐽𝑗′+1 ≠ ∅, then both 𝐿𝑖 , 𝑗 and

𝑅𝑖 , 𝑗 are non-empty and intersect, landing in case 4. Otherwise,

suppose 𝑈𝑈0

𝑖 , 𝑗′ ∩ 𝐽𝑗′+1 = ∅. This intersection can be empty due

to two reasons. Firstly, 𝑈𝑈0

𝑖 , 𝑗′ may lie entirely above 𝐽𝑗′+1. Then

𝑈𝐿𝑈
𝑖,𝑗′ ∩ 𝐽𝑗′+1 = 𝑈𝑅𝑈

𝑖,𝑗′ ∩ 𝐽𝑗′+1 = ∅, so𝑈𝑖 , 𝑗′ does not contribute anything

Chapter 4. Similarity of Uncertain Curves in 1D 112

ℱ𝛿

𝐽𝑗

𝑈𝐿𝑈
𝑖,𝑗′

𝑈𝑅𝑈
𝑖,𝑗′

𝑈𝑈0

𝑖 , 𝑗′

Figure 4.6. Propagation of 𝑈𝑖 , 𝑗′ to 𝐿𝑖 , 𝑗 and 𝑅𝑖 , 𝑗 . Note 𝐽𝑗 ⊂ ℱ𝛿. Observe that

𝑈𝐿𝑈
𝑖,𝑗′ ∩𝑈

𝑅𝑈
𝑖,𝑗′ = 𝑈𝑈0

𝑖 , 𝑗′ , and if 𝑈𝑈0

𝑖 , 𝑗′ ∩ 𝐽𝑗 = ∅ but 𝐽𝑗 does not lie below 𝑈𝑖 , 𝑗′ , then

𝑈𝐿𝑈
𝑖,𝑗′ ∩ 𝐽𝑗 = ∅ and 𝑈𝑅𝑈

𝑖,𝑗′ ∩ 𝐽𝑗 = 𝐽𝑗 , so one of the regions is empty and the other

covers the entire feasible region.

to either region; this case is considered below. Secondly,𝑈𝑈0

𝑖 , 𝑗′ may

lie entirely to the left of 𝐽𝑗′+1. Then we get the situation shown in

Figure 4.6: it must be that𝑈𝐿𝑈
𝑖,𝑗

∩ 𝐽𝑗′+1 = ∅ and𝑈𝑅𝑈
𝑖,𝑗

∩ 𝐽𝑗′+1 = 𝐽𝑗′+1.

This means, in particular, that 𝑅𝑖 , 𝑗 = 𝐽𝑗′+1 = 𝐽𝑗 . It might be that

𝐿𝑖 , 𝑗 and 𝑅𝑖 , 𝑗 are both non-empty; as 𝐿𝑖 , 𝑗 ⊆ 𝐽𝑗 , they intersect, and

so we end up in case 4. Otherwise, 𝐿𝑖 , 𝑗 must be empty, ending up

in case 2. So, whenever𝑈𝑖 , 𝑗′ contributes, we end up in one of the

cases.

• 𝐷𝑖 , 𝑗′ ≠ ∅. We can make arguments symmetric to the previous case,

landing us in either case 4 or case 3. If 𝐷𝑖 , 𝑗′ does not contribute to

either region, we consider the next case.

• Neither 𝑈𝑖 , 𝑗′ nor 𝐷𝑖 , 𝑗′ contribute to 𝐿𝑖 , 𝑗 or 𝑅𝑖 , 𝑗 , meaning we can

simplify the expressions to 𝑅𝑖 , 𝑗′+1 = 𝑅𝑅
𝑖,𝑗′ ∩ 𝐽𝑗′+1 and 𝐿𝑖 , 𝑗′+1 =

𝐿𝐿
𝑖,𝑗′ ∩ 𝐽𝑗′+1. We use the induction hypothesis and distinguish

between the cases for the pair 𝑅𝑖 , 𝑗′ , 𝐿𝑖 , 𝑗′ . Starting in case 1, we get

that 𝐿𝑖 , 𝑗 = 𝑅𝑖 , 𝑗 = ∅, ending up in case 1. Starting in case 2, we

get 𝐿𝑖 , 𝑗 = ∅, and 𝑅𝑖 , 𝑗 = 𝑅𝑖 , 𝑗′+1 = 𝐽𝑗′+1 ∩ 𝑅𝑅𝑖,𝑗′ . Observe that 𝑅𝑅
𝑖,𝑗′ is

a half-plane that can be denoted by 𝐻𝑅
𝑠 for some appropriate 𝑠;

depending on whether the intersection is empty, we end in either

in case 1 or in case 2. Starting in case 3 is symmetric and lands us

Chapter 4. Similarity of Uncertain Curves in 1D 113

in either case 1 or case 3. If we start in case 4, then the half-planes

𝑅𝑅
𝑖,𝑗′ and 𝐿𝐿

𝑖,𝑗′ intersect, and so for the pair 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗 , we end up in

case 4; or in case 2 or 3 if 𝐿𝑅
𝑖,𝑗′ ∩ 𝐽𝑗′+1 or 𝑅𝑅

𝑖,𝑗′ ∩ 𝐽𝑗′+1 is empty.

This covers all the cases. By induction, we conclude that the lemma

holds. The proof for𝑈 , 𝐷 is symmetric. □

Let us now introduce the higher-complexity regions.

Definition 4.5. A staircase with 𝑘 steps is an otherwise simple region with

𝑘 cut-outs on the same side of the region, each consisting of a single

horizontal and a single vertical segment, introducing higher complexity.

All the options for a staircase with one step (regions of complexity 2)

are illustrated in Figure 4.7.

We should note that a staircase with 𝑘 steps, when intersected

with ℱ𝛿, can yield up to 𝑘 + 1 disjoint simple regions. More specifically,

every step that extends outside ℱ𝛿 splits a staircase of 𝑘 steps into two

staircases of at most 𝑘 − 1 steps in total.

We make the following observation relating the regions in pairs 𝑅𝑖 , 𝑗 ,

𝐿𝑖 , 𝑗 and𝑈𝑖 , 𝑗 , 𝐷𝑖 , 𝑗 .

Lemma 4.6. Take two imprecise curves 𝒰 and 𝒱 of lengths 𝑚 and 𝑛,
respectively, and let 𝑖 ∈ [𝑚 − 1] and 𝑗 ∈ [𝑛 − 1]. Consider the pair 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗
and assume both regions are non-empty. If 𝑗 = 1, the regions have the same
𝑦-coordinate for their lower and upper boundaries. If 𝑗 = 𝑗′ + 1 and the regions
𝑈𝑖 , 𝑗′ , 𝐷𝑖 , 𝑗′ are simple, then the union 𝑅𝑖 , 𝑗 ∪ 𝐿𝑖 , 𝑗 is either simple or a staircase
with one step. Furthermore, both 𝑅𝑖 , 𝑗 and 𝐿𝑖 , 𝑗 are either simple or staircases
with one step.

Proof. First of all, for 𝑗 = 1, Lemma 4.3 implies that 𝑅𝑖 , 𝑗 and 𝐿𝑖 , 𝑗 are

simple; furthermore, the propagation starts from the same region, so the

𝑦-range is the same and the statement holds. For the rest of the proof

assume that 𝑗 = 𝑗′ + 1 and regions𝑈𝑖 , 𝑗′ and 𝐷𝑖 , 𝑗′ are simple.

Consider the region 𝑅𝑖 , 𝑗 = (𝑅𝑅
𝑖,𝑗′ ∪𝑈

𝑅𝑈
𝑖,𝑗′ ∪𝐷

𝑅𝐷
𝑖,𝑗′) ∩ 𝐽𝑗 . In principle, the

union of the two quadrants may create a staircase with a single step.

However, as the reader may verify, adding the half-plane to the union

cannot add a step, since doing so would require a horizontal ray forming

the top or the bottom boundary of the union of quadrants, which is

impossible. Symmetrical arguments can be made for 𝐿𝑖 , 𝑗 . So, under the

Chapter 4. Similarity of Uncertain Curves in 1D 114

(a) 𝐿𝑈 arrangement. (b) 𝑅𝑈 arrangement.

(c) 𝐿𝐷 arrangement. (d) 𝑅𝐷 arrangement.

Figure 4.7. All possible combinations for a single-step staircase. Each can be

further intersected by a vertical or horizontal slab (𝐼𝑖 or 𝐽𝑗) or shifted so that

the boundary is affected by ℱ𝛿.

given assumptions the regions are always either simple or staircases

with one step. Figures 4.8a and 4.8b show some examples.

Now consider the union of regions 𝑅𝑖 , 𝑗 ∪ 𝐿𝑖 , 𝑗 :

𝑅𝑖 , 𝑗 ∪ 𝐿𝑖 , 𝑗 = (𝑅𝑅𝑖,𝑗′ ∪ 𝐿
𝐿
𝑖,𝑗′ ∪𝑈

𝑈
𝑖,𝑗′ ∪ 𝐷

𝐷
𝑖,𝑗′) ∩ 𝐽𝑗 .

The only source of higher complexity is the union operator in the

propagation. This is the union of four half-planes. If both 𝑅𝑖 , 𝑗′ and

𝐿𝑖 , 𝑗′ are non-empty, we know from Lemma 4.4 that they intersect, so

𝐽𝑗 ⊆ 𝑅𝑅
𝑖,𝑗′ ∪ 𝐿𝐿

𝑖,𝑗′ = ℝ2
. The same holds for the pair 𝑈𝑖 , 𝑗′ , 𝐷𝑖 , 𝑗′ . Now

assume that at least one region from each pair is empty, say, 𝐿𝑖 , 𝑗′ and

𝐷𝑖 , 𝑗′ . If one more region is empty, then one of 𝐿𝑖 , 𝑗 , 𝑅𝑖 , 𝑗 is empty, which

contradicts our assumption. Note that the union of two half-planes

with perpendicular boundaries, intersected with a horizontal strip and

the interval free space, can create a staircase with one step. In our

particular setting, we get the staircase in the 𝑅𝑈 arrangement, shown in

Figure 4.7b. Other choices for empty regions will give one of the other

Chapter 4. Similarity of Uncertain Curves in 1D 115

𝑅𝑅
𝑖,𝑗

𝑈𝑅𝑈
𝑖,𝑗

𝑈𝐿𝑈
𝑖,𝑗

𝑈𝑈0

𝑖 , 𝑗

𝐼𝑖+1ℱ𝛿

(a) Taking the union of 𝑅𝑅
𝑖,𝑗

and 𝑈𝑅𝑈
𝑖,𝑗

cre-

ates a simple region. The other region is
also simple, but the union of resulting re-
gions is a staircase.

𝐿𝐿𝑈
𝑖,𝑗

𝑈𝑈
𝑖,𝑗

𝑈𝑖+1, 𝑗

𝐼𝑖+1ℱ𝛿

(b) Taking the union of 𝐿𝐿𝑈
𝑖,𝑗

and 𝑈𝑈
𝑖,𝑗

cre-

ates a staircase. Intersection with 𝐼𝑖+1 pre-
serves it: see the coloured outline of the
resulting region for 𝑈𝑖+1, 𝑗 .

Figure 4.8. Examples of staircase arrangements.

arrangements of Figure 4.7. There are no other options, so the statement

about the union 𝑅𝑖 , 𝑗 ∪ 𝐿𝑖 , 𝑗 is proven. □

Now consider the propagation when we start from not necessarily

simple regions or regions that do not match in their 𝑦-range (or 𝑥-range),

as described in Lemma 4.6. Consider the complexity contribution when

propagating across a cell—say,𝑈𝑖 , 𝑗 to𝑈𝑖+1, 𝑗 . To perform the propagation,

we take

𝑈𝑈
𝑖,𝑗 = 𝑈𝑖 , 𝑗 ⊕ 𝐻𝑈 = 𝑈𝑖 , 𝑗 ⊕ (ℝ ×ℝ+) .

From the definition of the Minkowski sum, it is easy to see that for non-

empty𝑈𝑖 , 𝑗 , this results in an upper half-plane with respect to the lowest

point in 𝑈𝑖 , 𝑗 . Therefore, when propagating a region across the cell, it

either contributes nothing if it is empty, or it contributes a half-plane

otherwise. Therefore, to establish if we can arrive at progressively more

complex regions, we need to consider the other boundaries as source of

complexity. This insight together with the previous results informs the

following argument.

Lemma 4.7. The regions that we propagate are either simple, or staircases with
one step, so the regions have constant complexity.

Proof. As shown in Lemma 4.3, the base regions are always simple.

Consider the regions 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗 for some 𝑖 and 𝑗 = 𝑗′ + 1. The proof for

𝑈𝑖 , 𝑗 , 𝐷𝑖 , 𝑗 is symmetric. As we have just observed, the complexity of 𝑅𝑖 , 𝑗′

and 𝐿𝑖 , 𝑗′ is irrelevant for 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗 , as they contribute a half-plane in the

Chapter 4. Similarity of Uncertain Curves in 1D 116

worst case. Furthermore, we have shown in Lemma 4.6 that if𝑈𝑖 , 𝑗′ and

𝐷𝑖 , 𝑗′ are simple, then regions 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗 are at worst single-step staircases.

It remains to consider what happens as we propagate further from

the regions obtained in Lemma 4.6. So suppose 𝑅𝑖 , 𝑗 , 𝐿𝑖 , 𝑗 are obtained as

in Lemma 4.6. Again, their complexity is irrelevant for the complexity of

𝑅𝑖 , 𝑗+1, 𝐿𝑖 , 𝑗+1, so it remains to answer the following question. Assuming

no restrictions on 𝑈𝑖 , 𝑗 , 𝐷𝑖 , 𝑗 , what is the possible complexity of 𝑈𝑖+1, 𝑗 ,

𝐷𝑖+1, 𝑗? Consider the propagation for e.g.𝑈𝑖+1, 𝑗 = (𝑈𝑈
𝑖,𝑗
∪𝑅𝑅𝑈

𝑖,𝑗
∪𝐿𝐿𝑈

𝑖,𝑗
)∩𝐼𝑖+1.

As follows from Lemma 4.6 and the mechanics of propagation, the region

𝐿𝐿𝑈
𝑖,𝑗

∪ 𝑅𝑅𝑈
𝑖,𝑗

is either a simple region or a staircase with a single step,

unbounded horizontally. Therefore, adding the half-plane of𝑈𝑈
𝑖,𝑗

cannot

increase the complexity. A symmetric argument holds for 𝐷𝑖+1, 𝑗 . Hence,

both𝑈𝑖+1, 𝑗 and 𝐷𝑖+1, 𝑗 are again either simple or staircases with a single

step.

Finally, consider the propagation through the next cell to the pair

𝑅𝑖+1, 𝑗+1, 𝐿𝑖+1, 𝑗+1. For the region 𝑅𝑖+1, 𝑗+1 we need to compute 𝑈𝑅𝑈
𝑖+1, 𝑗

∪
𝐷𝑅𝐷
𝑖+1, 𝑗

. Note that

𝑈𝑖+1, 𝑗 ∪ 𝐷𝑖+1, 𝑗 = (𝑈𝑈
𝑖,𝑗 ∪ 𝐷

𝐷
𝑖,𝑗 ∪ 𝑅

𝑅
𝑖,𝑗 ∪ 𝐿

𝐿
𝑖,𝑗) ∩ 𝐼𝑖+1 ,

and as both 𝑅𝑖 , 𝑗 and 𝐿𝑖 , 𝑗 are non-empty and intersect, as follows from

Lemmas 4.4 and 4.6, we conclude𝑈𝑖+1, 𝑗 ∪ 𝐷𝑖+1, 𝑗 = 𝐼𝑖+1. Therefore, the

region 𝑅𝑖+1, 𝑗+1 is formed with a union of two half-planes with parallel

boundaries, and so the region is simple. The same holds for 𝐿𝑖+1, 𝑗+1.

So, within two propagation steps we may go from simple regions to

staircase regions with one step before returning to simple regions. As

there are no other possibilities for the propagation, the statement of the

lemma holds. □

The operations we use during propagation can be done in constant

time for constant-complexity arguments. Using Lemma 4.7, we state

the main result.

Theorem 4.8. We can solve the decision problem for lower bound Fréchet
distance on imprecise curves of lengths 𝑚 and 𝑛 in 1D in time Θ(𝑚𝑛).

Chapter 4. Similarity of Uncertain Curves in 1D 117

4.3 Upper Bound Fréchet Distance

Until this point, we have been discussing the lower bound Fréchet

distance. We now turn our attention to the upper bound. The problem

is known to be NP-hard in 2D in all variants we consider (Chapter 3); we

show that this remains true even in 1D. Define the following problems

for the discrete and continuous Fréchet distance.

Problem 4.9. Upper Bound (Discrete) Fréchet in 1D: Given two uncer-

tain trajectories 𝒰 and 𝒱 in 1D of lengths 𝑚 and 𝑛, respectively, and a

threshold 𝛿 > 0, determine if 𝑑max

F
(𝒰 ,𝒱) > 𝛿 (𝑑max

dF
(𝒰 ,𝒱) > 𝛿).

We show that these problems are NP-hard both for indecisive and

imprecise models by giving a reduction from CNF-SAT. The construction

we use is similar to that used in 2D; however, in 2D the desired alignment

of subcurves is achieved by having one of the curves be close enough

to (0, 0) at all times. Here making a curve close to 0 will not work, so

we need to add extra gadgets instead that can ‘eat up’ the alignment

of the subcurves that we do not care about. We start by describing the

construction and then show how it leads to the NP-hardness argument.

Suppose we are given a CNF-SAT formula 𝐶 on 𝑛 clauses and 𝑚

variables, with 𝐽𝑖 ⊆ [𝑚] and 𝐾𝑖 ⊆ [𝑚] \ 𝐽𝑖 for all 𝑖 ∈ [𝑛]:

𝐶 =
⋀︂
𝑖∈[𝑛]

𝐶𝑖 , 𝐶𝑖 =
⋁︂
𝑗∈𝐽𝑖

𝑥 𝑗 ∨
⋁︂
𝑘∈𝐾𝑖

¬𝑥𝑘 for all 𝑖 ∈ [𝑛].

We define an assignment as a function 𝑎 : {𝑥1 , . . . , 𝑥𝑚} → {True, False}
that assigns a value to each variable, 𝑎(𝑥 𝑗) = True or 𝑎(𝑥 𝑗) = False for

any 𝑗 ∈ [𝑚]. 𝐶[𝑎] then denotes the result of substituting 𝑥 𝑗 ↦→ 𝑎(𝑥 𝑗) in

𝐶 for all 𝑗 ∈ [𝑚]. We construct two curves: curve 𝒰 is an uncertain

curve that represents the variables, and curve 𝒱 is a precise curve that

represents the structure of the formula.

Literal level. Define a literal gadget for curve 𝒱:

LG𝑖 , 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ⊔ 1.5 if 𝑥 𝑗 is a literal of 𝐶𝑖 ,

−1.5 ⊔ 1.5 if ¬𝑥 𝑗 is a literal of 𝐶𝑖 ,

−0.75 ⊔ 1.5 otherwise.

Chapter 4. Similarity of Uncertain Curves in 1D 118

Consider for now the indecisive uncertainty model. The curve 𝒰 has

an indecisive point per variable, each with two options, corresponding

to True and False assignments. Define a variable gadget for curve 𝒰 :

VG𝑗 = {−1.5, 0} ⊔ 2.5 .

Here the notation {−1.5, 0} denotes an indecisive point with two possible

locations −1.5 and 0. We interpret the position −1.5 as assigning

𝑥 𝑗 = True and the position 0 as assigning 𝑥 𝑗 = False. Observe the

relationship between LG𝑖 , 𝑗 and VG𝑗 for any given 𝑖 ∈ [𝑛]: the distance

between the first points of the gadgets is large if the given variable

assignment turns the clause true. For instance, if a clause has the literal

𝑥 𝑗 , then the choice of 𝑥 𝑗 = True makes the distance between the first

points 1.5 > 1; if the literal is ¬𝑥 𝑗 and we make the same choice, then

the distance is 0; and if the literal does not occur in 𝐶𝑖 , then whichever

realisation we pick, the distance is 0.75 < 1.

Clause level. We now aggregate the literal gadgets into clause gadgets.
Similarly, we aggregate the variable gadgets into the variable section:

CG𝑖 = 3.5 ⊔
⨆︂
𝑗∈[𝑚]

LG𝑖 , 𝑗 , VS = 4.5 ⊔
⨆︂
𝑗∈[𝑚]

VG𝑗 .

Suppose that we pick some realisation for all the variables with some

function 𝑎. Pick a clause 𝐶𝑖 . Suppose that 𝐶𝑖[𝑎] = True. This means

there is at least one 𝑥 𝑗 assigned in a way that makes 𝐶𝑖 turn true. In

our construction, this means that there is at least one pair of LG𝑖 , 𝑗 and

VG𝑗 that gives a large distance between the first two points. If we are

interested in just the Fréchet distance between CG𝑖 and VS for some

fixed 𝑖, we can state the following.

Lemma 4.10. For some fixed 𝑖 ∈ [𝑛], the (discrete) Fréchet distance between
CG𝑖 , corresponding to clause 𝐶𝑖 , and a realisation 𝜋 ⋐ VS, corresponding to
an assignment 𝑎, is 1 iff 𝐶𝑖[𝑎] = False, and is 1.5 iff 𝐶𝑖[𝑎] = True, and there
are no other possible values.

Proof. First of all, note that the points 4.5 and 3.5 must be matched,

yielding the distance of at least 1 between the curves. Furthermore, the

only point within distance 1.5 of the point 2.5 that occurs at the end

of every VG𝑗 is the last point of every LG𝑖 , 𝑗 , namely, 1.5. Observe that

Chapter 4. Similarity of Uncertain Curves in 1D 119

simply walking along both curves, matching point 𝑘 on one curve to

point 𝑘 on the other curve for every 𝑘, gives us the (discrete) Fréchet

distance of at most 1.5. Thus, an optimal matching will always match the

point 2.5 to one of the points at 1.5. Furthermore, an optimal solution

will always match the first point of LG𝑖 , 𝑗 to the indecisive point of VG𝑗 ,

as the point at 2.5 is always too far. Therefore, both for the Fréchet and

the discrete Fréchet distance, an optimal matching is one to one, i.e. we

advance along both curves on every step. The initial synchronisation

points yield the distance 1, as do the second points in the literal level

gadgets; each indecisive point is matched at distance of either 0, 0.75,

or 1.5. The latter case only occurs if the assignment of the variable makes

the clause satisfied. So, indeed, we conclude that we can only get the

distance of either 1 or 1.5, and the latter is only possible if some variable

turns the clause to true, so if 𝐶𝑖[𝑎] = True. Otherwise, the clause is false,

and the distance is 1. □

Formula level. We can now paste the clause gadgets together. Once

we do that, we would like to have a way to freely choose a clause to align

with the variable section: then, if there is a clause that is not satisfied,

choosing that clause would yield a small overall distance; and if all

clauses are satisfied, then any one of them will give a large distance,

and so we can distinguish between whether the formula is satisfied or

not. As a starting point, it is clear that we need to prepend and append

something to the variable section that would catch the clauses that are

not aligned with the variable section. We devise the following gadget

for that:

abs = 2.5 ⊔
⨆︂
𝑗∈[𝑚]

(−0.5 ⊔ 0.5) .

We show that this gadget may indeed be satisfactorily aligned with any

CG𝑖 .

Lemma 4.11. The (discrete) Fréchet distance between abs and any CG𝑖 is 1.

Proof. First of all, note that we must match the first synchronisation

point of CG𝑖 at 3.5 to some point on the other curve, and the only point

in abs that is close enough is the point at 2.5 in the beginning. This

establishes the lower bound of 1. Furthermore, we can always get the

distance of 1 by walking step by step along both curves: the distance

Chapter 4. Similarity of Uncertain Curves in 1D 120

between any of −1.5, −0.75, and 0 is at most 1 to −0.5, and the distance

between 1.5 and 0.5 is 1. Thus, the statement holds. □

We need as many of these gadgets as there may be misaligned

clauses. In the worst case, we may align CG1 or CG𝑛 with VS, and so

we need 𝑛 − 1 of the catch gadgets before and after VS. However, the

new problem we get is that now the extra abs clauses need to be aligned

with something. To that end, we devise the following gadget:

abs
2
= 1.5 ⊔ 0.5 .

Again, we show that it can perform its function.

Lemma 4.12. The (discrete) Fréchet distance between abs
2 and abs is 1.

Proof. First of all, note that we must match the first synchronisation

point of abs at 2.5 to the point at 1.5 on abs
2
, giving the lower bound

of 1. Furthermore, we can always get the distance of 1 by stepping to the

second point on both curves and staying at 0.5 on abs
2

while alternating

between −0.5 and 0.5 on abs. Thus, the statement holds. □

Finally, we need to align these gadgets with something, but that is

not too difficult, as they only have the length of 1. We define our final

uncertain curves:

𝒰 = 1 ⊔
(︂⨆︂
𝑖∈[𝑛−1]

abs

)︂
⊔ VS ⊔

(︂⨆︂
𝑖∈[𝑛−1]

abs

)︂
⊔ 1 ,

𝒱 =

(︂⨆︂
𝑖∈[𝑛−1]

abs
2

)︂
⊔
(︂⨆︂
𝑖∈[𝑛]

CG𝑖

)︂
⊔
(︂⨆︂
𝑖∈[𝑛−1]

abs
2

)︂
.

We illustrate the curves in Figure 4.9. With these definitions, we can

show the following.

Theorem 4.13. The problems Upper Bound Fréchet in 1D and Upper
Bound Discrete Fréchet in 1D are NP-hard in the indecisive model.

Proof. First of all, notice that in our construction the synchronisation

points at the start of the clauses gadgets must be matched to the

synchronisation points at the start of the variable section and the abs

gadgets in the optimal matching, as hinted at in the proofs of the

previous lemmas. Furthermore, note that any number of abs
2

at the

Chapter 4. Similarity of Uncertain Curves in 1D 121

VS

abs

abs

−1.5 0 1.5

2.5

3.5

4.5

−1.5 0 1.5

2.5

3.5 −1.5 0 1.5

2.5

3.5

0.5

1
0.5

-0.5
0.5

-0.5
0.5

-0.5
2.5

4.5

-1.5, 0
2.5

2.5

0.5
-0.5
0.5

-0.5
0.5

-0.5

1.5
-1.5
1.5
0 1.5
-1.5
3.5
0 1.5
-0.75
1.5
0 3.5
0.5
1.5

-1.5, 0

-1.5, 0

2.5
1

Figure 4.9. Left: The realisation of 𝒰 for assignment 𝑥1 = True, 𝑥2 = True,

𝑥3 = False and curve 𝒱 for the formula 𝐶 = (𝑥1 ∨ 𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3). Note

that 𝐶 = True with this assignment, and that both feasible alignments give

(discrete) Fréchet distance of 1.5. Right: The corresponding free space. White

dots are accessible, spots without a dot are never accessible. Blue (red) dots

are only accessible if the corresponding variable is set to True (False). Yellow

dashed paths indicate potential paths through the free space; the goal is to

determine if the variables can be set such that all potential paths are blocked.

start can be matched to the point at 1, and any number of abs
2

can

be matched to the point at 1 at the end. Putting these observations

together with Lemmas 4.10 to 4.12, it is easy to see the following. Choose

some assignment 𝑎 and consider the corresponding realisation 𝜋 ⋐ 𝒰 .

Suppose that𝐶[𝑎] = False; this means that there is at least one 𝑖 for which

𝐶𝑖[𝑎] = False. Our construction allows us to consider the alignment

where we match CG𝑖 to VS, and the rest of clauses to one of abs; the

remaining abs are matched to the abs
2
, and the remaining abs

2
are

matched to 1. In this matching, the (discrete) Fréchet distance between

the curves is 1, which is optimal, and the formula is not satisfied. Now

suppose that 𝐶[𝑎] = True; this means that for all 𝑖, 𝐶𝑖[𝑎] = True. So, no

matter which CG𝑖 we choose to align with VS, we get the distance of 1.5;

therefore, the formula is satisfied, and the optimal distance is 1.5.

Recall that the upper bound distance takes the maximum distance

Chapter 4. Similarity of Uncertain Curves in 1D 122

over all realisations. Therefore, if the upper bound distance is 1, then

all the realisations yield the distance 1, and so all assignments 𝑎 yield

𝐶[𝑎] = False, and the formula is not satisfiable. On the other hand, if the

upper bound distance is 1.5, then there is some realisation that yields this

distance, and it corresponds to an assignment 𝑎 with 𝐶[𝑎] = True, so the

formula is satisfiable. Thus, our construction with the threshold 𝛿 = 1

solves CNF-SAT. Curve 𝒰 has length 2+ 2 · (𝑛 − 1) · (1+ 2𝑚) + 1+ 2𝑚 =

2𝑛+4𝑚𝑛−2𝑚+1; curve𝒱 has length 4·(𝑛−1)+𝑛 ·(1+2𝑚) = 5𝑛+2𝑚𝑛−4.

Clearly, the construction takes polynomial time. Therefore, the problem

both for discrete and continuous Fréchet distance is NP-hard. □

We can easily extend this result to the imprecise curves. We replace

the indecisive points at {−1.5, 0} with intervals [−1.5, 0]. The following

observation is key.

Observation 4.14. If an upper bound solution can be found as a certificate in
the construction with the indecisive points, it can also be found in the imprecise
construction.

Furthermore, note that no realisation can yield a distance above 1.5

with an optimal matching. Thus, if the formula is satisfiable, the upper

bound distance is still 1.5, and this distance cannot be obtained otherwise.

We conclude that the problem is NP-hard.

Theorem 4.15. The problems Upper Bound Fréchet in 1D and Upper
Bound Discrete Fréchet in 1D are NP-hard in the imprecise model.

4.4 Weak Fréchet Distance

In this section, we investigate the lower bound weak Fréchet distance for

uncertain curves. In general, since weak matchings can revisit parts of

the curve, the dynamic program for the regular Fréchet distance cannot

easily be adapted, as it relies on the fact that only the realisation of the last

few vertices is tracked. In particular, when computing the (lower bound)

weak Fréchet distance for uncertain curves, one cannot simply forget the

realisations of previously visited vertices, as the matching might revisit

them. Surprisingly, we can show that for the continuous weak Fréchet

distance between uncertain one-dimensional curves, we can still obtain

a polynomial-time dynamic program, as shown in Section 4.4.1. One

Chapter 4. Similarity of Uncertain Curves in 1D 123

may expect that the discrete weak Fréchet distance for uncertain curves

in 1D is also solvable in polynomial time; however, in Section 4.4.2, we

show that this problem is NP-hard. We also show that computing the

continuous weak Fréchet distance is NP-hard for uncertain curves in 2D.

4.4.1 Algorithm for Continuous Setting

We first introduce some definitions. Consider two polygonal one-

dimensional curves 𝜋 : [1, 𝑚] → ℝ and 𝜎 : [1, 𝑛] → ℝ with vertices

at the integer parameters. Let 𝜋−1 denote the reversal of a polygonal

curve 𝜋. Denote by 𝜋|[𝑎,𝑏] the restriction of 𝜋 to the domain [𝑎, 𝑏].
For integer values of 𝑎 and 𝑏, note that 𝜋|[𝑎,𝑏] ≡ 𝜋[𝑎 : 𝑏]. Finally,

define the image of a curve as the set of points in ℝ that belong to

the curve, Im(𝜋) ≡ {𝜋(𝑥) | 𝑥 ∈ [1, 𝑚]} for 𝜋 : [1, 𝑚] → ℝ. For any

polygonal curve 𝜋, define the growing curve ⃗⃗
𝜋 of 𝜋 as the sequence of

local minima and maxima of the sequence ⟨𝜋(𝑖) | 𝜋(𝑖) ∉ Im(𝜋|[1,𝑖))⟩𝑚𝑖=1
.

Thus, the vertices of a growing curve alternate between local minima

and maxima, the subsequence of local maxima is strictly increasing, and

the subsequence of local minima is strictly decreasing.

It has been shown that for precise one-dimensional curves, the weak

Fréchet distance can be computed in linear time [60]. For uncertain

curves, it is unclear how to use that linear-time algorithm; however, we

can apply some of the underlying ideas. A relaxed matching between 𝜋
and 𝜎 is defined by reparametrisations 𝛼 : [0, 1] → [1, 𝑚] and 𝛽 : [0, 1] →
[1, 𝑛] with 𝛼(0) = 1, 𝛼(1) = 𝑥 ∈ [𝑚 − 1, 𝑚] and 𝛽(0) = 1, 𝛽(1) = 𝑦 ∈
[𝑛 − 1, 𝑛]. Observe that the final points of reparametrisations have to be

on the last segments of the curves, but not necessarily at the endpoints

of those segments. Moreover, define a relaxed matching (𝛼, 𝛽) to be

cell-monotone if for all 𝑡 ≤ 𝑡′, we have min(⌊𝛼(𝑡)⌋ , 𝑚 − 1) ≤ 𝛼(𝑡′) and

min(⌊𝛽(𝑡)⌋ , 𝑛 − 1) ≤ 𝛽(𝑡′). In other words, once we pass by a vertex to

the next segment on a curve, we do not allow going back to the previous

segment; backtracking within a segment is allowed. Let rm(𝜋, 𝜎) be the

minimum matching cost over all cell-monotone relaxed matchings:

rm(𝜋, 𝜎) = inf

cell-monotone relaxed matching 𝜇
cost

𝜇
(𝜋, 𝜎) .

It has been shown for precise curves [60] that

𝑑wF(𝜋, 𝜎) = max

(︁
rm(

⃗⃗⃗
𝜋,

⃗⃗⃗
𝜎), rm(

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜋−1 ,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜎−1)

)︁
.

Chapter 4. Similarity of Uncertain Curves in 1D 124

Let rm(𝜋, 𝜎)[𝑖 , 𝑗] ≡ rm
(︁
𝜋[1 : 𝑖], 𝜎[1 : 𝑗]

)︁
. Then the value of rm(𝜋, 𝜎) can

be computed in quadratic time as rm(𝜋, 𝜎)[𝑚, 𝑛] using the following

dynamic program:

rm(𝜋, 𝜎)[0, ·] = ∞ ,

rm(𝜋, 𝜎)[·, 0] = ∞ ,

rm(𝜋, 𝜎)[1, 1] = |𝜋(1) − 𝜎(1)| ,
and for 𝑖 > 0 or 𝑗 > 0,

rm(𝜋, 𝜎)[𝑖 + 1, 𝑗 + 1] = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

(︂
rm(𝜋, 𝜎)[𝑖 , 𝑗 + 1],

𝑑
(︁
𝜋(𝑖), Im(𝜎[𝑗 : 𝑗 + 1])

)︁)︂
,

max

(︂
rm(𝜋, 𝜎)[𝑖 + 1, 𝑗],

𝑑
(︁
𝜎(𝑗), Im(𝜋[𝑖 : 𝑖 + 1])

)︁)︂
.

If 𝜋 is a growing curve, we have Im(𝜋[𝑖 : 𝑖 + 1]) = Im(𝜋[1 : 𝑖 + 1]), so the

following dynamic program is equivalent if 𝜋 and 𝜎 are growing curves:

𝑟(𝜋, 𝜎)[0, ·] = ∞ ,

𝑟(𝜋, 𝜎)[·, 0] = ∞ ,

𝑟(𝜋, 𝜎)[1, 1] = |𝜋(1) − 𝜎(1)| ,
and for 𝑖 > 0 or 𝑗 > 0,

𝑟(𝜋, 𝜎)[𝑖 + 1, 𝑗 + 1] = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

(︂
𝑟(𝜋, 𝜎)[𝑖 , 𝑗 + 1],

𝑑
(︁
𝜋(𝑖), Im(𝜎[1 : 𝑗 + 1])

)︁)︂
,

max

(︂
𝑟(𝜋, 𝜎)[𝑖 + 1, 𝑗],

𝑑
(︁
𝜎(𝑗), Im(𝜋[1 : 𝑖 + 1])

)︁)︂
.

Let 𝑟(𝜋, 𝜎) ≔ 𝑟(𝜋, 𝜎)[𝑚, 𝑛] when executing the dynamic program above

for curves 𝜋 : [1, 𝑚] → ℝ and 𝜎 : [1, 𝑛] → ℝ. We have rm(⃗⃗𝜋, ⃗⃗𝜎) = 𝑟(⃗⃗𝜋, ⃗⃗𝜎).
Moreover, observe that the final result of computing 𝑟 is the same

whether we apply it to the original or the growing curves. In other

Chapter 4. Similarity of Uncertain Curves in 1D 125

words, 𝑟(𝜋, 𝜎) = 𝑟(⃗⃗𝜋, ⃗⃗𝜎), so

𝑑wF(𝜋, 𝜎) = max

(︁
rm(

⃗⃗⃗
𝜋,

⃗⃗⃗
𝜎), rm(

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜋−1 ,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜎−1)

)︁
= max

(︁
𝑟(
⃗⃗⃗
𝜋,

⃗⃗⃗
𝜎), 𝑟(

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜋−1 ,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜎−1)

)︁
= max

(︁
𝑟(𝜋, 𝜎), 𝑟(𝜋−1 , 𝜎−1)

)︁
.

With regard to computing the lower bound weak Fréchet distance

over realisations of uncertain curves, this roughly means that we only

need to keep track of the image of the prefix (and the suffix) of𝜋 and 𝜎. To

formalise this, we split up the computation over the prefix and the suffix.

Let 𝑖min , 𝑖max ∈ [𝑚], 𝑗min , 𝑗max ∈ [𝑛], [𝑥min , 𝑥max] ⊆ ℝ, [𝑦min , 𝑦max] ⊆ ℝ.

Abbreviate the pairs 𝐼 ≔ (𝑖min , 𝑖max), 𝐽 ≔ (𝑗min , 𝑗max) and the intervals

𝑋 ≔ [𝑥min , 𝑥max], 𝑌 ≔ [𝑦min , 𝑦max], and call a realisation 𝜋 of an

uncertain curve 𝐼-respecting if 𝜋(𝑖min) is a global minimum of 𝜋 and

𝜋(𝑖max) is a global maximum of 𝜋. Say that 𝜋 is (𝐼 , 𝑋)-respecting if

additionally 𝜋(𝑖min) = 𝑥min and 𝜋(𝑖max) = 𝑥max. Denote some 𝐼- and

(𝐼 , 𝑋)-respecting realisations of an uncertain curve 𝒰 by 𝜋′ ⋐ 𝒰𝐼 and

𝜋′′ ⋐ 𝒰𝑋
𝐼

, respectively. Consider the lower bound weak Fréchet distance

between (𝐼 , 𝑋)- and (𝐽 , 𝑌)-respecting realisations 𝜋 ⋐ 𝒰𝑋
𝐼

and 𝜎 ⋐ 𝒱𝑌
𝐽

:

𝑑min

wF
(𝒰𝑋

𝐼 ,𝒱
𝑌
𝐽) ≡ min

𝜋⋐𝒰𝑋
𝐼
,𝜎⋐𝒱𝑌

𝐽

𝑑wF(𝜋, 𝜎)

= min

𝜋⋐𝒰𝑋
𝐼
,𝜎⋐𝒱𝑌

𝐽

max

(︁
𝑟(𝜋, 𝜎), 𝑟(𝜋−1 , 𝜎−1)

)︁
.

Lemma 4.16. Among (𝐼 , 𝑋)- and (𝐽 , 𝑌)-respecting realisations, the prefix and
the suffix are independent:

𝑑min

wF
(𝒰𝑋

𝐼 ,𝒱
𝑌
𝐽) = max

⎧⎪⎪⎨⎪⎪⎩
min𝜋⋐𝒰𝑋

𝐼
,𝜎⋐𝒱𝑌

𝐽
𝑟(𝜋, 𝜎) ,

min𝜋′⋐𝒰𝑋
𝐼
,𝜎′⋐𝒱𝑌

𝐽
𝑟(𝜋′−1 , 𝜎′−1) .

Proof. If we take 𝜋 = 𝜋′
and 𝜎 = 𝜎′, the right-hand side becomes a

lower bound on 𝑑min

wF
(𝒰𝑋

𝐼
,𝒱𝑌

𝐽
). To show that it is also an upper bound,

consider (𝐼 , 𝑋)-respecting realisations 𝜋 and 𝜋′
, and define 𝜋𝑐 as the

prefix of 𝜋 up to 𝑖min concatenated with the suffix of 𝜋′
starting from 𝑖min.

Then 𝜋𝑐 is an (𝐼 , 𝑋)-respecting realisation of 𝒰 . Moreover, the growing

curves

⃗⃗
𝜋 and

⃗⃗ ⃗⃗ ⃗⃗
𝜋𝑐 are the same (this is obvious if 𝑖min > 𝑖max, and follows

from the fact that the value of the 𝑖maxth vertex is 𝑥max otherwise).

Chapter 4. Similarity of Uncertain Curves in 1D 126

Symmetrically,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜋′−1 =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝜋−1

𝑐 . We can similarly define a (𝐽 , 𝑌)-respecting

realisation 𝜎𝑐 of 𝒱 based on some 𝜎 and 𝜎′. Since

⃗⃗
𝜋 =

⃗⃗ ⃗⃗ ⃗⃗
𝜋𝑐 and

⃗⃗
𝜎 =

⃗⃗ ⃗⃗ ⃗⃗
𝜎𝑐 ,

we have 𝑟(𝜋, 𝜎) = 𝑟(𝜋𝑐 , 𝜎𝑐), and symmetrically, 𝑟(𝜋′−1 , 𝜎′−1) = 𝑟(𝜋−1

𝑐 , 𝜎
−1

𝑐).
We can therefore use 𝜋𝑐 ⋐ 𝒰𝑋

𝐼
and 𝜎𝑐 ⋐ 𝒱𝑌

𝐽
in the definition of

𝑑wF(𝒰𝑋
𝐼
,𝒱𝑌

𝐽
) to obtain the desired upper bound. □

The remainder of this section is guided by observations based on

Lemma 4.16.

1. Computing min𝜋⋐𝒰𝑋
𝐼
,𝜎⋐𝒱𝑌

𝐽
𝑟(𝜋, 𝜎) lets us compute 𝑑min

wF
(𝒰𝑋

𝐼
,𝒱𝑌

𝐽
).

2. To compute 𝑑min

wF
(𝒰𝐼 ,𝒱𝐽), we must find an optimal pair of images

𝑋 and 𝑌 for 𝜋 and 𝜎.

3. We can compute 𝑑min

wF
(𝒰 ,𝒱) by computing 𝑑min

wF
(𝒰𝐼 ,𝒱𝐽) for all

𝒪(𝑚2𝑛2) values for (𝐼 , 𝐽).
Instead of computing min𝜋⋐𝒰𝑋

𝐼
,𝜎⋐𝒱𝑌

𝐽
𝑟(𝜋, 𝜎) for a specific value of (𝑋,𝑌),

we compute the function (𝑋,𝑌) ↦→ min𝜋⋐𝒰𝑋
𝐼
,𝜎⋐𝒱𝑌

𝐽
𝑟(𝜋, 𝜎) using a dy-

namic program that effectively simulates the dynamic program 𝑟(𝜋, 𝜎)
for all 𝐼- and 𝐽-respecting realisations simultaneously. So let

𝑅𝐼 ,𝐽[𝑖 , 𝑗](𝑥, 𝑦, 𝑋, 𝑌) ≔ inf

𝜋⋐𝒰𝐼 ,Im(𝜋[1:𝑖])=𝑋,𝜋(𝑖)=𝑥
𝜎⋐𝒱𝐽 ,Im(𝜎[1:𝑗])=𝑌,𝜎(𝑗)=𝑦

𝑟(𝜋, 𝜎)[𝑖 , 𝑗] , then

𝑅𝐼 ,𝐽[𝑚, 𝑛](𝑥, 𝑦, 𝑋, 𝑌) = inf

𝜋⋐𝒰𝑋
𝐼
,𝜋(𝑚)=𝑥

𝜎⋐𝒱𝑌
𝐽
,𝜎(𝑛)=𝑦

𝑟(𝜋, 𝜎) .

We derive

𝑅𝐼 ,𝐽[0, ·](𝑥, 𝑦, 𝑋, 𝑌) = 𝑅𝐼 ,𝐽[· , 0](𝑥, 𝑦, 𝑋, 𝑌) = ∞,
𝑅𝐼 ,𝐽[1, 1](𝑥, 𝑦, 𝑋, 𝑌) = inf

𝜋⋐𝒰𝐼 ,{𝑥}=𝑋,𝜋(1)=𝑥
𝜎⋐𝒱𝐽 ,{𝑦}=𝑌,𝜎(1)=𝑦

|𝜋(1) − 𝜎(1)|,

Chapter 4. Similarity of Uncertain Curves in 1D 127

and for (𝑖 , 𝑗) ≠ (1, 1),
𝑅𝐼 ,𝐽[𝑖 , 𝑗](𝑥, 𝑦, 𝑋, 𝑌)

= inf

𝜋⋐𝒰𝐼 ,Im(𝜋[1:𝑖])=𝑋,𝜋(𝑖)=𝑥
𝜎⋐𝒱𝐽 ,Im(𝜎[1:𝑗])=𝑌,𝜎(𝑗)=𝑦

min

{︄
max{𝑟(𝜋, 𝜎)[𝑖 − 1, 𝑗], 𝑑(𝜋(𝑖 − 1), 𝑌)},
max{𝑟(𝜋, 𝜎)[𝑖 , 𝑗 − 1], 𝑑(𝜎(𝑗 − 1), 𝑋)}

= min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
inf𝜋⋐𝒰𝐼 ,Im(𝜋[1:𝑖])=𝑋,𝜋(𝑖)=𝑥

𝜎⋐𝒱𝐽 ,Im(𝜎[1:𝑗])=𝑌,𝜎(𝑗)=𝑦
𝜋(𝑖−1)=𝑥′

max{𝑟(𝜋, 𝜎)[𝑖 − 1, 𝑗], 𝑑(𝑥′, 𝑌)},

inf𝜋⋐𝒰𝐼 ,Im(𝜋[1:𝑖])=𝑋,𝜋(𝑖)=𝑥
𝜎⋐𝒱𝐽 ,Im(𝜎[1:𝑗])=𝑌,𝜎(𝑗)=𝑦

𝜎(𝑗−1)=𝑦′

max{𝑟(𝜋, 𝜎)[𝑖 , 𝑗 − 1], 𝑑(𝑦′, 𝑋)},

= min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
inf𝜋⋐𝒰𝐼 ,Im(𝜋[1:𝑖])=𝑋,

Im(𝜋[1:𝑖−1])=𝑋′ ,
𝜋(𝑖)=𝑥,𝜋(𝑖−1)=𝑥′

max{𝑅𝐼 ,𝐽[𝑖 − 1, 𝑗](𝑥′, 𝑦, 𝑋′, 𝑌), 𝑑(𝑥′, 𝑌)},

inf𝜎⋐𝒱𝐽 ,Im(𝜎[1:𝑗])=𝑌,
Im(𝜎[1:𝑗−1])=𝑌′ ,
𝜎(𝑗)=𝑦,𝜎(𝑗−1)=𝑦′

max{𝑅𝐼 ,𝐽[𝑖 , 𝑗 − 1](𝑥, 𝑦′, 𝑋, 𝑌′), 𝑑(𝑦′, 𝑋)},

where, crucially, the conditions on 𝑥′, 𝑦′, 𝑋′
, and 𝑌′

can be checked

purely in terms of 𝒰𝐼 and 𝒱𝐽 , so the recurrence does not depend on any

particular 𝜋 or 𝜎. This yields a dynamic program that constructs the

function 𝑅𝐼 ,𝐽[𝑖 , 𝑗] based on the functions 𝑅𝐼 ,𝐽[𝑖 − 1, 𝑗] and 𝑅𝐼 ,𝐽[𝑖 , 𝑗 − 1].
The recurrence has parameters 𝐼, 𝐽, 𝑖, 𝑗, 𝑥, 𝑦, 𝑋, and 𝑌. The first four

are easy to handle, since 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝐼 ∈ [𝑚]2, and 𝐽 ∈ [𝑛]2. The other

parameters are continuous. 𝑋 can be represented by 𝑥min, 𝑥max, and 𝑌

by 𝑦min, 𝑦max. To prove that we can solve the recurrence in polynomial

time, it is sufficient to prove that we can restrict the computation to a

polynomial number of different 𝑥min, 𝑥max, 𝑦min, 𝑦max, 𝑥, and 𝑦.

We assume that each of the 𝑢𝑖 and 𝑣 𝑗 is given as a set of intervals. This

includes the cases of uncertain curves with imprecise vertices (where

each of these is just one interval) and with indecisive vertices (where

each interval is just a point; but in this case, we get by definition only a

polynomial number of different values for the parameters).

Consider the realisations 𝜋 = ⟨𝑝1 , . . . , 𝑝𝑚⟩ and 𝜎 = ⟨𝑞1 , . . . , 𝑞𝑛⟩ of

the curves that attain 𝑑min

wF
(𝒰 ,𝒱) ≕ 𝛿. In these realisations, we need to

have a sequence of vertices 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟ℓ with the 𝑟𝑘 alternately from

the set of 𝑝𝑖 and the set of 𝑞 𝑗 such that 𝑟1 is at a right interval endpoint,

𝑟ℓ is at a left interval endpoint, and 𝑟𝑘+1 − 𝑟𝑘 = 𝛿. Since 1 ≤ ℓ ≤ 𝑚 + 𝑛,

this implies that there are only 𝒪(𝑁2 · (𝑚 + 𝑛)) candidates for 𝛿, where

Chapter 4. Similarity of Uncertain Curves in 1D 128

𝑁 is the total number of interval endpoints. We can compute these

candidates in time 𝒪(𝑁2 · (𝑚 + 𝑛)).
Now assume that we have chosen 𝜋 and 𝜎 such that none of the

𝑝𝑖 or 𝑞 𝑗 can be increased (i.e. moved to the right) without increasing

the weak Fréchet distance. Then for every 𝑝𝑖 (and likewise 𝑞 𝑗), there

is a sequence 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟ℓ = 𝑝𝑖 , where 𝑟1 is the endpoint of an

interval and 𝑟𝑘+1 − 𝑟𝑘 = 𝛿. There are 𝒪(𝑁) possibilities for 𝑟1, 𝒪(𝑚 + 𝑛)
possibilities for ℓ , and 𝒪(𝑁2 · (𝑚 + 𝑛)) possibilities for 𝛿, thus the total

number of positions to consider for 𝑝𝑖 is polynomial.

Theorem 4.17. The lower bound continuous weak Fréchet distance between
uncertain one-dimensional curves can be computed in polynomial time.

4.4.2 Hardness of Discrete Setting

In this section, we prove that minimising the discrete weak Fréchet

distance is NP-hard, already in one-dimensional space. We show this

both for indecisive and imprecise points. In the constructions in this

section, the lower bound Fréchet distance is never smaller than 1. The

goal is to determine whether it is equal to 1 or greater than 1.

Indecisive points. We reduce from 3SAT. Consider an instance with

𝑛 variables and 𝑚 clauses. We assign each variable a unique height:
variable 𝑥𝑖 gets assigned height 10𝑖 + 5. We use slightly larger heights

(10𝑖 + 6 and 10𝑖 + 7) to interact with the positive state of the variable,

and slightly smaller heights to interact with the negative state.

We construct two uncertain curves, one representing the variables

and one representing the clauses. The first curve, 𝒰 , consists of 𝑛 + 2

vertices. The first and last vertices are precise points at height 0. The

remaining vertices are uncertain points, with two possible heights each:

𝒰 = ⟨0, {14, 16}, {24, 26}, . . . , {10𝑛 + 4, 10𝑛 + 6}, 0⟩ .

The second curve, 𝒱, consists of 𝑛𝑚 + 𝑛 + 𝑚 + 2 vertices. For a clause

𝑐 𝑗 = ℓ𝑎 ∨ ℓ𝑏 ∨ ℓ𝑐 , let 𝐶 𝑗 be the set {10𝑎 + 3/7, 10𝑏 + 3/7, 10𝑐 + 3/7}, where

for each literal we choose +7 if ℓ𝑖 = 𝑥𝑖 or +3 if ℓ𝑖 = ¬𝑥𝑖 . Let 𝑆 be the

set 𝑆 = {15, 25, . . . , 10𝑛 + 5} of ‘neutral’ variable heights. Define 𝒱 as

the curve that starts and ends at 0, has a vertex for each 𝐶 𝑗 , and has

Chapter 4. Similarity of Uncertain Curves in 1D 129

0 17,23,37

14, 16
0

0 15,25,35,45,55

13,33,47

27,47,53

15,25,35,45,55
15,25,35,45,55
15,25,35,45,55
15,25,35,45,55

15,25,35,45,55
15,25,35,45,55
15,25,35,45,55
15,25,35,45,55
15,25,35,45,55

15,25,35,45,55
15,25,35,45,55
15,25,35,45,55
15,25,35,45,55
15,25,35,45,55

15,25,35,45,55
15,25,35,45,55
15,25,35,45,55
15,25,35,45,55
15,25,35,45,55

0

24, 26
34, 36
44, 46
54, 56

𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑥4 ∨ ¬𝑥5

Figure 4.10. An example with five variables and three clauses. White dots are

always accessible, no matter the state of the variables (however, note that only

one white dot per column can be used). Red / blue dots are accessible only if

the corresponding variable is set to False / True. Spots without a dot are never

accessible.

sufficiently many copies of 𝑆 between them:

𝒱 = ⟨0, 𝑆, . . . , 𝑆, 𝐶1 , 𝑆, . . . , 𝑆, 𝐶2 , 𝑆, . . . , 𝑆, , 𝐶𝑚 , 0⟩ .

Consider the free-space diagram, with a ‘spot’ (𝑖 , 𝑗) corresponding

to a pair of vertices 𝑢𝑖 and 𝑣 𝑗 . The discrete weak Fréchet distance is

equal to 1 if and only if there is an assignment to each uncertain vertex

such that the there is a path from the bottom left to the top right of the

diagram that uses only accessible spots, where a spot is accessible if

the assigned heights of the corresponding row and column are within

distance 1. Figure 4.10 shows an example.

We can only cross a column corresponding to clause 𝑐 𝑗 if at least

one of the corresponding literals is set to true. The remaining columns

can always be crossed at any row. Note that the repetition is necessary:

although all spots are in principle reachable, only one spot in each

column can be reachable at the same time. If we have at least 𝑛 columns

between each pair of clauses, this will always be possible.

Theorem 4.18. Given two uncertain curves 𝒰 and 𝒱, each given by a
sequence of values and sets of values in ℝ, the problem of choosing a realisation
of 𝒰 and 𝒱 such that the weak discrete Fréchet distance between 𝒰 and 𝒱 is
minimised is NP-hard.

Chapter 4. Similarity of Uncertain Curves in 1D 130

0 T0

T

10

T-10

10 T-10

10

10

T-10

1010T-10

T-10

T-10

0 T10 T-10

10 1010T-10

T-10

T-10

0 T10 T-10

10 T-10

Figure 4.11. The global frame. White dots are accessible, spots without a dot

are never accessible. Within each block, there are three potential paths between

its two accessible corners.

Imprecise points. The construction above relies on the ability to select

arbitrary sets of values as uncertainty regions. We now show that this

is not required. We strengthen the proof in two ways: we restrict the

uncertainty regions to intervals and we use uncertainty in only one

curve.

The main idea of the adaptation is to encode clauses not by a single

uncertain vertex, but by sets of globally distinct paths through the

free-space diagram. To facilitate this, we need a global frame to guide

the possible solution paths, and we need more copies of the variable

vertices (though only one copy will be uncertain) to facilitate the paths.

Let 𝑇 = 10(𝑛 + 2). We build a frame for the construction using four

unique heights: 0, 10, 𝑇 − 10, and 𝑇.2 Let 𝑆 = ⟨0, 10, ?, 𝑇 − 10, ?, 10, ?, 𝑇 −
10, 𝑇⟩ be a partial sequence—the question marks indicate the gaps where

we will insert other vertices later. Globally, the curves have the structure

𝒰 = 𝑆 and 𝒱 = 𝑆 ⊔ 𝑆−1 ⊔ 𝑆 ⊔ 𝑆−1 ⊔ . . . ⊔ 𝑆: one copy or reversed copy

of 𝑆 for each clause (if the number of clauses is even, simply add a trivial

clause). In the free-space diagram, this creates a frame that every path

needs to adhere to. The frame consists of one block per clause, and

inside each block, there are three potential paths from the bottom left

to top right corner (or from the top left to the bottom right corner for

reversed blocks). See Figure 4.11.

Next, we fill in the gaps. Let 𝒰 = ⟨0⟩ ⊔𝒰1 ⊔𝒰−1

2
⊔𝒰1 ⊔ ⟨𝑇⟩, where

𝒰1 = ⟨10, 14, 16, 24, 26, . . . , 10𝑛 + 4, 10𝑛 + 6, 𝑇 − 10⟩ ,
𝒰2 = ⟨10, [14, 16], [24, 26], . . . , [10𝑛 + 4, 10𝑛 + 6], 𝑇 − 10⟩ .

2
The actual values are, in fact, irrelevant for the construction—they simply need to

be unique numbers sufficiently removed from the values that we use for encoding the

variables.

Chapter 4. Similarity of Uncertain Curves in 1D 131

Let𝒱 =
⨆︁

1≤ 𝑗≤𝑚 𝐶
(−1)𝑗−1

𝑗
be the concatenation of clause sequences, where

every even clause sequence is reversed. For a clause 𝑐 𝑗 = ℓ𝑎 ∨ ℓ𝑏 ∨ ℓ𝑐 , the

sequence 𝐶 𝑗 is of the form

𝐶 𝑗 = ⟨0, 10⟩ ⊔ 𝐿𝑎 ⊔ ⟨𝑇 − 10⟩ ⊔ 𝐿−1

𝑏
⊔ ⟨10⟩ ⊔ 𝐿𝑐 ⊔ ⟨𝑇 − 10, 𝑇⟩ ,

where the literal sequences 𝐿𝑖 corresponding to ℓ𝑖 = 𝑥𝑖 (positive literals),

ℓ𝑖 = ¬𝑥𝑖 (negative literals) are

𝐿𝑖 = ⟨15, . . . , 10(𝑖 − 1) + 5, 10𝑖 + 5, 10𝑖 + 7, 10(𝑖 + 1) + 5, . . . , 10𝑛 + 5⟩ ,
𝐿𝑖 = ⟨15, . . . , 10(𝑖 − 1) + 5, 10𝑖 + 3, 10𝑖 + 5, 10(𝑖 + 1) + 5, . . . , 10𝑛 + 5⟩ ,

respectively. See Figure 4.12 for an example of the resulting free-space

diagram.

The construction relies on the following observation.

Observation 4.19. 𝐿𝑖 can always be matched to 𝒰1. 𝐿𝑖 can be matched to 𝒰2

if and only if ℓ𝑖 = 𝑥𝑖 and 𝑥𝑖 is set to True, or ℓ𝑖 = ¬𝑥𝑖 and 𝑥𝑖 is set to False.

Theorem 4.20. Given an uncertain curve 𝒰 , described by a sequence of values
and intervals in ℝ, and a precise curve 𝒱, described by a sequence of values
in ℝ, it is NP-hard to choose a realisation of 𝒰 such that the weak discrete
Fréchet distance between 𝒰 and 𝒱 is minimised.

Continuous weak Fréchet distance in ℝ2. Finally, we mention that

the results in this section carry over to the continuous weak Fréchet

distance in one dimension higher. We simply construct the same curves

as described above on the 𝑥-axis, and intersperse each curve with the

point at (0,∞).

Corollary 4.21. Given an uncertain curve 𝒰 , described by a sequence of
points and regions in ℝ2, and a precise curve 𝒱, described by a sequence of
points in ℝ2, it is NP-hard to choose a realisation of 𝒰 such that the weak
Fréchet distance between 𝒰 and 𝒱 is minimised.

4.5 Conclusions

In this chapter, we have considered the standard extremal questions

about the (discrete) (weak) Fréchet distance on uncertain curves in one

dimension. We conclude that deciding if the upper bound is above a

Chapter 4. Similarity of Uncertain Curves in 1D 132

15

0

25
35
37

45

55
45
35
25
23

15

17
25
35

45
55

70

01
4

1
6

2
4

2
6

3
4

3
6

4
4

4
6

5
4

5
6

5
6

5
4

4
6

4
4

3
6

2
6

1
6

1
4

2
4

3
4

1
4

1
6

2
4

2
6

3
4

3
6

4
4

4
6

5
4

5
6

7
0

0

𝑥
1
∨
¬𝑥

2
∨
𝑥

3

55
45
35
25

13
15

55

45
35
25
15

25

35
33

45

¬𝑥
1
∨
¬𝑥

3
∨
𝑥

4
𝑥

2
∨
𝑥

4
∨
¬𝑥

5

1
0

6
0

10

60
55

15
10

60

1
0

6
0

60

60
55

10

10
15

47

15
25

35
45

55

45
35
25

15
25
35
45

55

70

10

60
55

15
10

60

27

47

33

F
ig

u
re

4
.1

2
.

A
n

ex
am

p
le

w
it

h
fi

ve
va

ri
ab

le
s

an
d

th
re

e
cl

au
se

s.
W

h
it

e
d
o
ts

ar
e

al
w

ay
s

ac
ce

ss
ib

le
,

n
o

m
at

te
r

th
e

st
at

e
o
f

th
e

va
ri

ab
le

s.
R

ed
/

b
lu

e
d
o
ts

ar
e

ac
ce

ss
ib

le
o
n
ly

if
th

e
co

rr
es

p
o
n
d
in

g
va

ri
ab

le
is

se
t

to
Fa

ls
e

/
T

ru
e.

Sp
o
ts

w
it

h
o
u
t

a
d
o
t

ar
e

n
ev

er

ac
ce

ss
ib

le
.

Chapter 4. Similarity of Uncertain Curves in 1D 133

given threshold remains NP-hard for indecisive points, and is NP-hard

for intervals. It appears hopeless to find a variant of the Fréchet distance

where the upper bound problem is not NP-hard, although it is an

interesting open problem to complete the study of the upper bound

(discrete) weak Fréchet distance.

The lower bound problem, like in Chapter 3, turns out to be solvable

in polynomial time in some settings and NP-hard in other settings. The

dichotomy for the weak Fréchet distance, interestingly, is the opposite

of that for the regular Fréchet distance: discretising the problem makes

it harder in this case, not easier.

In future work, it would be interesting to complete filling in the gaps

by studying the upper bound weak Fréchet distance, as well as various

variants of the Hausdorff distance on uncertain point sets—the two

distances share some structure, so it would be interesting to see exactly

which variants turn out to be hard. Finally, for the lower bound Fréchet

distance, it is possible that the problem is fixed-parameter tractable in the

number of directions that the edges of the curve may take; investigating

this further would be an interesting line of research, potentially making

it more practical to work with the Fréchet distance under uncertainty.

CHAPTER 5
Uncertain Curve

Simplification

In this chapter, we investigate the topic of curve simplification under

uncertainty. There are many classical algorithms dealing with curve

simplification with different distance metrics, discussed in Section 1.2;

however, it is typically assumed that the locations of the points making

up the curves are known precisely, which is not ideal when modelling

noisy data. Curve simplification is frequently used as a first step to

reduce the noise-to-signal ratio in the trajectory data before applying

other algorithms or when storing large amounts of data. In both

cases, modelling uncertainty could reduce the error introduced by

simplifying imprecise measurements while maintaining a short, efficient

representation of the data.

Among the approaches to simplifying polygonal curves, we would

like to highlight the one by Imai and Iri [145]. The basic approach

involves computing the shortcut graph, which captures all the possible

simplifications of a curve, and then finding a shortest path through the

graph in terms of the number of edges from the start node to the end

node, thus finding the simplification with fewest edges. We adapt this

approach in our work to simplification under uncertainty, which, to our

knowledge, has not been studied before.

134

Chapter 5. Uncertain Curve Simplification 135

(a)

(b)

(c)

𝜀

Figure 5.1. (a) An uncertain curve modelled with convex polygons and a

potential realisation. (b) A valid simplification under the Hausdorff distance

with the threshold 𝜀: for every realisation, the subsequence is within Hausdorff

distance 𝜀 from the full sequence. (c) An invalid simplification under the

Hausdorff distance with the threshold 𝜀: there is a realisation for which the

subsequence is not within Hausdorff distance 𝜀 from the full sequence.

As in Chapters 3 and 4, we use indecisive and imprecise models.

Recall that an uncertain curve is a sequence of uncertain points of the

same kind, and a realisation of an uncertain curve is a precise polygonal

curve obtained by taking one point from each uncertain point.

In this chapter, we solve the following problem.

Problem 5.1. Given an uncertain curve as a sequence of 𝑛 uncertain

points, find the shortest subsequence of the uncertain points of the curve

such that for any realisation of the curve, the corresponding realisation

of the subsequence is a valid simplification of that realisation.

We present a family of efficient algorithms for this problem under

both the Hausdorff and the Fréchet distance, with the uncertain points

modelled as indecisive points, as disks, as line segments, and as convex

polygons, shown in Table 5.1. See also Figure 5.1.

Using the notation introduced in Chapter 2, we discuss the following

problem: given an uncertain curve 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑛 ∈ ℕ,

𝑛 ≥ 3, and 𝑈𝑖 ⊂ ℝ2
for all 𝑖 ∈ [𝑛], and the threshold 𝜀 ∈ ℝ+

, find a

minimal-length subsequence 𝒰′ = ⟨𝑈𝑖1 , . . . , 𝑈𝑖ℓ ⟩ of 𝒰 with ℓ ≤ 𝑛, such

that for any realisation 𝜋 ⋐ 𝒰 , the corresponding realisation 𝜋′ ⋐ 𝒰′

forms an 𝜀-simplification of 𝜋 under some distance measure 𝛿. We

solve this problem both for the Hausdorff and the Fréchet distance for

Chapter 5. Uncertain Curve Simplification 136

Table 5.1. Running time of our approach in each setting. For indecisive points,

𝑘 is the number of options per point. For convex polygons, 𝑘 is the number of

vertices.

indecisive disks line segments convex polygons

Hausdorff 𝒪(𝑛3𝑘3) 𝒪(𝑛3) 𝒪(𝑛3) 𝒪(𝑛3𝑘3)
Fréchet 𝒪(𝑛3𝑘3) 𝒪(𝑛3) 𝒪(𝑛3) 𝒪(𝑛3𝑘3)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6𝑠2

𝑠3 𝑠4𝑠5

𝜀

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6𝑠2

𝑠3 𝑠4

𝑠5

𝜀

Figure 5.2. Left: Alignment for the Hausdorff distance. Right: Alignment for

the Fréchet distance. In both cases, the alignment is described as the sequence

⟨𝑠1 ≔ 𝑝1 , 𝑠2 , 𝑠3 , 𝑠4 , 𝑠5 , 𝑠6 ≔ 𝑝6⟩.

uncertainty modelled with indecisive points, line segments, disks, and

convex polygons.

Preliminaries. Suppose we are given a threshold 𝜀 ∈ ℝ+
, a polygonal

curve 𝜋 = ⟨𝑝1 , . . . , 𝑝𝑛⟩, and a curve built on the subsequence of vertices

of 𝜋 for some set 𝐼 = {𝑖1 , . . . , 𝑖ℓ } ⊆ [𝑛], i.e. 𝜎 = ⟨𝑝𝑖1 , . . . , 𝑝𝑖ℓ ⟩ with

𝑖 𝑗 < 𝑖 𝑗+1 for all 𝑗 ∈ [ℓ − 1] and ℓ ≤ 𝑛. We call 𝜎 an 𝜀-simplification of 𝜋 if

for each segment ⟨𝑝𝑖 𝑗 , 𝑝𝑖 𝑗+1
⟩, we have 𝛿(⟨𝑝𝑖 𝑗 , 𝑝𝑖 𝑗+1

⟩,𝜋[𝑖 𝑗 : 𝑖 𝑗+1]) ≤ 𝜀, where

𝛿 denotes some distance measure, e.g. the Hausdorff or the Fréchet

distance. The Hausdorff distance between two sets 𝑃, 𝑄 ⊂ ℝ2
is

𝑑H(𝑃, 𝑄) def

= max

{︁
sup

𝑝∈𝑃
inf

𝑞∈𝑄
∥𝑝 − 𝑞∥ , sup

𝑞∈𝑄
inf

𝑝∈𝑃
∥𝑝 − 𝑞∥

}︁
.

For two polygonal curves 𝜋 and 𝜎 in ℝ2
, since 𝜋 and 𝜎 are closed and

bounded, we get

𝑑H(𝜋, 𝜎) = max

{︁
max

𝑝∈𝜋
min

𝑞∈𝜎
∥𝑝 − 𝑞∥ ,max

𝑞∈𝜎
min

𝑝∈𝜋
∥𝑝 − 𝑞∥

}︁
.

Recall the definition of the Fréchet distance using reparametrisations.

In this chapter, we often consider the Fréchet distance between a curve

Chapter 5. Uncertain Curve Simplification 137

𝜋 = ⟨𝑝1 , . . . , 𝑝𝑛⟩ and a line segment 𝑝1𝑝𝑛 , for some 𝑛 ∈ ℕ, 𝑛 ≥ 3. In

this setting, the alignment can be described in a more intuitive way;

see also Figure 5.2. It can be described as a sequence of locations

on the line segment to which the vertices of the curves are matched,

⟨𝑠2 , . . . , 𝑠𝑛−1⟩, where 𝑠𝑖 ∈ [1, 2] for all 𝑖 ∈ {2, . . . , 𝑛 − 1} and 𝑠𝑖 ≤ 𝑠𝑖+1

for all 𝑖 ∈ {2, . . . , 𝑛 − 2}. To see that, assign 𝑠1 ≔ 1 and 𝑠𝑛 ≔ 2

and construct a helper reparametrisation 𝜙 : [0, 1] → [1, 𝑛], defined as

𝜙(𝑡) = (𝑛−1)·𝑡+1 for any 𝑡 ∈ [0, 1]. Construct another reparametrisation

𝜓 : [1, 𝑛] → [1, 2], defined as

𝜓(𝑡) =
{︄
𝑠⌊𝑡⌋ · (1 − 𝑡 + ⌊𝑡⌋) + 𝑠⌊𝑡⌋+1

· (𝑡 − ⌊𝑡⌋) if 𝑡 ∈ [1, 𝑛),
𝑠𝑛 if 𝑡 = 𝑛.

Note that 𝜙 and 𝜓 ◦ 𝜙 satisfy the definition of reparametrisations for 𝜋
and 𝑝1𝑝𝑛 , respectively.

We also define an alignment between a curve and a line segment

for the Hausdorff distance (see Figure 5.2). It represents the map

from the curve to the line segment, where each point on the curve

is mapped to the closest point on the line segment. It is given by

a sequence ⟨𝑠1 , . . . , 𝑠𝑛⟩, where 𝑠𝑖 ∈ [1, 2] for all 𝑖 ∈ [𝑛], such that

𝑝1𝑝𝑛(𝑠𝑖) = arg min𝑝′∈𝑝1𝑝𝑛
∥𝑝′− 𝑝𝑖 ∥. In other words, 𝑝1𝑝𝑛(𝑠𝑖) is the closest

point to 𝑝𝑖 for all 𝑖 ∈ [𝑛]; as we show in Section 5.2.1, the Hausdorff

distance is realised as the distance between 𝑝𝑖 and 𝑝1𝑝𝑛(𝑠𝑖) for some 𝑖 ∈
[𝑛]. Therefore, establishing such an alignment and checking that

∥𝑝1𝑝𝑛(𝑠𝑖) − 𝑝𝑖 ∥ ≤ 𝜀 for all 𝑖 ∈ [𝑛] allows us to check that 𝑑H(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀
for some 𝜀 ∈ ℝ+

.

5.1 Overview of the Approach

In this section, we present the short description of our approach in

different settings. We work out the details and show correctness in

Sections 5.2 to 5.4.

On the highest level, we use the shortcut graph. Each uncertain point

of an uncertain curve 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ corresponds to a vertex. An

edge connects two vertices 𝑖 and 𝑗 if and only if the distance between any

realisation of 𝒰[𝑖 : 𝑗] and the corresponding line segment from𝑈𝑖 to𝑈 𝑗

is below the threshold. The path with the least edges from vertex 1 to

vertex 𝑛 then corresponds to the simplification using least uncertain

Chapter 5. Uncertain Curve Simplification 138

points. So, we construct the shortcut graph and find the shortest path

between two vertices. The key idea is that we find shortcuts that are

valid for all realisations, so any sequence of shortcuts can be chosen. We

discuss this in Section 5.4.

In order to construct the shortcut graph, we need to check whether

an edge should be added to the graph, i.e. whether a shortcut is valid.
The approach is different for the Hausdorff and the Fréchet distance and

for each uncertainty model. For the first and the last uncertain point of

the shortcut, we state in Section 5.3 that there are several critical pairs of

realisations that need to be tested explicitly, and then for any other pair

of realisations, we know that the distance is also below the threshold.

Testing each pair corresponds to finding the distance between a precise

line segment and any realisation of an uncertain curve; we show the

simple procedures to do this in Section 5.2.

5.2 Shortcut Testing: Intermediate Points

In this section, we discuss testing a single shortcut where we fix the

realisations of the first and the last uncertain point. We start by showing

some basic facts about the Hausdorff and the Fréchet distance in the

precise setting, and then we use them to design simple algorithms for

testing shortcuts in the uncertain settings. We answer the following

problem.

Problem 5.2. Given an uncertain curve 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ on 𝑛 ∈ ℕ,

𝑛 ≥ 3 uncertain points in ℝ2
, as well as realisations 𝑝1 ∈ 𝑈1, 𝑝𝑛 ∈ 𝑈𝑛 ,

check if the largest Hausdorff or Fréchet distance between 𝒰 and its one-

segment simplification is below a threshold 𝜀 ∈ ℝ+
for any realisation

with the fixed start and end points, i.e. for 𝛿 ≔ 𝑑H or 𝛿 ≔ 𝑑F, verify

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝛿(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀 .

5.2.1 Hausdorff Distance

We start by showing some useful facts about the Hausdorff distance in

the precise setting. We then solve Problem 5.2 for 𝛿 ≔ 𝑑H.

Lemma 5.3. Given 𝑛 ∈ ℕ and a precise curve 𝜋 = ⟨𝑝1 , . . . , 𝑝𝑛⟩ with 𝑝𝑖 ∈ ℝ2

for all 𝑖 ∈ [𝑛], we have that for any 𝑞 ∈ 𝑝1𝑝𝑛 with 𝑞 ≺ 𝑝𝑛 , there is some

Chapter 5. Uncertain Curve Simplification 139

𝑖 ∈ [𝑛−1] such that 𝑠 ≔ arg min𝑟∈𝑝1𝑝𝑛
∥𝑝𝑖−𝑟∥, 𝑡 ≔ arg min𝑟∈𝑝1𝑝𝑛

∥𝑝𝑖+1−𝑟∥,
and 𝑠 ≼ 𝑞 ≺ 𝑡.

Proof. Assume this is not the case and pick a point 𝑞 ∈ 𝑝1𝑝𝑛 \ 𝑝𝑛 that

forms a counterexample. We now have, for all 𝑖 ∈ [𝑛 − 1] and the

definitions of 𝑠 and 𝑡 given above, that 𝑠 ≼ 𝑞 =⇒ 𝑡 ≼ 𝑞. Clearly,

for 𝑖 = 1, we have 𝑠 ≡ 𝑝1 and so 𝑠 ≼ 𝑞. By induction on 𝑖, we can

conclude that for all 𝑖 ∈ [𝑛], arg min𝑟∈𝑝1𝑝𝑛
∥𝑝𝑖 − 𝑟∥ ≼ 𝑞. In particular, as

arg min𝑟∈𝑝1𝑝𝑛
∥𝑝𝑛 − 𝑟∥ = 𝑝𝑛 , this means that 𝑝𝑛 ≼ 𝑞. However, we picked

𝑞 ≺ 𝑝𝑛 . This is a contradiction, so the lemma holds. □

Lemma 5.4. Given four points 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ2 forming segments 𝑎𝑏 and 𝑐𝑑,
the largest distance from one segment to the other is achieved at an endpoint:

max

𝑝∈𝑎𝑏
𝑑(𝑝, 𝑐𝑑) = max

{︁
𝑑(𝑎, 𝑐𝑑), 𝑑(𝑏, 𝑐𝑑)

}︁
.

Proof. Trivially, max𝑝∈𝑎𝑏 𝑑(𝑝, 𝑐𝑑) ≥ max

{︁
𝑑(𝑎, 𝑐𝑑), 𝑑(𝑏, 𝑐𝑑)

}︁
, since 𝑎, 𝑏 ∈

𝑎𝑏, so it remains to show that max𝑝∈𝑎𝑏 𝑑(𝑝, 𝑐𝑑) ≤ max

{︁
𝑑(𝑎, 𝑐𝑑), 𝑑(𝑏, 𝑐𝑑)

}︁
.

Consider two sets 𝑆1 ≔ {𝑝 | ∥𝑝∥ ≤ 𝜀} and 𝑆2 ≔ 𝑐𝑑, with 𝜀 ≔
max

{︁
𝑑(𝑎, 𝑐𝑑), 𝑑(𝑏, 𝑐𝑑)

}︁
. Take their Minkowski sum:

𝑆 ≔ {𝑝 + 𝑞 | 𝑝 ∈ 𝑆1 , 𝑞 ∈ 𝑆2}
def

= {𝑝 + 𝑞 | ∥𝑝∥ ≤ 𝜀, 𝑞 ∈ 𝑐𝑑}
= {𝑟 | ∥𝑟 − 𝑞∥ ≤ 𝜀, 𝑞 ∈ 𝑐𝑑}
= {𝑟 | min

𝑞∈𝑐𝑑
∥𝑟 − 𝑞∥ ≤ 𝜀}

def

= {𝑟 | 𝑑(𝑟, 𝑐𝑑) ≤ 𝜀} .

Note that both sets are convex: 𝑆1 is a disk and 𝑆2 is a line segment.

Then their Minkowski sum 𝑆 is also convex. By definition of 𝑆 and 𝜀,

we have 𝑎, 𝑏 ∈ 𝑆. By definition of a convex set, we conclude that 𝑎𝑏 ∈ 𝑆,

so max𝑝∈𝑎𝑏 𝑑(𝑝, 𝑐𝑑) ≤ max

{︁
𝑑(𝑎, 𝑐𝑑), 𝑑(𝑏, 𝑐𝑑)

}︁
, and the statement of the

lemma holds. □

Lemma 5.5. Given 𝑛 ∈ ℕ, for any precise curve 𝜋 = ⟨𝑝1 , . . . , 𝑝𝑛⟩ with
𝑝𝑖 ∈ ℝ2 for all 𝑖 ∈ [𝑛], we have

𝑑H(𝜋, 𝑝1𝑝𝑛) = max

𝑖∈[𝑛]
𝑑(𝑝𝑖 , 𝑝1𝑝𝑛) .

Chapter 5. Uncertain Curve Simplification 140

Proof. Recall the definition of Hausdorff distance in this setting:

𝑑H(𝜋, 𝑝1𝑝𝑛) = max

{︂
max

𝑝∈𝜋
min

𝑞∈𝑝1𝑝𝑛
∥𝑝 − 𝑞∥ , max

𝑞∈𝑝1𝑝𝑛
min

𝑝∈𝜋
∥𝑝 − 𝑞∥

}︂
.

We first show that max𝑞∈𝑝1𝑝𝑛 min𝑝∈𝜋∥𝑝− 𝑞∥ ≤ max𝑝∈𝜋 min𝑞∈𝑝1𝑝𝑛 ∥𝑝−
𝑞∥ ≕ 𝜀. We do a case distinction on 𝑞 ∈ 𝑝1𝑝𝑛 and show that for all 𝑞,

we have min𝑝∈𝜋∥𝑝 − 𝑞∥ ≤ 𝜀.

• 𝑞 ≡ 𝑝𝑛 . Note 𝑝𝑛 ∈ 𝜋, so min𝑝∈𝜋∥𝑝 − 𝑞∥ = 0 ≤ 𝜀.

• 𝑞 ≺ 𝑝𝑛 . Using Lemma 5.3, we find 𝑖 ∈ [𝑛−1] and the corresponding

𝑠 and 𝑡 such that 𝑠 ≼ 𝑞 ≺ 𝑡. As max𝑝∈𝜋 𝑑(𝑝, 𝑝1𝑝𝑛)
def

= 𝜀, we know

𝑑(𝑝𝑖 , 𝑝1𝑝𝑛) = ∥𝑝𝑖 − 𝑠∥ ≤ 𝜀 and 𝑑(𝑝𝑖+1 , 𝑝1𝑝𝑛) = ∥𝑝𝑖+1 − 𝑡∥ ≤ 𝜀. But

then 𝑑(𝑠, 𝑝𝑖𝑝𝑖+1) ≤ ∥𝑠 − 𝑝𝑖 ∥ ≤ 𝜀 and 𝑑(𝑡 , 𝑝𝑖𝑝𝑖+1) ≤ ∥𝑡 − 𝑝𝑖+1∥ ≤ 𝜀.

By Lemma 5.4, we conclude that max𝑟∈𝑠𝑡 𝑑(𝑟, 𝑝𝑖𝑝𝑖+1) ≤ 𝜀. As

𝑠 ≼ 𝑞 ≺ 𝑡, we have 𝑞 ∈ 𝑠𝑡, so 𝑑(𝑞, 𝑝𝑖𝑝𝑖+1) ≤ 𝜀.

This covers all cases, so indeed for all 𝑞 ∈ 𝑝1𝑝𝑛 , min𝑝∈𝜋∥𝑝 − 𝑞∥ ≤ 𝜀, and

hence we conclude max𝑞∈𝑝1𝑝𝑛 min𝑝∈𝜋∥𝑝−𝑞∥ ≤ max𝑝∈𝜋 min𝑞∈𝑝1𝑝𝑛 ∥𝑝−𝑞∥.

We can derive

𝑑H(𝜋, 𝑝1𝑝𝑛) = max

{︂
max

𝑝∈𝜋
min

𝑞∈𝑝1𝑝𝑛
∥𝑝 − 𝑞∥ , max

𝑞∈𝑝1𝑝𝑛
min

𝑝∈𝜋
∥𝑝 − 𝑞∥

}︂
= max

𝑝∈𝜋
min

𝑞∈𝑝1𝑝𝑛
∥𝑝 − 𝑞∥

def

= max

𝑝∈𝜋
𝑑(𝑝, 𝑝1𝑝𝑛)

def

= max

𝑖∈[𝑛−1]
max

𝑝∈𝑝𝑖𝑝𝑖+1

𝑑(𝑝, 𝑝1𝑝𝑛)

{Lemma 5.4}

= max

𝑖∈[𝑛−1]
max

{︁
𝑑(𝑝𝑖 , 𝑝1𝑝𝑛), 𝑑(𝑝𝑖+1 , 𝑝1𝑝𝑛)

}︁
def

= max

𝑖∈[𝑛]
𝑑(𝑝𝑖 , 𝑝1𝑝𝑛) ,

as was to be shown. □

Indecisive points. We are now ready to generalise the setting to

include imprecision. We first show that the straightforward setting with

indecisive points permits an easy solution using Lemma 5.5.

Chapter 5. Uncertain Curve Simplification 141

Lemma 5.6. Given 𝑛, 𝑘 ∈ ℕ, 𝑛 ≥ 3, for any indecisive curve 𝒰 =

⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
} for all 𝑖 ∈ [𝑛] and 𝑝 𝑗

𝑖
∈ ℝ2 for all

𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘], and given some 𝑝1 ∈ 𝑈1 and 𝑝𝑛 ∈ 𝑈𝑛 , we have

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑H(𝜋, 𝑝1𝑝𝑛) = max

𝑖∈{2,...,𝑛−1}
max

𝑗∈[𝑘]
𝑑(𝑝 𝑗

𝑖
, 𝑝1𝑝𝑛) .

Proof. Assume the setting of the lemma statement. Derive

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑H(𝜋, 𝑝1𝑝𝑛)

{Lemma 5.5}

= max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
max

𝑖∈[𝑛]
𝑑(𝜋(𝑖), 𝑝1𝑝𝑛)

{Def. ⋐, 𝑑(𝑝1 , 𝑝1𝑝𝑛) = 𝑑(𝑝𝑛 , 𝑝1𝑝𝑛) = 0}

= max

𝑖∈{2,...,𝑛−1}
max

𝑝∈𝑈𝑖

𝑑(𝑝, 𝑝1𝑝𝑛)

{Def. indecisive point}

= max

𝑖∈{2,...,𝑛−1}
max

𝑗∈[𝑘]
𝑑(𝑝 𝑗

𝑖
, 𝑝1𝑝𝑛) ,

as was to be shown. □

Note that this means that when the start and end realisations are

fixed, we can test that a shortcut is valid using the lemma above in time

𝒪(𝑛𝑘) for a shortcut of length 𝑛.

Disks. We proceed to present the way to test shortcuts for fixed

realisations of the first and the last points when the imprecision is

modelled using disks. In the next arguments the following well-known

form of a triangle inequality is useful.

Lemma 5.7. Given a metric space (𝑋, 𝑑) and a non-empty subset 𝑆 ⊂ 𝑋,
𝑆 ≠ ∅, for any 𝑥, 𝑦 ∈ 𝑋,

𝑑(𝑥, 𝑆) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑆) .

Proof. Pick some 𝑧′ ∈ 𝑆 and 𝑥, 𝑦 ∈ 𝑋. By the triangle inequality,

𝑑(𝑥, 𝑧′) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧′), so

𝑑(𝑥, 𝑆) def

= inf

𝑧∈𝑆
𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑧′) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧′) ,

Chapter 5. Uncertain Curve Simplification 142

and this holds for any choice of 𝑧′. Therefore, we conclude

𝑑(𝑥, 𝑆) ≤ 𝑑(𝑥, 𝑦) + inf

𝑧∈𝑆
𝑑(𝑦, 𝑧) def

= 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑆) . □

Corollary 5.8. For any 𝑝, 𝑞 ∈ ℝ2 and a line segment 𝑎𝑏 on 𝑎, 𝑏 ∈ ℝ2,

𝑑(𝑝, 𝑎𝑏) ≤ ∥𝑝 − 𝑞∥ + 𝑑(𝑞, 𝑎𝑏) .

We now state the result for disks.

Lemma 5.9. Given 𝑛 ∈ ℕ, 𝑛 ≥ 3, for any imprecise curve modelled with disks
𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with𝑈𝑖 = 𝐷(𝑐𝑖 , 𝑟𝑖) for all 𝑖 ∈ [𝑛] and 𝑐𝑖 ∈ ℝ2, 𝑟𝑖 ∈ ℝ≥0

for all 𝑖 ∈ [𝑛], and given some 𝑝1 ∈ 𝑈1 and 𝑝𝑛 ∈ 𝑈𝑛 , we have

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑H(𝜋, 𝑝1𝑝𝑛) = max

𝑖∈{2,...,𝑛−1}

(︁
𝑑(𝑐𝑖 , 𝑝1𝑝𝑛) + 𝑟𝑖

)︁
.

Proof. Assume the setting of the lemma. As before, we derive

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑H(𝜋, 𝑝1𝑝𝑛)

{Lemma 5.5}

= max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
max

𝑖∈[𝑛]
𝑑(𝜋(𝑖), 𝑝1𝑝𝑛)

{Def. ⋐, 𝑑(𝑝1 , 𝑝1𝑝𝑛) = 𝑑(𝑝𝑛 , 𝑝1𝑝𝑛) = 0}

= max

𝑖∈{2,...,𝑛−1}
max

𝑝∈𝑈𝑖

𝑑(𝑝, 𝑝1𝑝𝑛) .

It remains to show that max𝑝∈𝑈𝑖
𝑑(𝑝, 𝑝1𝑝𝑛) = 𝑑(𝑐𝑖 , 𝑝1𝑝𝑛) + 𝑟𝑖 for any

𝑖 ∈ {2, . . . , 𝑛 − 1}.
Firstly, pick 𝑝′ ≔ arg max𝑝∈𝑈𝑖

𝑑(𝑝, 𝑝1𝑝𝑛). Note that by Corollary 5.8,

𝑑(𝑝′, 𝑝1𝑝𝑛) ≤ ∥𝑝′−𝑐𝑖 ∥+𝑑(𝑐𝑖 , 𝑝1𝑝𝑛). Furthermore, as 𝑝′ ∈ 𝑈𝑖 , by definition

of𝑈𝑖 , we have ∥𝑝′− 𝑐𝑖 ∥ ≤ 𝑟𝑖 . Thus, max𝑝∈𝑈𝑖
𝑑(𝑝, 𝑝1𝑝𝑛) ≤ 𝑑(𝑐𝑖 , 𝑝1𝑝𝑛)+ 𝑟𝑖 ,

and it remains to show the inequality in the other direction.

Now pick a point 𝑞′ ≔ arg min𝑞∈𝑝1𝑝𝑛
∥𝑞 − 𝑐𝑖 ∥, so that 𝑑(𝑐𝑖 , 𝑝1𝑝𝑛) =

∥𝑞′ − 𝑐𝑖 ∥. Draw the line through 𝑐𝑖 and 𝑞′ and pick the point 𝑝′ on that

line on the boundary of 𝑈𝑖 on the opposite side of 𝑞 w.r.t. 𝑐𝑖 . Clearly,

∥𝑝′ − 𝑐𝑖 ∥ = 𝑟𝑖 and 𝑞′ = arg min𝑞∈𝑝1𝑝𝑛
∥𝑞 − 𝑝′∥. Thus,

𝑑(𝑝′, 𝑝1𝑝𝑛) = ∥𝑝′ − 𝑞′∥ = ∥𝑞′ − 𝑐𝑖 ∥ + ∥𝑝′ − 𝑐𝑖 ∥ = 𝑑(𝑐𝑖 , 𝑝1𝑝𝑛) + 𝑟𝑖 .

Note that 𝑝′ ∈ 𝑈𝑖 , so we conclude max𝑝∈𝑈𝑖
𝑑(𝑝, 𝑝1𝑝𝑛) ≥ 𝑑(𝑐𝑖 , 𝑝1𝑝𝑛) + 𝑟𝑖 .

Hence, the statement of the lemma holds. □

Chapter 5. Uncertain Curve Simplification 143

Once again, note that this lemma allows us to test a shortcut in a

straightforward manner, in time 𝒪(𝑛) for a shortcut of length 𝑛.

Polygonal closed convex sets (PCCSs). We show the following lemma.

Lemma 5.10. Given 𝑛, 𝑘 ∈ ℕ, 𝑛 ≥ 3, for any imprecise curve modelled with
PCCSs 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 ⊂ ℝ2 and 𝑉(𝑈𝑖) = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
} for all

𝑖 ∈ [𝑛], and given some 𝑝1 ∈ 𝑈1 and 𝑝𝑛 ∈ 𝑈𝑛 , we have

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑H(𝜋, 𝑝1𝑝𝑛) = max

𝑖∈{2,...,𝑛−1}
max

𝑣∈𝑉(𝑈𝑖)
𝑑(𝑣, 𝑝1𝑝𝑛) .

Proof. Assume the setting of the lemma. As before, derive

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑H(𝜋, 𝑝1𝑝𝑛)

{Lemma 5.5}

= max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
max

𝑖∈[𝑛]
𝑑(𝜋(𝑖), 𝑝1𝑝𝑛)

{Def. ⋐, 𝑑(𝑝1 , 𝑝1𝑝𝑛) = 𝑑(𝑝𝑛 , 𝑝1𝑝𝑛) = 0}

= max

𝑖∈{2,...,𝑛−1}
max

𝑝∈𝑈𝑖

𝑑(𝑝, 𝑝1𝑝𝑛) .

To show that the claim holds, it remains to show that for any PCCS𝑈 and

a line segment 𝑎𝑏, it holds that max𝑝∈𝑈 𝑑(𝑝, 𝑎𝑏) = max𝑣∈𝑉(𝑈) 𝑑(𝑣, 𝑎𝑏).
Firstly, as𝑉(𝑈) ⊂ 𝑈 , immediately max𝑝∈𝑈 𝑑(𝑝, 𝑎𝑏) ≥ max𝑣∈𝑉(𝑈) 𝑑(𝑣, 𝑎𝑏).
Consider any 𝑝 ∈ 𝑈 . We show that there is some 𝑣 ∈ 𝑉(𝑈) such that

𝑑(𝑣, 𝑎𝑏) ≥ 𝑑(𝑝, 𝑎𝑏), completing the proof. We do a case distinction on 𝑝.

• 𝑝 ∈ 𝑉(𝑈). Then pick 𝑣 ≔ 𝑝, and we are done.

• 𝑝 ∉ 𝑉(𝑈), but 𝑝 is on the boundary of 𝑈 . Consider the vertices

𝑣, 𝑤 ∈ 𝑉(𝑈) with 𝑝 ∈ 𝑣𝑤. Using Lemma 5.4, we note

max

𝑞∈𝑣𝑤
𝑑(𝑞, 𝑎𝑏) = max

{︁
𝑑(𝑣, 𝑎𝑏), 𝑑(𝑤, 𝑎𝑏)

}︁
.

W.l.o.g. suppose 𝑑(𝑣, 𝑎𝑏) ≥ 𝑑(𝑤, 𝑎𝑏). Then for 𝑣, indeed we have

𝑑(𝑣, 𝑎𝑏) ≥ 𝑑(𝑝, 𝑎𝑏).
• 𝑝 is in the interior of 𝑈 (cannot occur for line segments). Find

the point 𝑞′ ≔ arg min𝑞∈𝑎𝑏 ∥𝑝 − 𝑞∥, so 𝑑(𝑝, 𝑎𝑏) = ∥𝑝 − 𝑞′∥. Draw

the line through 𝑝 and 𝑞′; let 𝑝′ be the point on that line on

Chapter 5. Uncertain Curve Simplification 144

Algorithm 5.1. Testing a shortcut on a precise curve with the Fréchet distance.

1 ▷ Input constraint: 𝜋 = ⟨𝑝1 , . . . , 𝑝𝑛⟩, 𝑛 ∈ ℕ, ∀𝑖 ∈ [𝑛] : 𝑝𝑖 ∈ ℝ2
, 𝜀 ∈ ℝ+

2 function CheckFréchetPrecise(𝜋, 𝑛, 𝜀)
3 𝑠1 ≔ 1

4 for all 𝑖 ∈ {2, . . . , 𝑛 − 1} do
5 𝑆𝑖 ≔ {𝑡 ∈ [𝑠𝑖−1 , 2] | ∥𝑝𝑖 − 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀}
6 if 𝑆𝑖 = ∅ then
7 return False

8 𝑠𝑖 ≔ min 𝑆𝑖
9 return True

the boundary of 𝑈 on the opposite side of 𝑞′ w.r.t. 𝑝. Clearly,

𝑞′ = arg min𝑞∈𝑎𝑏 ∥𝑝′ − 𝑞∥, so 𝑑(𝑝′, 𝑎𝑏) > 𝑑(𝑝, 𝑎𝑏). Then we can find

a vertex 𝑣 ∈ 𝑉(𝑈) as in the previous cases, yielding 𝑑(𝑣, 𝑎𝑏) ≥
𝑑(𝑝′, 𝑎𝑏) > 𝑑(𝑝, 𝑎𝑏).

This covers all the cases, so the statement holds. □

As before, this lemma gives us a simple way to test the shortcut

with fixed realisations of the first and the last points in time 𝒪(𝑛𝑘) for a

shortcut of length 𝑛 and PCCSs with 𝑘 vertices.

5.2.2 Fréchet Distance

We now turn our attention to the Fréchet distance. In this section, we

do not show results for the Fréchet distance in the precise setting. For

extra intuition, see Algorithm 5.1, which follows from a well-known

fact shown e.g. by Guibas et al. [132, Lemma 8]; it can also be seen as

specialisation of the indecisive case to 𝑘 = 1 or of the disk case to 𝑟 = 0.

Indecisive points. The idea is that in the precise case we can always

align greedily as we move along the line segment. In this case, we also

need to find the realisation for each indecisive point that makes for the

‘worst’ greedy choice.

Lemma 5.11. Given 𝑛, 𝑘 ∈ ℕ and 𝜀 ∈ ℝ+, for any indecisive curve 𝒰 =

⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
} for all 𝑖 ∈ [𝑛] and 𝑝 𝑗

𝑖
∈ ℝ2 for all

𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘], and given some 𝑝1 ∈ 𝑈1 and 𝑝𝑛 ∈ 𝑈𝑛 , we have, using

Chapter 5. Uncertain Curve Simplification 145

Algorithm 5.2,

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀

if and only if
CheckFréchetInd(𝒰 , 𝑝1 , 𝑝𝑛 , 𝑛, 𝑘, 𝜀) = True .

Proof. First, assume that max𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛 𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀. In the

algorithm, we compute some set 𝑆
𝑗

𝑖
for each 𝑝

𝑗

𝑖
and then pick one value

from it and add it to 𝑇𝑖 ; from 𝑇𝑖 we then pick a single value as 𝑠𝑖 . So,

𝑠𝑖 ∈ 𝑆 𝑗𝑖 for some 𝑗𝑖 ∈ [𝑘], on every iteration 𝑖 ∈ {2, . . . , 𝑛 − 1}. Consider

a realisation 𝜋 ⋐ 𝒰 with 𝜋(1) ≡ 𝑝1, 𝜋(𝑛) ≡ 𝑝𝑛 , and 𝜋(𝑖) ≡ 𝑝
𝑗𝑖
𝑖

for

every 𝑖 ∈ {2, . . . , 𝑛 − 1}, where 𝑗𝑖 is chosen as the value corresponding

to 𝑠𝑖 . Then we know 𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀. So, there is an alignment

that can be given as a sequence of 𝑛 positions, 𝑡𝑖 ∈ [1, 2], such that

∥𝜋(𝑖) − 𝑝1𝑝𝑛(𝑡𝑖)∥ ≤ 𝜀 and 𝑡𝑖 ≤ 𝑡𝑖+1 for all 𝑖. The alignment is established

by interpolating between the consecutive points on the curves, as

discussed in Chapter 2.

We now show by induction that 𝑠𝑖 ≤ 𝑡𝑖 for all 𝑖. For 𝑖 = 2, we

get, for the chosen 𝑗2, 𝑠2 ≔ min{𝑡 ∈ [1, 2] | ∥𝑝 𝑗2
2
− 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀}.

As we have 𝑡2 ∈ {𝑡 ∈ [1, 2] | ∥𝑝 𝑗𝑖
2
− 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀}, we get 𝑠2 ≤ 𝑡2.

Now assume the statement holds for some 𝑖, then for 𝑖 + 1, we get

𝑠𝑖+1 ≔ min{𝑡 ∈ [𝑠𝑖 , 2] | ∥𝑝 𝑗𝑖+1

𝑖+1
− 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀}; we can rephrase this so

that

𝑠𝑖+1

def

= min

(︁
{𝑡 ∈ [1, 2] | ∥𝑝 𝑗𝑖+1

𝑖+1
− 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀} ∩ [𝑠𝑖 , 2]

)︁
.

So, there are two options.

• 𝑠𝑖+1 = 𝑠𝑖 . Then we know 𝑠𝑖+1 = 𝑠𝑖 ≤ 𝑡𝑖 ≤ 𝑡𝑖+1.

• 𝑠𝑖+1 > 𝑠𝑖 . Then we can use the same argument as for 𝑖 = 2 to find

that 𝑠𝑖+1 ≤ 𝑡𝑖+1.

Now we know that for every 𝑖, 𝑡𝑖 ∈ 𝑆 𝑗𝑖𝑖 for the choice of 𝑗𝑖 described

above. Therefore, for any 𝑝
𝑗𝑖+1

𝑖+1
, there is always a realisation prefix such

that any valid alignment has 𝑡𝑖+1 ≥ 𝑠𝑖 ; as we know that there is a valid

alignment for every realisation, we conclude that every 𝑆
𝑗

𝑖
is non-empty.

Thus, the algorithm returns True.

Now assume that the algorithm returns True. Consider any realisa-

tion 𝜋 ⋐ 𝒰 . We claim that there is a valid alignment, described with a

Chapter 5. Uncertain Curve Simplification 146

Algorithm 5.2. Testing a shortcut on an indecisive curve with the Fréchet

distance.

1 ▷ Input constraint: 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩, 𝑛, 𝑘 ∈ ℕ, ∀𝑖 ∈ [𝑛] : 𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
},

∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘] : 𝑝
𝑗

𝑖
∈ ℝ2

, 𝜀 ∈ ℝ+
, 𝑝1 ∈ 𝑈1, 𝑝𝑛 ∈ 𝑈𝑛

2 function CheckFréchetInd(𝒰 , 𝑝1 , 𝑝𝑛 , 𝑛, 𝑘, 𝜀)
3 𝑠1 ≔ 1

4 for all 𝑖 ∈ {2, . . . , 𝑛 − 1} do
5 𝑇𝑖 ≔ ∅
6 for all 𝑗 ∈ [𝑘] do
7 𝑆

𝑗

𝑖
≔ {𝑡 ∈ [𝑠𝑖−1 , 2] | ∥𝑝

𝑗

𝑖
− 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀}

8 if 𝑆 𝑗
𝑖
= ∅ then

9 return False

10 𝑇𝑖 ≔ 𝑇𝑖 ∪ min 𝑆
𝑗

𝑖
11 𝑠𝑖 ≔ max𝑇𝑖
12 return True

sequence of 𝑡𝑖 ∈ [1, 2] for 𝑖 ∈ {2, . . . , 𝑛 − 1}, such that 𝑠𝑖−1 ≤ 𝑡𝑖 ≤ 𝑠𝑖 and

∥𝑝1𝑝𝑛(𝑡𝑖) − 𝜋(𝑖)∥ ≤ 𝜀. Denote realisation 𝜋
def

= ⟨𝑝1 , 𝑝
𝑗2
2
, 𝑝

𝑗3
3
, . . . , 𝑝

𝑗𝑛−1

𝑛−1
, 𝑝𝑛⟩,

so the sequence ⟨𝑗2 , . . . , 𝑗𝑛−1⟩ describes the choices of the realisation.

Consider the set 𝑆
𝑗𝑖
𝑖

for any 𝑖 ∈ {2, . . . , 𝑛 − 1}. We know that it is

non-empty, otherwise the algorithm would have returned False. We

claim that we can pick 𝑡𝑖 = min 𝑆
𝑗𝑖
𝑖

for every 𝑖. By definition, 𝑆
𝑗𝑖
𝑖
⊆ [1, 2]

and ∥𝑝1𝑝𝑛(𝑡𝑖) − 𝜋(𝑖)∥ ≤ 𝜀. We also trivially get that 𝑠𝑖−1 ≤ 𝑡𝑖 . Finally,

note that 𝑡𝑖 ∈ 𝑇𝑖 , and 𝑠𝑖 ≔ max𝑇𝑖 , so 𝑡𝑖 ≤ 𝑠𝑖 .

This argument shows that 𝑡𝑖 ≤ 𝑡𝑖+1 for every 𝑖, and ∥𝑝1𝑝𝑛(𝑡𝑖)−𝜋(𝑖)∥ ≤
𝜀. Thus, 𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀. As it holds for any realisation with 𝜋(1) ≡ 𝑝1

and 𝜋(𝑛) ≡ 𝑝𝑛 , we conclude max𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛 𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀. □

Disks. To show the generalisation to disks, it is helpful to reframe the

problem as that of disk stabbing for appropriate disks. We demonstrate

some useful facts first.

Lemma 5.12. Given a disk 𝐷1 ≔ 𝐷(𝑐, 𝑟) with 𝑐 ∈ ℝ2, 𝑟 ∈ ℝ+, a threshold
𝜀 ∈ ℝ+, and a point 𝑝 ∈ ℝ2, define 𝐷2 ≔ 𝐷(𝑐, 𝜀 − 𝑟). We have

max

𝑝′∈𝐷1

∥𝑝 − 𝑝′∥ ≤ 𝜀 ⇐⇒ 𝑝 ∈ 𝐷2 .

Chapter 5. Uncertain Curve Simplification 147

Proof. First, assume 𝑝 ∈ 𝐷2

def

= {𝑠 ∈ ℝ2 | ∥𝑠 − 𝑐∥ ≤ 𝜀 − 𝑟}; thus,

we know ∥𝑝 − 𝑐∥ ≤ 𝜀 − 𝑟. Take 𝑞 ≔ arg max𝑝′∈𝐷1

∥𝑝 − 𝑝′∥. Then

𝑞 ∈ 𝐷1

def

= {𝑠 ∈ ℝ2 | ∥𝑠 − 𝑐∥ ≤ 𝑟}, so ∥𝑞 − 𝑐∥ ≤ 𝑟. Then by the triangle

inequality,

∥𝑝 − 𝑞∥ ≤ ∥𝑝 − 𝑐∥ + ∥𝑞 − 𝑐∥ ≤ 𝜀 − 𝑟 + 𝑟 = 𝜀 .

Now assume that 𝑝 ∉ 𝐷2

def

= {𝑠 ∈ ℝ2 | ∥𝑠 − 𝑐∥ ≤ 𝜀 − 𝑟}. Then

∥𝑝 − 𝑐∥ > 𝜀− 𝑟. Consider a point 𝑞 on the line 𝑝𝑐 on the boundary of 𝐷1,

so that 𝑐 is between 𝑝 and 𝑞 on the line. Note that 𝑞 ∈ 𝐷1, so

max

𝑝′∈𝐷1

∥𝑝 − 𝑝′∥ ≥ ∥𝑝 − 𝑞∥ = ∥𝑝 − 𝑐∥ + ∥𝑞 − 𝑐∥ > 𝜀 − 𝑟 + 𝑟 = 𝜀 ,

completing the proof. □

We can now generalise the previous statement to talk about distance

to line segments.

Lemma 5.13. Given a disk 𝐷1 ≔ 𝐷(𝑐, 𝑟) with 𝑐 ∈ ℝ2, 𝑟 ∈ ℝ+, a threshold
𝜀 ∈ ℝ+, and a line segment 𝑝𝑞 with 𝑝, 𝑞 ∈ ℝ2, define 𝐷2 ≔ 𝐷(𝑐, 𝜀 − 𝑟). We
have

max

𝑝′∈𝐷1

𝑑(𝑝′, 𝑝𝑞) ≤ 𝜀 ⇐⇒ 𝑝𝑞 ∩ 𝐷2 ≠ ∅ .

Proof. First, assume 𝑝𝑞 ∩ 𝐷2 ≠ ∅. Take 𝑡 ∈ 𝑝𝑞 ∩ 𝐷2. Consider an

arbitrary point 𝑠 ∈ 𝐷1. By Lemma 5.12, we know that ∥𝑡 − 𝑠∥ ≤ 𝜀; so

also 𝑑(𝑠, 𝑝𝑞) def

= min𝑞′∈𝑝𝑞 ∥𝑞′− 𝑠∥ ≤ ∥𝑡− 𝑠∥ ≤ 𝜀. As this holds for arbitrary

𝑠 ∈ 𝐷1, we conclude max𝑝′∈𝐷1
min𝑞′∈𝑝𝑞 ∥𝑝′ − 𝑞′∥ ≤ 𝜀.

Now assume that max𝑝′∈𝐷1
𝑑(𝑝′, 𝑝𝑞) ≤ 𝜀. In disks, it is easy to see

that the furthest point of a disk from a line segment is positioned in a

way that the centre of the disk is on the line through the point of the disk

and the closest point of the line segment, so in our case 𝑐 ∈ 𝑠𝑡, where

𝑠 ≔ arg max𝑝′∈𝐷1

min𝑞′∈𝑝𝑞 ∥𝑝′ − 𝑞′∥ and 𝑡 ≔ arg min𝑞′∈𝑝𝑞 ∥𝑠 − 𝑞′∥. Then

∥𝑡− 𝑐∥ = ∥𝑡− 𝑠∥ − ∥𝑠− 𝑐∥ ≤ 𝜀− 𝑟, so indeed 𝑡 ∈ 𝐷2, and 𝑝𝑞∩𝐷2 ≠ ∅. □

Lemma 5.14. Given 𝑛 ∈ ℕ and 𝜀 ∈ ℝ+, for any imprecise curve modelled
with disks 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with𝑈𝑖 = 𝐷(𝑐𝑖 , 𝑟𝑖) for all 𝑖 ∈ [𝑛] and 𝑐𝑖 ∈ ℝ2,
𝑟𝑖 ∈ ℝ+ for all 𝑖 ∈ [𝑛], and given some 𝑝1 ∈ 𝑈1 and 𝑝𝑛 ∈ 𝑈𝑛 , we have, using
Algorithm 5.3,

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀

Chapter 5. Uncertain Curve Simplification 148

Algorithm 5.3. Testing a shortcut on an imprecise curve modelled with disks

with the Fréchet distance.

1 ▷ Input constraint: 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩, 𝑛 ∈ ℕ, 𝜀 ∈ ℝ+
, ∀𝑖 ∈ [𝑛] : 𝑈𝑖 = 𝐷(𝑐𝑖 , 𝑟𝑖),

∀𝑖 ∈ [𝑛] : 𝑐𝑖 ∈ ℝ2 , 𝑟𝑖 ∈ ℝ+
, 𝑝1 ∈ 𝑈1, 𝑝𝑛 ∈ 𝑈𝑛

2 function CheckFréchetDisks(𝒰 , 𝑝1 , 𝑝𝑛 , 𝑛, 𝜀)
3 𝑠1 ≔ 1

4 for all 𝑖 ∈ {2, . . . , 𝑛 − 1} do
5 𝑆𝑖 ≔ {𝑡 ∈ [𝑠𝑖−1 , 2] | ∥𝑐𝑖 − 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀 − 𝑟𝑖}
6 if 𝑆𝑖 = ∅ then
7 return False

8 𝑠𝑖 ≔ min 𝑆𝑖
9 return True

if and only if
CheckFréchetDisks(𝒰 , 𝑝1 , 𝑝𝑛 , 𝑛, 𝜀) = True .

Proof. It is convenient to use Lemma 5.13 to change the problem:

rather than establishing an alignment that comes in the correct or-

der and satisfies the distance constraints, we can do disk stabbing

and pick the stabbing points in the correct order. Therefore, we have

max𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛 𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀 if and only if there exists a se-

quence of points 𝑝′
𝑖
∈ 𝑝1𝑝𝑛 ∩ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖) for all 𝑖 ∈ {2, . . . , 𝑛 − 1} such

that 𝑝′
𝑖
≼ 𝑝′

𝑖+1
along 𝑝1𝑝𝑛 for all 𝑖 ∈ {2, . . . , 𝑛 − 2}. It remains to show

that this is exactly what Algorithm 5.3 computes.

Assume the algorithm returns True. We claim that in this case, the

alignment obtained by 𝑝′
𝑖
≔ 𝑝1𝑝𝑛(𝑠𝑖) satisfies the conditions. First, by

definition, 𝑠𝑖 ∈ 𝑆𝑖
def

= {𝑡 ∈ [𝑠𝑖−1 , 2] | ∥𝑐𝑖 − 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀 − 𝑟𝑖}, so we have

∥𝑐𝑖 − 𝑝′𝑖 ∥ ≤ 𝜀 − 𝑟𝑖 , so indeed 𝑝′
𝑖
∈ 𝑝1𝑝𝑛 ∩ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖). Furthermore, by

construction, 𝑠𝑖 ∈ [𝑠𝑖−1 , 2], so 𝑠𝑖−1 ≤ 𝑠𝑖 , and hence 𝑝′
𝑖−1

≼ 𝑝′
𝑖
.

Now assume that the conditions hold, so there is some valid align-

ment, represented by a sequence of points 𝑝′
𝑖
. We claim that for all

𝑖 ∈ {2, . . . , 𝑛 − 1}, we have 𝑝1𝑝𝑛(𝑠𝑖) ≼ 𝑝′
𝑖
. For 𝑖 = 2, this clearly holds, as

𝑝1𝑝𝑛(𝑠2) is the first point that falls into 𝑝1𝑝𝑛 ∩𝐷(𝑐2 , 𝜀− 𝑟2). Now assume

this holds for some 𝑖, and we will show that it holds for iteration 𝑖 + 1.

On iteration 𝑖 + 1, there are two possibilities:

• 𝑠𝑖 > 𝑠𝑖−1; then we are in the same situation as for 𝑖 = 2, so

𝑝1𝑝𝑛(𝑠𝑖) ≼ 𝑝′
𝑖
.

Chapter 5. Uncertain Curve Simplification 149

𝑝 𝑞𝑥′

𝑢

𝑣

𝑥

𝑡

𝑦′𝜀

Figure 5.3. Illustration for the computation in Lemma 5.15.

• 𝑠𝑖 = 𝑠𝑖−1; then we immediately get the same result, as also 𝑝′
𝑖
≼ 𝑝′

𝑖+1
.

Therefore, we can conclude that the algorithm finds an alignment if

one exists, as all 𝑡𝑖 such that 𝑝1𝑝𝑛(𝑡𝑖) ≡ 𝑝′
𝑖

fall inside 𝑆𝑖 , so all 𝑆𝑖 are

non-empty, and the algorithm returns True. □

Polygonal closed convex sets.

Lemma 5.15. Given 𝑛, 𝑘 ∈ ℕ and 𝜀 ∈ ℝ+, for any imprecise curve modelled
with PCCSs 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 ⊂ ℝ2 and 𝑉(𝑈𝑖) = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
}

for all 𝑖 ∈ [𝑛], and given some 𝑝1 ∈ 𝑈1 and 𝑝𝑛 ∈ 𝑈𝑛 , we have, using
Algorithm 5.4,

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1 ,𝜋(𝑛)≡𝑝𝑛
𝑑F(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀

if and only if
CheckFréchetPCCS(𝒰 , 𝑝1 , 𝑝𝑛 , 𝑛, 𝑘, 𝜀) = True .

Proof. As we have shown in Lemma 5.10, it suffices to test the vertices

of a PCCS to establish that the distance from every point to the line

segment is below the threshold. It remains to show that the extreme

alignment (in terms of ordering) for the Fréchet distance is also achieved

at a vertex. This case then becomes identical to the indecisive points

case, so we can use Lemma 5.11 to show correctness.

Consider an arbitrary point 𝑡 ∈ 𝑈𝑖 and let 𝑠 be the earliest point in

the 𝜀-disk around 𝑡 that is on 𝑝𝑞. Clearly, if 𝑡 is in the interior of 𝑈𝑖 ,

then we can take any 𝑡′ on the line through 𝑡 parallel to 𝑝𝑞 and get

the corresponding 𝑠′ with 𝑠 ≺ 𝑠′. So, assume 𝑡 is on the boundary

of𝑈𝑖 . Suppose that 𝑡 ∈ 𝑢𝑣 with 𝑢, 𝑣 ∈ 𝑉(𝑈𝑖). Rotate and translate the

coordinate plane so that 𝑝𝑞 lies on the 𝑥-axis. Derive the equation for

the line containing 𝑢𝑣, say, 𝑦′ = 𝑘𝑥′ + 𝑏. First consider 𝑘 = 0, so the line

containing 𝑢𝑣 is parallel to the line containing 𝑝𝑞. In this case, clearly,

Chapter 5. Uncertain Curve Simplification 150

Algorithm 5.4. Testing a shortcut on an imprecise curve modelled with PCCSs

with the Fréchet distance.

1 ▷ Input constraint: 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩, 𝑛, 𝑘 ∈ ℕ, ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘] : 𝑝
𝑗

𝑖
∈ ℝ2

,

∀𝑖 ∈ [𝑛] : 𝑈𝑖 is a PCCS, 𝑉(𝑈𝑖) = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
}, 𝜀 ∈ ℝ+

, 𝑝1 ∈ 𝑈1, 𝑝𝑛 ∈ 𝑈𝑛
2 function CheckFréchetPCCS(𝒰 , 𝑝1 , 𝑝𝑛 , 𝑛, 𝑘, 𝜀)
3 𝑠1 ≔ 1

4 for all 𝑖 ∈ {2, . . . , 𝑛 − 1} do
5 𝑇𝑖 ≔ ∅
6 for all 𝑗 ∈ [𝑘] do
7 𝑆

𝑗

𝑖
≔ {𝑡 ∈ [𝑠𝑖−1 , 2] | ∥𝑝

𝑗

𝑖
− 𝑝1𝑝𝑛(𝑡)∥ ≤ 𝜀}

8 if 𝑆 𝑗
𝑖
= ∅ then

9 return False

10 𝑇𝑖 ≔ 𝑇𝑖 ∪ min 𝑆
𝑗

𝑖
11 𝑠𝑖 ≔ max𝑇𝑖
12 return True

moving along 𝑢𝑣 in the direction coinciding with the direction from

𝑝 to 𝑞 increases the 𝑥-coordinate of point of interest, so moving to a

vertex is optimal. Now assume 𝑘 > 0. If 𝑘 < 0, reflect the coordinate

plane about 𝑦 = 0. Geometrically, it is easy to see (Figure 5.3) that the

coordinate of interest can be expressed as

𝑥 = 𝑥′ −
√︂
𝜀2 − 𝑦′2 =

𝑦′ − 𝑏
𝑘

−
√︂
𝜀2 − 𝑦′2 .

We want to maximise 𝑥 by picking the appropriate 𝑦′. We take the

derivative:

d𝑥

d𝑦′
=

1

𝑘
+

𝑦′√︁
𝜀2 − 𝑦′2

.

We can equate it to 0 to find the critical point of the function. Simplifying,

we find

𝑦′
0
= − 𝜀√

𝑘2 + 1

.

We can check that for 𝑦′ < 𝑦′
0
, the value of the derivative is negative,

and for 𝑦′ > 𝑦′
0

it is positive, so at 𝑦′ = 𝑦′
0

we achieve a local minimum.

There are no other critical points. Therefore, to maximise 𝑥, we want to

move as far as possible in either direction, away from the local minimum.

Chapter 5. Uncertain Curve Simplification 151

Since we are limited to the line segment 𝑢𝑣, the maximum is clearly

achieved at one of the segment endpoints. □

5.3 Shortcut Testing: All Points

In the previous section, we have covered testing a shortcut, given that

the first and the last points are fixed. Here we remove that restriction.

Problem 5.16. Given an uncertain curve 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ on 𝑛 ∈ ℕ,

𝑛 ≥ 3 uncertain points in ℝ2
, check if the largest Hausdorff or Fréchet

distance between 𝒰 and its one-segment simplification is below a

threshold 𝜀 ∈ ℝ+
for any realisation, i.e. for 𝛿 ≔ 𝑑H or 𝛿 ≔ 𝑑F, verify

max𝜋⋐𝒰 𝛿(𝜋, 𝑝1𝑝𝑛) ≤ 𝜀.

We first show how this can be done for indecisive points, both

for 𝛿 ≔ 𝑑H and 𝛿 ≔ 𝑑F. We can simply test the shortcut using the

corresponding procedure from Lemma 5.6 or Lemma 5.11, and do so

for each combination of the start and the end points. We can then test

an indecisive shortcut of length 𝑛 overall in time 𝒪(𝑘2 · 𝑛𝑘) = 𝒪(𝑛𝑘3).

Lemma 5.17. Given 𝑛, 𝑘 ∈ ℕ, 𝑛 ≥ 3, and 𝛿 ≔ 𝑑H or 𝛿 ≔ 𝑑F, for any
indecisive curve 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
} for all 𝑖 ∈ [𝑛]

and 𝑝 𝑗
𝑖
∈ ℝ2 for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘], we have

max

𝜋⋐𝒰
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) = max

𝑎∈[𝑘]
max

𝑏∈[𝑘]
max

𝜎⋐𝒰 ,𝜎(1)≡𝑝𝑎
1
,𝜎(𝑛)≡𝑝𝑏𝑛

𝛿(𝜎, 𝑝𝑎
1
𝑝𝑏𝑛) .

Proof. We can derive

max

𝜋⋐𝒰
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩)

{Def. ⋐}

= max

𝑝1∈𝑈1 ,...,𝑝𝑛∈𝑈𝑛

𝛿(⟨𝑝1 , . . . , 𝑝𝑛⟩, 𝑝1𝑝𝑛)

= max

𝑝1∈𝑈1

max

𝑝𝑛∈𝑈𝑛

max

𝑝2∈𝑈2 ,...,𝑝𝑛−1∈𝑈𝑛−1

𝛿(⟨𝑝1 , . . . , 𝑝𝑛⟩, 𝑝1𝑝𝑛)

{Def. ⋐}

= max

𝑝1∈𝑈1

max

𝑝𝑛∈𝑈𝑛

max

𝜎⋐𝒰 ,𝜎(1)≡𝑝1 ,𝜎(𝑛)≡𝑝𝑛
𝛿(𝜎, 𝑝1𝑝𝑛)

= max

𝑎∈[𝑘]
max

𝑏∈[𝑘]
max

𝜎⋐𝒰 ,𝜎(1)≡𝑝𝑎
1
,𝜎(𝑛)≡𝑝𝑏𝑛

𝛿(𝜎, 𝑝𝑎
1
𝑝𝑏𝑛) ,

Chapter 5. Uncertain Curve Simplification 152

as was to be shown. □

We now proceed to show the approach for disks and polygonal

closed convex sets. The procedure is the same for the Hausdorff and

the Fréchet distance, but differs between disks and PCCSs, since disks

have some convenient special properties.

5.3.1 Disks

We start by stating some useful observations.

Observation 5.18. Suppose we are given two non-degenerate disks 𝐷1 ≔

𝐷(𝑝1 , 𝑟1) and 𝐷2 ≔ 𝐷(𝑝2 , 𝑟2) with 𝐷1 ⊈ 𝐷2 and 𝐷2 ⊈ 𝐷1. We make the
following observations. (See Figure 5.4.)

• There are exactly two outer tangents to the disks, and the convex hull
of 𝐷1 ∪ 𝐷2 consists of an arc from 𝐷1, an arc from 𝐷2, and the outer
tangents.

• Assume the lines of the outer tangents intersect. When viewed from
the intersection point, the order in which the tangents touch the disks is
the same, i.e. either both first touch 𝐷1 and then 𝐷2, or the other way
around. If the lines are parallel, the same statement holds when viewed
from points on the tangent lines at infinity.

To see that the second observation is true, note that the distance

from the intersection point to the tangent points of a disk is the same

for both tangent lines. These observations mean that we can restrict

our attention to the area bounded by the outer tangents and define an

ordering in the resulting strip.

Definition 5.19. Given two distinct non-degenerate disks𝐷1 ≔ 𝐷(𝑝1 , 𝑟1)
and 𝐷2 ≔ 𝐷(𝑝2 , 𝑟2), consider a strip defined by the lines that form the

outer tangents to the disks. Assume we have two circular arcs 𝑂1 , 𝑂2

that intersect both tangents and lie inside the strip. Define 𝑠1 and 𝑣1 to

be the points where one of the tangents touches 𝐷1 and 𝐷2, respectively,

and let 𝑡1 and 𝑢1 be the points where 𝑂1 and 𝑂2 intersect that tangent,

respectively. Define the order on the tangents from 𝐷1 to 𝐷2, so 𝑠1 ≺ 𝑣1.

Define points 𝑠2, 𝑡2, 𝑢2, 𝑣2 similarly for the other tangent. We say that 𝑂2

is to the right of 𝑂1 if either 𝑡𝑖 = 𝑢𝑖 for 𝑖 ∈ {1, 2} and the radius of 𝑂1 is

larger than that of𝑂2; or if otherwise 𝑡𝑖 ≼ 𝑢𝑖 for 𝑖 ∈ {1, 2} and𝑂1 and𝑂2

Chapter 5. Uncertain Curve Simplification 153

𝑝1 𝑝2
𝑝1 𝑝2

𝑠1
𝑣1

𝑠2

𝑣2

𝑡1𝑢1

𝑡2𝑢2

Figure 5.4. Left: Illustration for Observation 5.18. The convex hull of the disks

is highlighted in black. The order in which the outer tangents touch the disks

is the same. Right: Illustration for Definition 5.19. Here 𝑂1 (𝑡1 to 𝑡2) is to the

right of 𝑂2 (𝑢1 to 𝑢2).

do not properly intersect. We say that 𝑂2 is to the left of 𝑂1 if either

𝑡𝑖 = 𝑢𝑖 for 𝑖 ∈ {1, 2} and the radius of 𝑂1 is smaller than that of 𝑂2; or if

otherwise 𝑢𝑖 ≼ 𝑡𝑖 for 𝑖 ∈ {1, 2} and 𝑂1 and 𝑂2 do not properly intersect.

(See Figure 5.4 for a visual interpretation.)

We are now ready to state the main result for the Hausdorff distance.

Lemma 5.20. Given 𝑛 ∈ ℕ, 𝑛 ≥ 3, for any imprecise curve modelled with
disks 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 = 𝐷(𝑐𝑖 , 𝑟𝑖) for all 𝑖 ∈ [𝑛] and 𝑐𝑖 ∈ ℝ2,
𝑟𝑖 ∈ ℝ+ for all 𝑖 ∈ [𝑛], and assuming𝑈1 ≠ 𝑈𝑛 , we have

max

𝜋⋐𝒰
𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀

if and only if both of the following are true:

• max

{︂
max

𝜋⋐𝒰 ,𝜋(1)≡𝑠,𝜋(𝑛)≡𝑡
𝑑H(𝜋, 𝑠𝑡), max

𝜋⋐𝒰 ,𝜋(1)≡𝑢,𝜋(𝑛)≡𝑣
𝑑H(𝜋, 𝑢𝑣)

}︂
≤ 𝜀 ,

where 𝑠, 𝑢 ∈ 𝑈1, 𝑡 , 𝑣 ∈ 𝑈𝑛 , and 𝑠𝑡 and 𝑢𝑣 are the outer tangents to
𝑈1 ∪𝑈𝑛 ; and

• for each 𝑖 ∈ {2, . . . , 𝑛−1}, the right arc of the disk𝐷(𝑐𝑖 , 𝜀− 𝑟𝑖) bounded
by the intersection points with the tangent lines is to the right of the right
arc of𝑈1 and the left arc of the disk 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖) is to the left of the left
arc of𝑈𝑛 .

Proof. Assume the right side of the lemma statement holds. First of all,

as we have max𝜋⋐𝒰 ,𝜋(1)≡𝑠,𝜋(𝑛)≡𝑡 𝑑H(𝜋, 𝑠𝑡) ≤ 𝜀, Lemma 5.9 shows that for

Chapter 5. Uncertain Curve Simplification 154

all 𝑖 ∈ {2, . . . , 𝑛 − 1}, we have 𝑑(𝑐𝑖 , 𝑠𝑡) + 𝑟𝑖 ≤ 𝜀, or 𝑑(𝑐𝑖 , 𝑠𝑡) ≤ 𝜀 − 𝑟𝑖 , so

𝑠𝑡 stabs each disk 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖). We can draw a similar conclusion for 𝑢𝑣.

Therefore, each disk 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖) crosses the entire strip bounded by the

tangent lines, with the intersection points splitting it into the left and

the right circular arcs. We can thus apply Definition 5.19 to these arcs,

as stated in the lemma.

First suppose that the disks 𝑈1 and 𝑈𝑛 do not intersect. Then for

any line segment from 𝑈1 to 𝑈𝑛 and any disk 𝐷′ ≔ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖), we

exit 𝐷′
after exiting𝑈1 and enter 𝐷′

before entering𝑈𝑛 . Hence, for any

line 𝑝𝑞 with 𝑝 ∈ 𝑈1 and 𝑞 ∈ 𝑈𝑛 and any 𝑖 ∈ {2, . . . , 𝑛 − 1}, we can find

a point 𝑤 ∈ 𝑝𝑞 ∩ 𝐷′
; this means, as stated in Lemma 5.13, that indeed

max𝑤′∈𝑈𝑖
𝑑(𝑤′, 𝑝𝑞) ≤ 𝜀. As this holds for all disks and any choice of

𝑝 and 𝑞, we conclude that max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀.

Now assume that the disks𝑈1 and𝑈𝑛 intersect. If we consider the

line segment 𝑝𝑞 with 𝑝 ∈ 𝑈1, 𝑞 ∈ 𝑈𝑛 , we end up in the previous case

if either 𝑝 ∉ 𝑈1 ∩𝑈𝑛 or 𝑞 ∉ 𝑈1 ∩𝑈𝑛 . So assume that the segment 𝑝𝑞

lies entirely in the intersection 𝑈1 ∩𝑈𝑛 . However, it can be seen that

for each disk 𝐷′ ≔ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖), the left boundary of the intersection is

to the right of the left boundary of the disk, and the right boundary of

the intersection is to the left of the right boundary of the disk; hence,

𝑝𝑞 ⊂ 𝑈1 ∩𝑈𝑛 ⊆ 𝐷′
. Therefore, we have max𝑤′∈𝑈𝑖

𝑑(𝑤′, 𝑝𝑞) ≤ 𝜀, and so

also in this case max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀.

We now assume that the right side of the lemma statement is false

and show that then max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) > 𝜀. If it holds that

max𝜋⋐𝒰 ,𝜋(1)≡𝑠,𝜋(𝑛)≡𝑡 𝑑H(𝜋, 𝑠𝑡) > 𝜀, then we can immediately observe that

max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) > 𝜀. Same holds for 𝑢𝑣. So, assume those

statements hold; then it must be that for at least one intermediate disk

the arcs do not lie to the left or to the right of the arcs of the respective

disks. Assume this is disk 𝑖, so the disk 𝐷′ ≔ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖). W.l.o.g.

assume that the right arc of the disk does not lie entirely to the right of

the right arc of𝑈1. The argument for the left arc w.r.t.𝑈𝑛 is symmetric.

There must be at least one point 𝑝′ on the right arc of 𝑈1 that lies

outside of 𝐷′
. Assume for now that𝑈1 and𝑈𝑛 are disjoint. Then a line

segment 𝑝′𝑞 for any 𝑞 ∈ 𝑈𝑛 does not stab 𝐷′
, so max𝑤′∈𝑈𝑖

𝑑(𝑤′, 𝑝𝑞) > 𝜀,

and so max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) > 𝜀. If 𝑈1 and 𝑈𝑛 intersect, then

either 𝑝′ is outside of the intersection and of 𝐷′
and there is a point

𝑞 ∈ 𝑈𝑛 such that 𝑝′𝑞 does not stab 𝐷′
; or we can pick the degenerate

line segment 𝑝′𝑝′, as 𝑝′ ∈ 𝑈1 ∩𝑈𝑛 , and so 𝑝′𝑝′ also does not stab 𝐷′
. In

Chapter 5. Uncertain Curve Simplification 155

either case, we conclude that max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) > 𝜀. □

It is also worth noting that the case of 𝑈1 = 𝑈𝑛 is similar to how

we treat the intersection 𝑈1 ∩ 𝑈𝑛 above; however, our definition for

the ordering between two disks does not apply. So, if 𝑈1 = 𝑈𝑛 , then

max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀 if and only if 𝑈1 ⊆ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖) for all

𝑖 ∈ {2, . . . , 𝑛 − 1}.
Similarly, we state the following for the Fréchet distance.

Lemma 5.21. Given 𝑛 ∈ ℕ, 𝑛 ≥ 3, for any imprecise curve modelled with
disks 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 = 𝐷(𝑐𝑖 , 𝑟𝑖) for all 𝑖 ∈ [𝑛] and 𝑐𝑖 ∈ ℝ2,
𝑟𝑖 ∈ ℝ+ for all 𝑖 ∈ [𝑛], and assuming𝑈1 ≠ 𝑈𝑛 , we have

max

𝜋⋐𝒰
𝑑F(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀

if and only if both of the following are true:

• max

{︂
max

𝜋⋐𝒰 ,𝜋(1)≡𝑠,𝜋(𝑛)≡𝑡
𝑑F(𝜋, 𝑠𝑡), max

𝜋⋐𝒰 ,𝜋(1)≡𝑢,𝜋(𝑛)≡𝑣
𝑑F(𝜋, 𝑢𝑣)

}︂
≤ 𝜀 ,

where 𝑠, 𝑢 ∈ 𝑈1, 𝑡 , 𝑣 ∈ 𝑈𝑛 , and 𝑠𝑡 and 𝑢𝑣 are the outer tangents to
𝑈1 ∪𝑈𝑛 ; and

• for each 𝑖 ∈ {2, . . . , 𝑛−1}, the right arc of the disk𝐷(𝑐𝑖 , 𝜀− 𝑟𝑖) bounded
by the intersection points with the tangent lines is to the right of the right
arc of𝑈1 and the left arc of the disk 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖) is to the left of the left
arc of𝑈𝑛 .

Proof. First assume that max𝜋⋐𝒰 𝑑F(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀. This also

means that max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀 as 𝑑F(𝜋, 𝜎) ≥ 𝑑H(𝜋, 𝜎) for

any curves 𝜋, 𝜎. Furthermore, we can immediately conclude that

max𝜋⋐𝒰 ,𝜋(1)≡𝑠,𝜋(𝑛)≡𝑡 𝑑F(𝜋, 𝑠𝑡) ≤ 𝜀, and the same for 𝑢𝑣. Together with

Lemma 5.20, this yields the right side of the lemma.

Now assume that the right side holds. As in Lemma 5.20, we know

that the disks cross the entire strip and that Definition 5.19 applies. It

remains to show that for any line segment 𝑝𝑞 with 𝑝 ∈ 𝑈1, 𝑞 ∈ 𝑈𝑛 , there

is a valid alignment that maintains the correct ordering and bottleneck

distance, assuming it exists for every realisation for 𝑠𝑡 and 𝑢𝑣. Consider

a valid alignment established for 𝑠𝑡 and 𝑢𝑣, so the sequence of points 𝑎𝑖
on 𝑠𝑡 and 𝑏𝑖 on 𝑢𝑣 that are mapped to𝑈𝑖 . As we showed in Lemma 5.12,

we can always find such points for each individual𝑈𝑖 , and as we know

Chapter 5. Uncertain Curve Simplification 156

that the Fréchet distance is below the threshold for 𝑠𝑡 and 𝑢𝑣, there is

such a valid alignment, i.e. we know that 𝑎𝑖 ≼ 𝑎𝑖+1 and 𝑏𝑖 ≼ 𝑏𝑖+1 for all

𝑖 ∈ [𝑛 − 1].
First suppose that the disks 𝑈1 and 𝑈𝑛 do not intersect. Consider

the region 𝑅 bounded by the outer tangents and the disk arcs that

are not part of the convex hull of 𝑈1 ∪ 𝑈𝑛 . We connect, for each

𝑖 ∈ {2, . . . , 𝑛 − 1}, 𝑎𝑖 to 𝑏𝑖 with a geodesic shortest path in 𝑅. We claim

that for any line segment 𝑝𝑞 defined above, the intersection points of

the shortest paths with the segment give a valid alignment, yielding

max𝜋⋐𝒰 ,𝜋(1)≡𝑝,𝜋(𝑛)≡𝑞 𝑑F(𝜋, 𝑝𝑞) ≤ 𝜀. As the choice of 𝑝𝑞 was arbitrary,

this will complete the proof.

To show that the alignment is valid, we need to show that the order

is correct and that the distances fall below the threshold. First consider

the case where the geodesic shortest path for point 𝑖 does not touch

the boundary formed by arcs of region 𝑅. In this case, it is simply a

line segment 𝑎𝑖𝑏𝑖 . Note that by definition 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖); as disks

are convex, also 𝑎𝑖𝑏𝑖 ⊂ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖); thus, the intersection point 𝑝′
𝑖

of

𝑝𝑞 with 𝑎𝑖𝑏𝑖 is in 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖), so by Lemma 5.12, max𝑤∈𝑈𝑖
∥𝑝′

𝑖
− 𝑤∥ ≤ 𝜀.

Furthermore, note that 𝑎𝑖 ≼ 𝑎𝑖+1 and 𝑏𝑖 ≼ 𝑏𝑖+1; thus, the line segments

𝑎𝑖𝑏𝑖 and 𝑎𝑖+1𝑏𝑖+1 cannot cross, so also 𝑝′
𝑖
≼ 𝑝′

𝑖+1
.

Now w.l.o.g. consider the case where the geodesic shortest path for

point 𝑖 touches the arc of𝑈1. The geodesic shortest paths do not cross:

on the path from 𝑎𝑖 (or 𝑏𝑖) to the arc they form a tangent to the arc,

thus for 𝑎𝑖 ≼ 𝑎𝑖+1, the tangent point for 𝑎𝑖 comes before that of 𝑎𝑖+1

when going along the arc from 𝑠 to 𝑢. So, just as in the previous case,

these line segments cannot cross. Having reached the arc, both shortest

paths will follow it, as otherwise the path would not be a shortest path;

thus, the arcs do not cross, either. Finally, a path from the previous

case does not touch any path that touches the arc boundary of 𝑅 by

definition. Finally, note that the condition that we have established

on the right arcs of disks being to the right of the right arc of 𝑈1 (and

symmetric for the left arcs and 𝑈𝑛) means that the geodesic shortest

paths that touch the arc boundary of 𝑅 stay within the respective disks

𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖). Thus, we have established that for all 𝑖, we have 𝑝′
𝑖
≼ 𝑝′

𝑖+1

and max𝑤∈𝑈𝑖
∥𝑝′

𝑖
− 𝑤∥ ≤ 𝜀, concluding the proof for disjoint𝑈1 and𝑈𝑛 .

Finally, consider the case where 𝑈1 intersects 𝑈𝑛 . Above we used

geodesic paths within the region 𝑅. However, when𝑈1 intersects𝑈𝑛 , 𝑅

consists of two disconnected regions. Observe that one region contains 𝑎𝑖

Chapter 5. Uncertain Curve Simplification 157

and the other contains 𝑏𝑖 . To connect 𝑎𝑖 with 𝑏𝑖 we use the geodesic

from 𝑎𝑖 to the intersection point of the two inner boundaries of𝑈1 and

𝑈𝑛 that is in the same region of 𝑅, the geodesic from 𝑏𝑖 to the other

intersection point of the inner boundaries, and join these two by a line

segment between the intersection points. Any line segment from a

point in𝑈1 to a point in𝑈𝑛 crosses these paths in order, just like in the

previous case. If the line segment goes through the intersection, note

that any point in the intersection is close enough to all the intermediate

objects, as the intersection is the subset of each disk. So, any point in the

intersection can be chosen to establish the trivially in-order alignment

to all the intermediate objects. □

Again, if 𝑈1 = 𝑈𝑛 , note that max𝜋⋐𝒰 𝑑F(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀 if and

only if𝑈1 ⊆ 𝐷(𝑐𝑖 , 𝜀 − 𝑟𝑖) for all 𝑖 ∈ {2, . . . , 𝑛 − 1}.

5.3.2 Non-intersecting PCCSs

Suppose the regions are modelled by convex polygons. Consider first

the case where the interiors of 𝑈1 and 𝑈𝑛 do not intersect, so at most

they share a boundary segment.

Observation 5.22. Given an uncertain curve modelled by convex polygons
𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with the interiors of𝑈1 and𝑈𝑛 not intersecting, note:

• There are two outer tangents to the polygons𝑈1 and𝑈𝑛 , and the convex
hull of 𝑈1 ∪ 𝑈2 consists of a convex chain from 𝑈1, a convex chain
from𝑈𝑛 , and the outer tangents.

• Let 𝐶𝑖 be the convex chain from𝑈𝑖 that is not a part of the convex hull
for 𝑖 ∈ {1, 𝑛}. Then for 𝛿 ≔ 𝑑H or 𝛿 ≔ 𝑑F,

max

𝜋⋐𝒰
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀

if and only if
max

𝜋⋐𝒰 ,𝜋(1)∈𝐶1 ,𝜋(𝑛)∈𝐶𝑛
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀 .

To see that the second observation is true, note that one direction is

trivial. In the other direction, note that any line segment 𝑝𝑞 with 𝑝 ∈ 𝑈1,

𝑞 ∈ 𝑈𝑛 crosses both 𝐶1 and 𝐶𝑛 , say, at 𝑝′ ∈ 𝐶1 and 𝑞′ ∈ 𝐶𝑛 . We know

that there is a valid alignment for 𝑝′𝑞′, both for the Hausdorff and the

Fréchet distance; we can then use this alignment for 𝑝𝑞. See Figure 5.5.

Chapter 5. Uncertain Curve Simplification 158

𝑈1

𝐶1

𝑈𝑛

𝐶𝑛
𝑝 𝑞

𝑝′ 𝑞′ 𝑅

Figure 5.5. Left: Illustration for Observation 5.22. The convex hull of the disks

is shown in grey. The dotted chains are 𝐶1 and 𝐶𝑛 . Any line segment 𝑝𝑞 with

𝑝 ∈ 𝑈1 and 𝑞 ∈ 𝑈𝑛 crosses 𝐶1 and 𝐶𝑛 . Right: Illustration for the procedure.

The region 𝑅 is triangulated.

We claim that we can use the following procedure to check whether

max𝜋⋐𝒰 𝑑H(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀.

1. Triangulate the region 𝑅 bounded by two convex chains 𝐶1 and 𝐶𝑛
and the outer tangents.

2. For each line segment 𝑠𝑡 of the triangulation with 𝑠 ∈ 𝐶1, 𝑡 ∈ 𝐶𝑛 ,

check that max𝜋⋐𝒰 ,𝜋(1)≡𝑠,𝜋(𝑛)≡𝑡 𝛿(𝜋, 𝑠𝑡) ≤ 𝜀 for either 𝛿 ≔ 𝑑H or

𝛿 ≔ 𝑑F.

First of all, observe that we can compute a triangulation, and that

every triangle has two points from one convex chain and one point

from the other chain (see Figure 5.5). If all three points were from

the same chain, then the triangle would lie outside of 𝑅. Now con-

sider some line segment 𝑝𝑞 with 𝑝 ∈ 𝐶1, 𝑞 ∈ 𝐶𝑛 . To complete the

argument, it remains to show that the checks in step 2 mean that also

max𝜋⋐𝒰 ,𝜋(1)≡𝑝,𝜋(𝑛)≡𝑞 𝛿(𝜋, 𝑝𝑞) ≤ 𝜀. Observe that the triangles span across

the region 𝑅, so when going from one tangent to the other within 𝑅 we

cross all the triangles. Therefore, we can order them, in the order of

occurrence on such a path, from 1 to 𝑘. Denote the alignment established

on line 𝑗 ∈ [𝑘] with the sequence of 𝑎
𝑗

𝑖
, for 𝑖 ∈ [𝑛]; this alignment can be

established both for 𝛿 ≔ 𝑑H and 𝛿 ≔ 𝑑F. We can then establish poly-

gonal curves 𝐴𝑖 ≔ ⟨𝑎1

𝑖
, . . . , 𝑎𝑘

𝑖
⟩; clearly, they all stay within 𝑅. We claim

that for any line segment 𝑝𝑞 defined above, it is possible to establish

a valid alignment from intersection points of 𝑝𝑞 and 𝐴𝑖 . We do this

separately for the Fréchet and the Hausdorff distance.

Lemma 5.23. Given a set of curves 𝐴 ≔ {𝐴2 , . . . , 𝐴𝑛−1} in 𝑅 described
above for 𝛿 ≔ 𝑑H and a line segment 𝑝𝑞 with 𝑝 ∈ 𝐶1, 𝑞 ∈ 𝐶𝑛 , we have
max𝜋⋐𝒰 ,𝜋(1)≡𝑝,𝜋(𝑛)≡𝑞 𝑑H(𝜋, 𝑝𝑞) ≤ 𝜀.

Chapter 5. Uncertain Curve Simplification 159

Proof. Note that 𝑝𝑞 crosses each 𝐴𝑖 at least once. We can take any one

crossing for each 𝑖 and establish the alignment. Consider such a crossing

point 𝑝′
𝑖
. It falls in some triangle bounded by a segment from either 𝐶1

or 𝐶𝑛 and two line segments that contain points 𝑎
𝑗

𝑖
and 𝑎

𝑗+1

𝑖
for some

𝑗 ∈ [𝑘]. We know, using Lemma 5.10, that max𝑤∈𝑈𝑖
∥𝑎 𝑗

𝑖
− 𝑤∥ ≤ 𝜀 and

max𝑤∈𝑈𝑖
∥𝑎 𝑗+1

𝑖
− 𝑤∥ ≤ 𝜀. Consider any point 𝑤′ ∈ 𝑈𝑖 . Then, using

Lemma 5.4 with 𝑐 ≔ 𝑑 ≔ 𝑤′
, we find that ∥𝑤′ − 𝑝′

𝑖
∥ ≤ 𝜀. Therefore,

also max𝑤∈𝑈𝑖
∥𝑝′

𝑖
− 𝑤∥ ≤ 𝜀; using Lemma 5.10, we conclude that indeed

max𝜋⋐𝒰 ,𝜋(1)≡𝑝,𝜋(𝑛)≡𝑞 𝑑H(𝜋, 𝑝𝑞) ≤ 𝜀. □

For the Fréchet distance, we can use the same argument to show

closeness; however, we need more care to establish the correct order for

the alignment to be valid.

Lemma 5.24. Given a set of curves 𝐴 ≔ {𝐴2 , . . . , 𝐴𝑛−1} in 𝑅 described
above for 𝛿 ≔ 𝑑F and a line segment 𝑝𝑞 with 𝑝 ∈ 𝐶1, 𝑞 ∈ 𝐶𝑛 , we have
max𝜋⋐𝒰 ,𝜋(1)≡𝑝,𝜋(𝑛)≡𝑞 𝑑F(𝜋, 𝑝𝑞) ≤ 𝜀.

Proof. Compared to Lemma 5.23, instead of taking any intersection point

of 𝑝𝑞 with each 𝐴𝑖 , we take the last intersection point.

We need to show, first of all, that curves 𝐴𝑖 and 𝐴𝑖+1 do not cross for

any 𝑖 ∈ [𝑛 − 1]. Note that each curve 𝐴𝑖 crosses each triangle once, so it

suffices to show that a segment 𝑎
𝑗

𝑖
𝑎
𝑗+1

𝑖
does not cross 𝑎

𝑗

𝑖+1
𝑎
𝑗+1

𝑖+1
. Indeed,

as 𝑎
𝑗

𝑖
≼ 𝑎

𝑗

𝑖+1
and 𝑎

𝑗+1

𝑖
≼ 𝑎

𝑗+1

𝑖+1
, these line segments cannot cross.

Now consider, for each 𝑖 ∈ {2, . . . , 𝑛− 1}, the polygon 𝑃𝑖 bounded by

𝐶1, 𝐴𝑖 , and the corresponding segments of the outer tangents. With the

previous statement, it is easy to see that 𝑃2 ⊆ 𝑃3 ⊆ · · · ⊆ 𝑃𝑛−1. Assume

this is not the case, so some 𝑃𝑖 ⊈ 𝑃𝑖+1. Then there is a point 𝑧 ∈ 𝑃𝑖 , but

𝑧 ∉ 𝑃𝑖+1. The point 𝑧 falls into some triangle with lines 𝑗 and 𝑗 + 1. In

this triangle, it means that 𝑧 is between 𝐶1 and 𝑎
𝑗

𝑖
𝑎
𝑗+1

𝑖
, but not between

𝐶1 and 𝑎
𝑗

𝑖+1
𝑎
𝑗+1

𝑖+1
. However, as these segments do not cross, this would

imply that 𝑎
𝑗

𝑖+1
≺ 𝑎

𝑗

𝑖
, but then the check in step 2 would not pass for

line 𝑗.

Consider the points at which the line segment 𝑝𝑞 leaves the poly-

gons 𝑃𝑖 for the last time. From the definition it is obvious that 𝑝 ∈ 𝑃𝑖
for all 𝑖 ∈ {2, . . . , 𝑛 − 1}, so this is well-defined. Clearly, due to the

subset relationship, the order of such points 𝑝′
𝑖
is correct, i.e. 𝑝′

𝑖
≼ 𝑝′

𝑖+1
.

Furthermore, each such 𝑝′
𝑖
∈ 𝐴𝑖 , so using the arguments of Lemma 5.23,

Chapter 5. Uncertain Curve Simplification 160

we can show that also the distances are below 𝜀. Thus, we conclude that

indeed max𝜋⋐𝒰 ,𝜋(1)≡𝑝,𝜋(𝑛)≡𝑞 𝑑F(𝜋, 𝑝𝑞) ≤ 𝜀. □

The proofs of Lemmas 5.23 and 5.24 show us how to solve the

problem for two convex polygons with non-intersecting interiors. We

can also use them directly for the case of line segments that do not

intersect except at endpoints.

Corollary 5.25. Given 𝑛 ∈ ℕ, 𝑛 ≥ 3, for any imprecise curve modelled with
line segments 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with𝑈𝑖 = 𝑝1

𝑖
𝑝2

𝑖
⊂ ℝ2 for all 𝑖 ∈ [𝑛], given

a threshold 𝜀 ∈ ℝ+, and given that 𝑈1 ∩𝑈𝑛 ⊂ {𝑝1

1
, 𝑝2

1
}, and assuming that

the triangles 𝑝1

1
𝑝1

𝑛𝑝
2

1
and 𝑝2

1
𝑝1

𝑛𝑝
2

𝑛 form a triangulation of the convex hull of
𝑈1 ∪𝑈𝑛 , we have

max

𝜋⋐𝒰
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀

if and only if

max

{︁
max

𝜋⋐𝒰 ,𝜋(1)≡𝑝1

1
,𝜋(𝑛)≡𝑝1

𝑛

𝛿(𝜋, 𝑝1

1
𝑝1

𝑛) ,

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝2

1
,𝜋(𝑛)≡𝑝1

𝑛

𝛿(𝜋, 𝑝2

1
𝑝1

𝑛) ,

max

𝜋⋐𝒰 ,𝜋(1)≡𝑝2

1
,𝜋(𝑛)≡𝑝2

𝑛

𝛿(𝜋, 𝑝2

1
𝑝2

𝑛)
}︁
≤ 𝜀 .

We should note that in this particular case it is not necessary to use a

triangulation, so we can get rid of the second term; also in the previous

proofs a convex partition could work instead, but a triangulation is

easier to define.

5.3.3 Intersecting PCCSs

We proceed to discuss the situation where the interiors of 𝑈1 and 𝑈𝑛

intersect, or where the line segments 𝑈1 and 𝑈𝑛 cross. The argument

is the same for both 𝛿 ≔ 𝑑H and 𝛿 ≔ 𝑑F, but it is easier to treat line

segments and convex polygons separately.

Line segments. Assume line segments𝑈1

def

= 𝑝1

1
𝑝2

1
and𝑈𝑛

def

= 𝑝1

𝑛𝑝
2

𝑛 cross;

call their intersection point 𝑠. Then we can use Corollary 5.25 separately

on pairs of {𝑝1

1
𝑠, 𝑠𝑝2

1
} × {𝑝1

𝑛𝑠, 𝑠𝑝
2

𝑛}. Clearly, together this will cover the

entire set of realisations of 𝑝𝑞 with 𝑝 ∈ 𝑈1, 𝑞 ∈ 𝑈𝑛 , thus completing the

checks.

Chapter 5. Uncertain Curve Simplification 161

Lemma 5.26. Given 𝑛 ∈ ℕ, 𝑛 ≥ 3, for any imprecise curve modelled with line
segments 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 = 𝑝1

𝑖
𝑝2

𝑖
⊂ ℝ2 for all 𝑖 ∈ [𝑛], given a

threshold 𝜀 ∈ ℝ+, we can check for both 𝛿 ≔ 𝑑H and 𝛿 ≔ 𝑑F, using procedures
above, that

max

𝜋⋐𝒰
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀 .

Convex polygons. Convex polygons whose interiors intersect can

be partitioned along the intersection lines, so into a convex polygon

𝑅 ≔ 𝑈1 ∩𝑈𝑛 and two sets of polygons 𝒫1 ≔ {𝑃1

1
, . . . , 𝑃𝑘

1
} and 𝒫𝑛 ≔

{𝑃1

𝑛 , . . . , 𝑃
ℓ
𝑛} for some 𝑘, ℓ ∈ ℕ. Just as for line segments, we can look

at pairs from 𝒫1 × 𝒫𝑛 separately. The pairs where 𝑅 is involved are

treated later. Consider some (𝑃, 𝑄) ∈ 𝒫1 × 𝒫𝑛 . Note that 𝑃 and 𝑄 are

convex polygons with a convex cut-out, so the boundary forms a convex

chain, followed by a concave chain. We need to compute some convex

polygons 𝑃′
and 𝑄′

with non-intersecting interiors that are equivalent

to 𝑃 and 𝑄, so that we can apply the approaches from Section 5.3.2.

We claim that we can simply take the convex hull of 𝑃 and𝑄 to obtain

𝑃′
and 𝑄′

. Clearly, the resulting polygons will be convex. Also, the

concave chains of 𝑃 are bounded by points 𝑠 and 𝑡 and are replaced with

the line segment 𝑠𝑡; same happens for𝑄 with points 𝑢 and 𝑣. The points

𝑠, 𝑡 , 𝑢, 𝑣 are points of intersection of original polygons 𝑈1 and 𝑈𝑛 , so

they lie on the boundary of 𝑅, and their order along that boundary can

only be 𝑠, 𝑡 , 𝑢, 𝑣 or 𝑠, 𝑡 , 𝑣, 𝑢. Thus, it cannot happen that 𝑠𝑡 crosses 𝑢𝑣,

and it cannot be that 𝑢𝑣 is in the interior of the convex hull of 𝑃, as

otherwise 𝑅 would not be convex. Hence, the interiors of 𝑃′
and 𝑄′

cannot intersect, so they satisfy the necessary conditions.

Finally, we need to show that the solution for (𝑃′, 𝑄′) is equivalent

to that for (𝑃, 𝑄). One direction is trivial, as 𝑃 ⊆ 𝑃′
and 𝑄 ⊆ 𝑄′

; for the

other direction, consider any line segment that leaves 𝑃 through the

concave chain. In our approach, we test the lines starting in 𝑠 and 𝑡; the

established alignments are connected into paths. The paths 𝐴𝑖 do not

cross 𝑠𝑡. So, any alignment in the region of CH(𝑃 ∪ 𝑄) \ (𝑃 ∪ 𝑄) can

also be made in the region CH(𝑃′ ∪ 𝑄′) \ (𝑃′ ∪ 𝑄′). So, this approach

yields valid solutions for all pairs not involving 𝑅.

Now consider the pair (𝑅, 𝑅). A curve may now consist of a single

point, so the approach for the Fréchet and the Hausdorff distance is

the same: all the points of𝑈𝑖 need to be close enough to all the points

Chapter 5. Uncertain Curve Simplification 162

of 𝑅. To check that, observe that the pair of points 𝑝 ∈ 𝑈𝑖 and 𝑞 ∈ 𝑅
that has maximal distance has the property that 𝑝 is an extreme point

of𝑈𝑖 in direction 𝑞𝑝 and 𝑞 is an extreme point of 𝑅 in direction 𝑝𝑞. So,

it suffices, starting at the rightmost point of 𝑈𝑖 and the leftmost point

of 𝑅 in some coordinate system, to then rotate clockwise around both

regions keeping track of the distance between tangent points. Note that

only vertices need to be considered, as the extremal point cannot lie

on an edge. Finally, any other pair that involves 𝑅 is covered by the

stronger case of (𝑅, 𝑅): for any line, we can align every intermediate

object to any point in 𝑅.

Lemma 5.27. Given 𝑛 ∈ ℕ, 𝑛 ≥ 3, for any imprecise curve modelled with
convex polygons 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩ with 𝑈𝑖 ⊂ ℝ2 for all 𝑖 ∈ [𝑛] and
𝑉(𝑈𝑖) = {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
} for all 𝑖 ∈ [𝑛], 𝑘 ∈ ℕ, given a threshold 𝜀 ∈ ℝ+, we

can check for both 𝛿 ≔ 𝑑H and 𝛿 ≔ 𝑑F, using procedures above, that

max

𝜋⋐𝒰
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑛)⟩) ≤ 𝜀 .

5.4 Combining Steps

In Sections 5.2 and 5.3, we have established correctness of the routines

that can be used to check if a shortcut is valid under either the Hausdorff

distance or the Fréchet distance. In this section, we summarise the

approach, discuss the shortcut graph, and analyse the running times.

Lemma 5.28. Given 𝑛 ∈ ℕ, for any uncertain curve modelled with indecisive
points, disks, or PCCSs 𝒰 = ⟨𝑈1 , . . . , 𝑈𝑛⟩, and given a threshold 𝜀 ∈ ℝ+,
and fixing either 𝛿 ≔ 𝑑H or 𝛿 ≔ 𝑑F, if we can check in time 𝑇 for any pair
𝑖 , 𝑗 ∈ [𝑛], 𝑖 < 𝑗 that

max

𝜋⋐𝒰[𝑖:𝑗]
𝛿(𝜋, ⟨𝜋(1),𝜋(𝑗 − 𝑖 + 1)⟩) ≤ 𝜀 ,

then in time 𝒪(𝑇𝑛2) we can find the shortest index subsequence 𝐼 ⊆ [𝑛] with
|𝐼 | = ℓ such that for all 𝑗 ∈ [ℓ],

max

𝜋⋐𝒰[𝐼(𝑗):𝐼(𝑗+1)]
𝛿(𝜋, ⟨𝜋(1),𝜋(𝐼(𝑗 + 1) − 𝐼(𝑗) + 1)⟩) ≤ 𝜀 .

Proof. The approach is simple: construct a graph 𝐺 ≔ (𝑉, 𝐸) with 𝑉 ≔

{𝑣1 , . . . , 𝑣𝑛} and (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 if and only if max𝜋⋐𝒰[𝑖:𝑗] 𝛿(𝜋, ⟨𝜋(1),𝜋(𝑗 −

Chapter 5. Uncertain Curve Simplification 163

𝑖 + 1)⟩) ≤ 𝜀. Clearly, this takes 𝒪(𝑇𝑛2) time. Any path in the graph from

𝑣1 to 𝑣𝑛 gives a subsequence for which the condition in the statement of

the lemma holds; there are no simplifications that would not correspond

to such a path; thus, finding the shortest path in 𝐺 using e.g. BFS in time

𝒪(𝑛2) indeed yields the answer. □

It is easy to see that the result of the lemma is exactly the problem

we were trying to solve: obtaining a single simplification such that no

matter which realisation of the curve is chosen, the resulting realisation

of the simplification is valid.

We now proceed to recap the methods for checking the shortcuts. For

indecisive points, one can test all combinations for the first and the last

point of the shortcut, as in Lemma 5.17, and for each such combination

do the testing either for the Hausdorff or the Fréchet distance, as in

Lemmas 5.6 and 5.11.

For imprecise points modelled with disks, it suffices to test the outer

tangents and check some extra conditions on the intermediate disks, as

in Lemmas 5.20 and 5.21. For the outer tangents, the testing can be done

using the approaches of Lemmas 5.9 and 5.14.

For imprecise points modelled with line segments, one can split the

first and the last one into regions if they cross, as in Lemma 5.26, and

apply Corollary 5.25 to each pair. The testing of the outer tangents can

be done using Lemmas 5.10 and 5.15 for the Hausdorff and the Fréchet

distance, respectively.

Finally, for imprecise points modelled with convex polygons, we

again split the first and the last one into regions if their interiors intersect,

as in Lemma 5.27, and apply Lemmas 5.23 and 5.24. To test each shortcut

with the fixed endpoints, we can again use Lemmas 5.10 and 5.15.

Having constructed the graph, we can find the shortest path through

it from vertex corresponding to 𝑈1 to that corresponding to 𝑈𝑛 , as

discussed in Lemma 5.28.

Theorem 5.29. We can solve the problem of finding the shortest vertex-
constrained simplification of an uncertain curve, such that for any realisation,
the simplification is valid, both for the Hausdorff and the Fréchet distance,
and for uncertainty modelled using indecisive points, disks, line segments, or
convex polygons in time shown in Table 5.1.

Chapter 5. Uncertain Curve Simplification 164

Proof. Correctness of the approaches has been shown before. For the

running time, observe that we need 𝒪(𝑛2𝑇) time in any setting, due to

the shortcut graph construction.

For indecisive points, when testing a shortcut, we do 𝒪(𝑛𝑘)-time

testing for 𝒪(𝑘2) combinations of starting and ending points, where 𝑘 is

the number of options per point. For disks, we do a linear number of

constant-time checks and two linear-time checks, getting 𝑇 ∈ 𝒪(𝑛). For

line segments, we also do two (three) linear-time checks per part; two

line segments can be split into at most two parts each, so we repeat the

process four times. Either way, we get 𝑇 ∈ 𝒪(𝑛).
Finally, for convex polygons, assume the complexity of each polygon

is at most 𝑘. Assume the partitioning resulting from two intersecting

polygons yields ℓ1 and ℓ2 parts for the first and the second polygon,

respectively. Denote the two polygons 𝑃 and 𝑄 and the resulting

parts with 𝑃1 , . . . , 𝑃ℓ1 and 𝑄1 , . . . , 𝑄ℓ2 , respectively. Suppose part 𝑃𝑖
has complexity 𝑘𝑖 and part 𝑄 𝑗 has complexity 𝑘′

𝑗
, so |𝑉(𝑃𝑖)| = 𝑘𝑖 and

|𝑉(𝑄 𝑗)| = 𝑘′
𝑗

for some 𝑖 ∈ [ℓ1], 𝑗 ∈ [ℓ2]. We know that every vertex

of the original polygons occurs in a constant number of parts, so∑︁ℓ1
𝑖=1

𝑘𝑖 ∈ 𝒪(𝑘) and

∑︁ℓ2
𝑗=1

𝑘′
𝑗
∈ 𝒪(𝑘); we also know ℓ1 + ℓ2 ∈ 𝒪(𝑘). We

consider all pairs from 𝑃 and 𝑄, and for each pair, we triangulate and

do the checks on the triangulation. The triangulation can be done in

time 𝒪((𝑘𝑖 + 𝑘′𝑗) · log(𝑘𝑖 + 𝑘′𝑗)), yielding 𝒪(𝑘𝑖 + 𝑘′𝑗) lines, each of which is

tested in time 𝒪(𝑛𝑘). The testing dominates, so we need 𝒪((𝑘𝑖 + 𝑘′𝑗) · 𝑛𝑘)
time. We are interested in

ℓ1∑︂
𝑖=1

ℓ2∑︂
𝑗=1

𝒪((𝑘𝑖 + 𝑘′𝑗) · 𝑛𝑘) = 𝒪(𝑛𝑘) ·
ℓ1∑︂
𝑖=1

ℓ2∑︂
𝑗=1

𝒪(𝑘𝑖 + 𝑘′𝑗) = 𝒪(𝑛𝑘3) .

So, 𝑇 ∈ 𝒪(𝑛𝑘3) both for the Fréchet and the Hausdorff distance. □

5.5 Conclusions

In this chapter, we have provided a comprehensive set of approaches to

the following problem: given an uncertain curve, simplify it so that

• the output is a subsequence of the input, and

• for any possible realisation of the input curve, the corresponding

realisation of the output curve is a valid simplification.

Chapter 5. Uncertain Curve Simplification 165

This approach is safe, in the sense that we only throw out points that

were sufficiently precise and close to any possible path. This way, we

know that we are capturing any area that the subject passed through.

The points that are kept introduce the most uncertainty, so they may

require special attention. However, one may imagine a different goal

of addressing uncertainty—removing any unlikely areas, basing the

trajectory on the more precise points. In that setting, we would likely

want to get rid of the larger uncertainty regions, so it would require

a different definition of a valid simplification. Studying such variants

would form an interesting future research direction.

CHAPTER 6
Map-Matching Queries under

Fréchet Distance on

Low-Density Spanners

In this chapter, we turn our attention to map matching, introduced in

Section 1.2. Map matching is inherently about uncertainty: since vehicles

commonly move on road networks, we can reduce the imprecision

introduced by measurement errors by matching their trajectories to a

road network (map) in a way that most closely resembles the original.

This chapter discusses map matching from a data structure perspective,

that is, we preprocess a map so that given a query trajectory, we can

efficiently report a path on the map that is most similar to the query.

To measure similarity, we use the Fréchet distance, like in the previous

chapters—it is a natural metric for trajectories. In order to make fast

query times possible, we need to make realistic assumptions about the

map; we discuss all of these aspects in detail below. We assume that the

trajectory is a polygonal curve and the map is an undirected geometric

graph in the plane. Such a graph has its vertices embedded in ℝ2
with

straight-line edges connecting them.

The map-matching problem has received considerable attention, as

we discuss in Section 1.2. In particular, there is a significant amount of

166

Chapter 6. Map-Matching Queries on Low-Density Spanners 167

work on map matching under the Fréchet distance, including a seminal

paper by Alt et al. [22]. Their algorithm requires 𝒪(𝑚𝑛 log𝑚𝑛 log 𝑛)
time and 𝒪(𝑚𝑛) space to match a polygonal curve of length 𝑚 to a

planar graph 𝐺 = (𝑉, 𝐸) with complexity |𝑉 | + |𝐸 | = 𝑛. As shown via

a conditional lower bound by Gudmundsson et al. [127], this query

time is close to optimal for planar graphs: there is no algorithm that

runs in 𝒪((𝑚𝑛)1−𝛿) time for any 𝛿 > 0 that solves this problem after

polynomial-time preprocessing of the graph. However, real-world road

networks are rarely planar due to the presence of bridges and tunnels,

so would like to find a different assumption.

Chen et al. [79] study the map-matching problem under realistic
input assumptions, which aim to exclude particular types of degenerate

instances to provide stronger results. In their work in particular, the

graph has low density and the trajectory is 𝑐-packed. A polygonal curve

is called 𝑐-packed if in any ball of radius 𝑟, the total length of the curve

inside the ball is at most 𝑐𝑟. We can use a similar definition for geometric

graphs, measuring the total length of the edges inside the ball instead.

The assumption that a geometric graph is 𝑐-packed is very strong; in

search of a different approach, let us define low density.

Definition 6.1. A geometric graph 𝑃 = (𝑉, 𝐸) is 𝜆-low density [199, 204]

if for every disk of radius 𝑟 > 0 in the plane, there are at most 𝜆 edges of

length at least 2𝑟 that intersect the disk.

Our work has no assumptions on the trajectories at the expense of

stricter assumptions on the maps (geometric graphs). Most often one will

have a large number of trajectories being mapped to a relatively complex

network, so to avoid the steep dependency on network complexity when

matching every trajectory, we consider the query version of the problem.

We preprocess the map so that we can quickly answer many map-

matching queries, where each query is a trajectory. To our knowledge,

this problem has only been studied on 𝑐-packed graphs [127, 128].

Gudmundsson and Smid [128] show an approach for 𝑐-packed trees

with long edges and query trajectories with long edges. Gudmundsson

et al. [127] assume that the graph is 𝑐-packed, but do not impose any

restrictions on the query trajectories. However, 𝑐-packedness is not a

realistic assumption for graphs representing road networks. Consider

the example map of Figure 6.1: it is not 𝑐-packed for any constant 𝑐, as

that would require the total length of roads be at most 𝑐𝑟 in all disks

Chapter 6. Map-Matching Queries on Low-Density Spanners 168

Carre

r d
'Aragó

Carre
r d

'Aragó

Carrer de Muntaner
Carre

r d
e París

gusta

Carr

er d

el R
osse

lló

er de Muntaner

Ca

bau

Project
ea Hospital

𝑟

Figure 6.1. An example road network in the centre of Barcelona. The total road

length in a disk of some radius 𝑟 is closer to 𝑐𝑟2 than 𝑐𝑟, so this road network

is not 𝑐-packed. However, the number of long edges intersecting the purple

disk is small, and the red path is not much longer than the blue path, so the

network is 𝜆-low density and a 𝑡-spanner for small 𝜆 and 𝑡. Map data from

OpenStreetMap [188].

of radius 𝑟, and it is instead often much closer to 𝑐𝑟2
. On some scale,

this problem arises with many road networks, including city streets or

motorways. Therefore, we would like to devise an approach with more

realistic assumptions on the graph.

We instead assume that our graph has low density, defined above.

As observed by Chen et al. [79], the value of density does not grow

with the considered area on the map, and road networks typically have

low density; it is also a strictly weaker assumption than packedness.

We further assume that the graph is a 𝑡-spanner. A geometric graph

is a 𝑡-spanner if for any two vertices, the length of the shortest path

between them in the graph is at most 𝑡 times larger than the Euclidean

distance between them. Road networks, in particular in urban areas, are

typically good spanners [26, 184]. Recalling the example of Figure 6.1,

it is clear that this road network is a 𝑡-spanner and 𝜆-low density for

some low 𝑡 and 𝜆. Compared to previous work, our assumptions make

the approach significantly more applicable on real-life road networks.

In this chapter, we solve the map-matching query problem under realistic

assumptions:

Chapter 6. Map-Matching Queries on Low-Density Spanners 169

Problem 6.2. Given a geometric graph 𝑃, construct a data structure that

can answer the following queries: for a polygonal curve 𝑄 in ℝ2
,

1. compute min𝜋 𝑑F(𝜋, 𝑄) and

2. report arg min𝜋 𝑑F(𝜋, 𝑄),
where 𝜋 ranges over all paths between two vertices in 𝑃 and 𝑑F denotes

the Fréchet distance.

We present a (1 + 𝜀)-approximation under the assumptions lis-

ted above. Our approach differentiates from previous work by Gud-

mundsson et al. [127] in two key aspects:

• we require the graph 𝑃 to be 𝜆-low density and a 𝑡-spanner, rather

than 𝑐-packed, which is a more realistic assumption for a road

network [26, 79, 184], while still allowing the query curve to remain

unrestricted;

• we solve the problem of reporting the path that minimises the

Fréchet distance, which was stated as an open problem in their

paper.

In order to achieve these results, we have to use different techniques,

albeit at the cost of a

√
𝑛 factor replacing a polylogarithmic factor in the

running time. Where the paper by Gudmundsson et al. [127] uses a

semi-separated pair decomposition, we construct a hierarchy of small

balanced separators and store appropriate associated data to guide

the search for the optimal Fréchet distance. A balanced separator of a

graph 𝑃 = (𝑉, 𝐸) is a set of vertices 𝑆 ⊆ 𝑉 that splits 𝑃 into connected

components of size at most 𝑐 · |𝑉 | for constant 𝑐. Combining the changes

in analysis and the capability to report a path, we get the following

result. Here 𝑛 = |𝑉 | + |𝐸 | for a geometric graph 𝑃 = (𝑉, 𝐸), and 𝑚 is the

number of vertices on the query polygonal curve.

Theorem 6.3. Suppose we are given a 𝜆-low-density 𝑡-spanner of complexity
𝑛 and a fixed 0 < 𝜀 < 1. Let 𝜒 = 1/𝜀2 log 1/𝜀 and let 𝜑 = (𝜆/𝜀3 + 𝑡2/𝜀2)2. In
time 𝒪(𝜆𝜒2𝑛

5/2

log 𝑛) and using 𝒪(𝜆𝜒2𝑛
3/2) space, we can construct a data

structure for Problem 6.2 achieving a (1 + 𝜀)-approximation that performs
distance queries in time 𝒪(𝑚

√
𝑛 log𝑚𝑛 ·𝜑 · 𝜆/𝜀 · (log

2 𝑛+ log 𝑛 ·𝜑+𝜑 · 𝜆/𝜀)),
and answers the reporting queries for a path of length ℓ in 𝒪(ℓ/𝜀) extra time.

In a typical setting, when 𝜆 and 𝑡 are small constants, our data

structure uses 𝒪(𝜀−4
log 𝜀−1𝑛

3/2) space, resolving to 𝒪(𝑛3/2) for fixed 𝜀,

Chapter 6. Map-Matching Queries on Low-Density Spanners 170

and supports distance queries in time 𝒪(𝑚
√
𝑛 log𝑚𝑛 · 𝜀−7 · (log

2 𝑛 +
𝜀−6

log 𝑛 + 𝜀−7)), resolving to 𝒪(𝑚
√
𝑛 log𝑚𝑛 log

2 𝑛) for fixed 𝜀.

Preliminaries. In this chapter, we work with geometric graphs, that

is, graphs embedded in the plane with straight-line edges. For a graph

𝑃 = (𝑉, 𝐸), we denote its complexity with 𝑛 = |𝑉 | + |𝐸 |.
We denote the fact that a path 𝜋 goes from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 by

𝜋 : 𝑢 〜 𝑣. Recall that for points 𝑥, 𝑦 ∈ ℝ2
, we denote their Euclidean

distance with ∥𝑥 − 𝑦∥. We can consider the edges weighted by defining

the weight of an edge 𝑒 ∈ 𝐸 as the Euclidean distance between its

endpoints: |𝑒 | = ∥𝑢 − 𝑣∥ for 𝑒 connecting 𝑢, 𝑣 ∈ 𝑉 . We define the graph
distance 𝑑𝑃 as the shortest path distance along the graph between any two

vertices 𝑢, 𝑣 ∈ 𝑉 : 𝑑𝑃(𝑢, 𝑣) =
∑︁
𝑒∈𝜋 |𝑒 |, where 𝜋 : 𝑢 〜 𝑣 is the shortest

path in 𝑃 between 𝑢 and 𝑣.

We assume our input graph has low density in this chapter, as

defined previously. We need to define two more graph properties that

we use in our construction.

Definition 6.4. A graph 𝑃 = (𝑉, 𝐸) is 𝜏-lanky [167] if for every disk of

radius 𝑟 > 0 centred at any vertex 𝑣 ∈ 𝑉 , there are at most 𝜏 edges of

length at least 𝑟 that are cut by the disk.

Here an edge is cut by a disk if exactly one of its endpoints is inside

the disk. It is easy to see that a 𝜏-lanky graph has bounded degree of at

most 𝜏; and that any 𝜆-low-density graph is also 𝜆-lanky. Let us also

formally define a 𝑡-spanner.

Definition 6.5. A graph 𝑃 = (𝑉, 𝐸) is called a 𝑡-spanner if for any two

vertices 𝑢, 𝑣 ∈ 𝑉 , we have 𝑑𝑃(𝑢, 𝑣) ≤ 𝑡 · ∥𝑢 − 𝑣∥.

A query is a polygonal curve in the plane, that is, a sequence of

points in ℝ2
connected with line segments. For a query curve 𝑄, let 𝑚

be the number of points in the sequence.

Organisation. The rest of the chapter is organised as follows. We first

tackle the simpler problem of finding a path in the graph that most

closely follows a line segment between two vertices of the graph in

terms of the Fréchet distance in Section 6.1. In that setting, we find

a 3-approximation. The data structure we develop there is used later

Chapter 6. Map-Matching Queries on Low-Density Spanners 171

for obtaining a search window for when the end points of the path

are not given. In Section 6.2, we generalise this to an arbitrary query

line segment that does not have to start or end at a graph vertex, and

show how to achieve a (1 + 𝜀)-approximation. We also describe how to

report a path that corresponds to a (1 + 𝜀)-approximation. Finally, in

Section 6.3, we show how to combine the segment queries in order to

handle a complete polygonal curve.

6.1 Straight Path Queries

In this section, we present a 3-approximation to the following problem,

so that for the value 𝑟 that we return, we have min𝜋 𝑑F(𝜋, 𝑢𝑣) ≤ 𝑟 ≤
3 · min𝜋 𝑑F(𝜋, 𝑢𝑣).

Problem 6.6. Given a geometric graph 𝑃 = (𝑉, 𝐸), construct a data

structure that can answer the following queries: for a pair of vertices

𝑢, 𝑣 ∈ 𝑉 , compute min𝜋 𝑑F(𝜋, 𝑢𝑣), where 𝜋 : 𝑢 〜 𝑣 is a path in 𝑃.

In Section 6.2, we show how to generalise the query to arbitrary seg-

ment endpoints and how to improve the result to a (1+𝜀)-approximation

for any fixed 𝜀 > 0.

Let 𝑛 = |𝑉 | + |𝐸 |. In order to solve the problem efficiently, we impose

an additional constraint on 𝑃—we require that 𝑃 has a graph property

satisfying two criteria:

1. the property is decreasing monotone, so it holds on all induced

subgraphs;

2. and any graph with the property admits a small separator.

An example of such a property is planarity: any subgraph of a planar

graph is planar, and the existence of small separators in planar graphs

is a classical result [170]. However, not all road networks are planar, as

most road networks include bridges and tunnels. Instead, we require

that 𝑃 is 𝜏-lanky [167]. It is trivial to show that any subgraph of a 𝜏-lanky

graph is also 𝜏-lanky; and Le and Than [167] show that a 𝜏-lanky graph

of complexity 𝑛 admits a balanced separator of size 𝒪(𝜏
√
𝑛) that can be

found in 𝒪(𝜏𝑛) expected time.

Intuition. When constructing the data structure, we can use the al-

gorithm by Alt et al. [22] in order to compute the Fréchet distance

Chapter 6. Map-Matching Queries on Low-Density Spanners 172

between a line segment and a path in the graph. At query time, running

that algorithm would be prohibitively slow. We also want to achieve

subquadratic storage, so we cannot precompute the distances for all

pairs of vertices.

Broadly, the idea is to find sufficient structure in the graph to be

able to find a small set of vertices so that any path in the graph passes

through at least one of these vertices; we call them transit vertices. Then

we can precompute the distances between the optimal path and the line

segment when going from any vertex of the graph to one of the transit

vertices. At query time, we then only need to find an optimal transit

vertex. Since we are composing two paths, the computed distance is

only a 3-approximation.

More specifically, a balanced separator in a graph forms a set of

transit vertices. We can compute them hierarchically and store the

separators and the precomputed distances in a binary tree. With some

organisation, at query time, we can efficiently find all the relevant transit

vertices—the ones that may separate the two query vertices on a path.

Data structure. We construct a hierarchy of separators on the graph

and store it with some extra information in a binary tree. Each node

in the tree represents both an induced subgraph of 𝑃, and a separator

of that induced subgraph. Consider the node 𝑖 corresponding to some

induced subgraph 𝑃𝑖 = (𝑉𝑖 , 𝐸𝑖) of 𝑃. Conceptually, the node represents

the balanced separator 𝑆𝑖 , so the subset of vertices of 𝑃𝑖 , splitting it into

two subgraphs 𝐴𝑖 and 𝐵𝑖 .

The root stores 𝑆1 and the extra information for all pairs from𝑉 × 𝑆1,

so the top-level balanced separator for the entire graph. The two children

of each node correspond to the subgraphs 𝐴𝑖 and 𝐵𝑖 . The recursion

ends when the subgraphs in the leaves have constant size. In a leaf 𝑖,

assign 𝑆𝑖 = 𝑉𝑖 , so compute the distances for all pairs of vertices.

For every pair of vertices (𝑢, 𝑠) ∈ 𝑉𝑖 × 𝑆𝑖 , we store min𝜋 𝑑F(𝜋, 𝑢𝑠),
where 𝜋 : 𝑢 〜 𝑠 in 𝑃. (Note that a path 𝜋 may leave 𝑃𝑖 .) We call all

vertices in 𝑆𝑖 transit vertices; and all pairs (𝑢, 𝑠) for which we store the

distances are called transit pairs.
In addition, for each vertex 𝑢 ∈ 𝑉 , we store a pointer to the tree node

𝑖 so that 𝑢 ∈ 𝑆𝑖 . There is exactly one such node in the tree for every

vertex: if a vertex is part of a separator, it will not be in an induced

Chapter 6. Map-Matching Queries on Low-Density Spanners 173

subgraph further down in the recursion, and if it is never chosen to be in

a separator, then it belongs to a leaf, which is treated as 𝑆𝑖 in its entirety.

Construction. We construct the hierarchy top–down, computing the

separators on the induced subgraphs at every level using the result of

Le and Than [167]. For each transit pair (𝑝, 𝑠) in a node, we compute

the appropriate Fréchet distance in the entire graph using the algorithm

by Alt et al. [22], extended by Gudmundsson et al. [127, Lemma 13]. As

we construct the separators, we also store in a table the pointer for each

vertex to the correct node.

Distance query. Suppose the query is to find the minimal Fréchet

distance between the segment 𝑢𝑣 and any path between 𝑢 and 𝑣.

Initialise opt = ∞. First, we use the table to find the pointers to the two

nodes in the tree 𝑖 and 𝑗 so that 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆 𝑗 . Then we find their

lowest common ancestor, call it node 𝑎. For every node 𝑎′ on the path

from 𝑎 to the root of the tree, perform the following procedure.

Denote 𝐷𝑥𝑦 = min𝜋 𝑑F(𝜋, 𝑥𝑦) over all 𝜋 : 𝑥 〜 𝑦. For the query

𝑢𝑣, denote 𝐷′
𝑥 = min𝑟∈𝑢𝑣 ∥𝑟 − 𝑥∥, so the shortest distance between 𝑥

and any point on 𝑢𝑣. For all 𝑠 ∈ 𝑆𝑎′ , fetch the stored 𝐷𝑢𝑠 and 𝐷𝑠𝑣 and

compute 𝐷′
𝑠 . Then compute 𝐷 = max(𝐷𝑢𝑠 , 𝐷𝑠𝑣) + 𝐷′

𝑠 and finally assign

opt = min(opt, 𝐷). At the end, return opt.

Running time analysis. For the distance queries, we take 𝒪(1) time to

follow the pointers; 𝒪(log 𝑛) time to find the lowest common ancestor;

and then 𝒪(1) time to check the distance per transit vertex. As we check

all transit vertices on the path from the lowest common ancestor to the

root, we can write down the worst-case recurrence as

𝑇(𝑘) = 𝑇(2𝑘/3) + 𝒪(𝜏
√
𝑘)

for a graph on 𝑘 vertices, since the balanced separator we use subdivides

the graph into two subgraphs on at most 2𝑘/3 vertices. For the entire

graph, this resolves to 𝒪(𝜏
√
𝑛). This term dominates the query time.

For the construction, we need 𝒪(𝜏𝑘) time to find a separator in a

graph of size 𝑘. In each node, for each of 𝒪(𝜏𝑘
√
𝑘) transit pairs, we

compute the distance in 𝒪(𝑛 log 𝑛) time. Assuming we build the tree

Chapter 6. Map-Matching Queries on Low-Density Spanners 174

until the leaves are of constant size, we get the recurrence

𝑇(𝑘) = 𝑇(2𝑘/3) + 𝑇(𝑘/3) + 𝒪(𝜏𝑘 + 𝜏𝑘
√
𝑘 · 𝑛 log 𝑛)

= 𝑇(2𝑘/3) + 𝑇(𝑘/3) + 𝒪(𝜏𝑘
√
𝑘 · 𝑛 log 𝑛) ,

which resolves to 𝒪(𝜏𝑛5/2

log 𝑛) overall.

Space. We store a table of pointers of size 𝒪(𝑛) and the main data

structure. For a graph on 𝑘 vertices, we store constant-size data for each

transit pair; and there are 𝒪(𝜏𝑘
√
𝑘) transit pairs. Overall, the space used

is represented by the recurrence

𝑇(𝑘) = 𝑇(2𝑘/3) + 𝑇(𝑘/3) + 𝒪(𝜏𝑘
√
𝑘) ,

which resolves to 𝒪(𝜏𝑛
√
𝑛).

Correctness. It remains to show that the described query procedure

gives us an appropriate distance. First, assume that we do consider an op-

timal transit vertex; we show that we indeed compute a 3-approximation.

The following proof is essentially given by Gudmundsson et al. [127,

Theorem 4.1], relying on a further statement [95, Lemma 5.5], and using

a semi-separated pair decomposition rather than separators. We include

the proof for the sake of completeness and ease of reading.

Lemma 6.7. Suppose that opt = min𝜋′ 𝑑F(𝜋′, 𝑢𝑣) for query 𝑢𝑣 and 𝜋′
:

𝑢 〜 𝑣, and that 𝜋 = arg min𝜋′ 𝑑F(𝜋′, 𝑢𝑣) passes through a transit vertex
𝑠, so 𝜋 : 𝑢 〜 𝑠 〜 𝑣. Let 𝑠′ be the transit vertex that minimises 𝐷 =

max(𝐷𝑢𝑠′ , 𝐷𝑠′𝑣) + 𝐷′
𝑠′ . If 𝑠 is considered when finding 𝐷, then opt ≤ 𝐷 ≤

3 · opt.

Proof. Let 𝜋𝑢𝑠′ = arg min𝜋′ 𝑑F(𝜋′, 𝑢𝑠′) over 𝜋′
: 𝑢 〜 𝑠′, and define 𝜋𝑠′𝑣

similarly. Note that the composition of these paths 𝜋𝑢𝑠′ ◦ 𝜋𝑠′𝑣 does not

have to be the same as 𝜋. Let 𝑡 be the point on 𝑢𝑣 closest to 𝑠′. Then

opt = 𝑑F(𝜋, 𝑢𝑣) ≤ 𝑑F(𝜋𝑢𝑠′ ◦ 𝜋𝑠′𝑣 , 𝑢𝑣) ≤ max

(︁
𝑑F(𝜋𝑢𝑠′ , 𝑢𝑡), 𝑑F(𝜋𝑠′𝑣 , 𝑡𝑣)

)︁
≤ max

(︁
𝑑F(𝜋𝑢𝑠′ , 𝑢𝑠′) + ∥𝑠′ − 𝑡∥ , 𝑑F(𝜋𝑠′𝑣 , 𝑠′𝑣) + ∥𝑠′ − 𝑡∥

)︁
= ∥𝑠′ − 𝑡∥ + max

(︁
𝑑F(𝜋𝑢𝑠′ , 𝑢𝑠′), 𝑑F(𝜋𝑠′𝑣 , 𝑠′𝑣)

)︁
= 𝐷′

𝑠′ + max(𝐷𝑢𝑠′ , 𝐷𝑠′𝑣) = 𝐷 .

Chapter 6. Map-Matching Queries on Low-Density Spanners 175

1

2 3

4 5 6 7

10 11

1

1 3

36

7
2

44

5

10

11

Figure 6.2. A representation of the hierarchy (left) for the graph (right). A query

segment is shown in purple, a possible path in blue. We check nodes 5, 2, and

1. If we pick the transit vertex in 5, then the path may be 10 → 2 → 5, so we

may need to go up the tree to find the next transit pair.

On the other hand, note that𝐷 ≤ max(𝐷𝑢𝑠 , 𝐷𝑠𝑣)+𝐷′
𝑠 , as 𝑠′ minimises

that expression. We also have𝐷′
𝑠 ≤ 𝑑F(𝜋, 𝑢𝑣). Let 𝜋(𝑢, 𝑠) be the subpath

of 𝜋 from 𝑢 to 𝑠. Let 𝑟 be the point in 𝑢𝑣 that is aligned to 𝑠 in the

Fréchet alignment between 𝜋 and 𝑢𝑣. Then

𝐷𝑢𝑠 = 𝑑F(𝜋𝑢𝑠 , 𝑢𝑠) ≤ 𝑑F(𝜋(𝑢, 𝑠), 𝑢𝑠)
≤ 𝑑F(𝜋(𝑢, 𝑠), 𝑢𝑟) + 𝑑F(𝑢𝑟, 𝑢𝑠)
= 𝑑F(𝜋(𝑢, 𝑠), 𝑢𝑟) + ∥𝑟 − 𝑠∥
≤ 𝑑F(𝜋, 𝑢𝑣) + 𝑑F(𝜋, 𝑢𝑣) = 2𝑑F(𝜋, 𝑢𝑣) .

Using the same argument for 𝐷𝑠𝑣 , we conclude

𝐷 ≤ 𝐷′
𝑠 + max(𝐷𝑢𝑠 , 𝐷𝑠𝑣) ≤ 𝑑F(𝜋, 𝑢𝑣) + 2𝑑F(𝜋, 𝑢𝑣) = 3𝑑F(𝜋, 𝑢𝑣) ,

and so opt ≤ 𝐷 ≤ 3 · opt and the value is a 3-approximation. □

Now we show that we consider all the relevant transit vertices. See

Figure 6.2.

Lemma 6.8. For the query 𝑢𝑣, the procedure considers a transit vertex 𝑠 such
that 𝑠 lies on the optimal path 𝜋 = arg min𝜋′ 𝑑F(𝜋′, 𝑢𝑣), where 𝜋′

: 𝑢 〜 𝑣.

Proof. We consider two cases based on where the lowest common

ancestor is found. First, suppose that the lowest common ancestor 𝑎

contains 𝑢, 𝑣, or both 𝑢 and 𝑣 in the separator. In other words, 𝑢 ∈ 𝑆𝑎 or

𝑣 ∈ 𝑆𝑎 , and so 𝑠 = 𝑢 or 𝑠 = 𝑣. Then 𝜋 passes through 𝑠, and we consider

𝑠 as a transit vertex.

Chapter 6. Map-Matching Queries on Low-Density Spanners 176

Now assume that the lowest common ancestor 𝑎 does not contain 𝑢

or 𝑣 in the separator; then 𝑢 and 𝑣 are separated by 𝑆𝑎 . Without loss of

generality, let 𝑢 ∈ 𝐴𝑎 and 𝑣 ∈ 𝐵𝑎 . If the path 𝜋 stays within the subgraph

𝑃𝑎 , then it has to go through some 𝑠 ∈ 𝑆𝑎 , which we consider. If not,

then it goes through some separator that separates 𝑃𝑎 from the rest of

the graph; and we consider exactly all the vertices in these separators,

as they fall on the path from 𝑎 to the root. □

Bringing the above considerations together, we get the main result

of this section.

Theorem 6.9. Given a 𝜏-lanky graph of complexity 𝑛, we can construct a data
structure for Problem 6.6 in time 𝒪(𝜏𝑛5/2

log 𝑛), using 𝒪(𝜏𝑛
√
𝑛) space, that

supports distance queries in time 𝒪(𝜏
√
𝑛).

6.2 Map-Matching Segment Queries

In this section, we generalise the construction we just presented to

compute a (1 + 𝜀)-approximation and to handle reporting, as well as to

support arbitrary query line segments.

Problem 6.10. Given a geometric graph 𝑃 = (𝑉, 𝐸), construct a data

structure that can answer the following queries: for a line segment 𝑝𝑞

in the plane,

1. compute min𝜋 𝑑F(𝜋, 𝑝𝑞) and

2. report arg min𝜋 𝑑F(𝜋, 𝑝𝑞),
where 𝜋 ranges over all paths between two vertices in 𝑃.

For distance queries, we closely follow the work of Gudmundsson

et al. [127], which in turn follows the approach of Driemel and Har-

Peled [95]. The latter appears at first to be devoted to a rather different

problem, but turns out to be very helpful in the map-matching setting.

Data structure for distance queries with fixed path endpoints. We

can immediately use the approach of Section 6.1 on arbitrary segments.

Suppose the query is a pair of vertices 𝑢, 𝑣 ∈ 𝑉 and a segment 𝑝𝑞 ⊂ ℝ2
.

Then we can find a 3-approximation to min𝜋 𝑑F(𝜋, 𝑝𝑞), where 𝜋 : 𝑢 〜 𝑣.

To achieve that, we just need to define 𝐷′
𝑠′ = 𝑑F(𝑢𝑠′ ◦ 𝑠′𝑣, 𝑝𝑞) and let 𝑡

be the point on 𝑝𝑞 aligned with 𝑠′ under this matching.

Chapter 6. Map-Matching Queries on Low-Density Spanners 177

We can directly use the following statement [127, Lemma 15], which

closely mimics the approach of Driemel and Har-Peled [95, Lemma 5.8]:

Lemma 6.11. Let 𝑢, 𝑣 ∈ 𝑉 be a fixed pair of vertices. Let 𝜀 > 0 and
𝜒 = 1/𝜀2 log 1/𝜀. In 𝒪(𝜒2𝑛 log 𝑛) time and using 𝒪(𝜒2) space, one can
construct a data structure that, given a query segment 𝑝𝑞 in the plane, returns
in 𝒪(1) time a (1 + 𝜀)-approximation to min𝜋 𝑑F(𝜋, 𝑝𝑞), where 𝜋 : 𝑢 〜 𝑣.

The idea behind this lemma is to construct an exponential grid

around both fixed vertices, so that the grid is denser close to the vertices.

There is an upper bound and a lower bound on how far the grid

goes, which is based on 𝜀 and min𝜋 𝑑F(𝜋, 𝑢𝑣). If the segment 𝑝𝑞 is

closer to 𝑢𝑣 than the smallest grid cell, then taking min𝜋 𝑑F(𝜋, 𝑢𝑣) gives

us a good approximation; if the segment is very far, then 𝑑F(𝑝𝑞, 𝑢𝑣)
dominates. Otherwise, we are guaranteed that there are grid points

𝑝′ and 𝑞′ that match 𝑝 and 𝑞 closely with respect to 𝑢 and 𝑣. We can

simply precompute min𝜋 𝑑F(𝜋, 𝑝′𝑞′) for all pairs of points 𝑝′ and 𝑞′ and

return an appropriate value in constant time when given a query. See

Figure 6.3.

In order to improve the approximation ratio to 1+𝜀, we use Lemma 16

by Gudmundsson et al. [127], substituting our data structure of The-

orem 6.9 for their data structure of Lemma 14. The argument is the same:

we can construct a grid around each graph vertex and precompute the

distances for all pairs of grid vertices for each transit pair; and we can

store that in the data structure of Theorem 6.9. At query time, when

testing each transit vertex 𝑠, we subsample the relevant part of segment

𝑝𝑞 with 𝒪(1/𝜀) points to find an optimal spot that should align with 𝑠.

We use the data structure of Theorem 6.9 to make sure we do not need

to sample too many points. Plugging in our time and space bounds, we

get the following lemma.

Lemma 6.12. Let 𝜀 > 0 and 𝜒 = 1/𝜀2 log 1/𝜀. In time 𝒪(𝜏𝜒2𝑛
5/2

log 𝑛) and
using 𝒪(𝜏𝜒2𝑛

√
𝑛) space, we can construct a data structure that, given a query

segment 𝑝𝑞 in the plane and a pair of vertices 𝑢, 𝑣 ∈ 𝑉 , returns in 𝒪(𝜏/𝜀
√
𝑛)

time a (1 + 𝜀)-approximation to min𝜋 𝑑F(𝜋, 𝑝𝑞), where 𝜋 : 𝑢 〜 𝑣.

Reporting a path. Next we discuss the modifications needed to report

a curve that realises the (1 + 𝜀)-approximate distance. We can perform

Chapter 6. Map-Matching Queries on Low-Density Spanners 178

an approximate distance query first. Once we have the distance, we can

find the transit pairs that realise it; with these pairs, we can store the

next vertex on the optimal path. We can then repeat these queries with

the resulting new pairs. We need to show how to do this sequence of

queries; and we need to show that this preserves consistency, i.e. that an

approximate route for a subpath is also approximate for the complete

path.

Recall that when computing the (1 + 𝜀)-approximation, we consider

a ball of a certain radius around a transit vertex, and we take 𝒪(1/𝜀)
sample points on the query segment 𝑝𝑞 inside the ball, to test the Fréchet

alignment with the transit vertex. The first modification is that we

impose fixed coordinates for the sample points: they have to be located

at points that are 𝒪(𝑐/𝜀) away from a fixed point on the line containing

𝑝𝑞 for some natural 𝑐.

Next, we describe the necessary modifications to the data structure

of Lemma 6.12. With each transit pair and for each pair of grid points,

in addition to the Fréchet distance, we also store the first vertex on the

optimal path, so 𝑢′ ∈ 𝑉 such that for 𝜋′ = arg min𝜋 𝑑F(𝜋, 𝑝𝑟), we have

𝜋′
: 𝑢 → 𝑢′ 〜 𝑠. (Here 𝑟 is the point on 𝑝𝑞 that maps to 𝑠.)

The query proceeds as follows. First, we perform the distance query

for 𝑝𝑞 and record the optimal transit vertex 𝑠. Find the point 𝑟 among the

𝒪(1/𝜀) samples on 𝑝𝑞 that aligns with 𝑠. Query the pairs (𝑢, 𝑠) and (𝑠, 𝑣)
with 𝑝𝑟 and 𝑟𝑞, respectively, and retrieve the stored adjacent vertices

𝑢′ and 𝑣′. Again, find the optimal alignment points on 𝑝𝑟 and 𝑟𝑞; find

pairs (𝑢′′, 𝑠) and (𝑠, 𝑣′′); repeat until the complete path is reported. In

the special case when 𝑠 = 𝑣 or 𝑠 = 𝑢, only one sequence of queries has

to be performed. If 𝑢 and 𝑣 are both in a leaf, we can proceed as if 𝑠 = 𝑣.

See Figure 6.3.

Suppose the transit vertex 𝑠 is stored in some 𝑆𝑖 . If the optimal path

leaves 𝑃𝑖 , then it is possible that 𝑢′ is not in 𝑃𝑖 , and so the pair (𝑢′, 𝑠)
is not stored in node 𝑖. However, then 𝑢′ must be in some separator

separating 𝑃𝑖 from a different subgraph 𝑃𝑗 . Furthermore, note that the

separator in question must be on the path from 𝑖 to the root. Thus, we

can go up until we find 𝑢′ ∈ 𝑆 𝑗 for some 𝑗 < 𝑖. We can continue the

procedure, now for the transit pair (𝑠, 𝑢′), finding some 𝑠′ so that the

path is of the shape 𝑠 → 𝑠′ 〜 𝑢′. See Figures 6.2 and 6.3.

We briefly analyse the time and space bounds. The relevant vertex can

be obtained from the free-space diagram when computing the Fréchet

Chapter 6. Map-Matching Queries on Low-Density Spanners 179

𝑣

𝑠

𝑢′
𝑢

𝑝

𝑞

𝑟

Figure 6.3. A query trajectory 𝑝𝑞 is shown in purple, and the reported path in

the graph is shown in blue. We sample points on 𝑝𝑞 at regular distance and

snap them to the exponential grid around the graph vertices. Once we find 𝑟

on 𝑝𝑞 that aligns with the transit vertex 𝑠, we can query the pair (𝑢, 𝑠) with the

(snapped) segment 𝑝𝑟 to find the next vertex 𝑢′.

distance. As we store constant extra information, the preprocessing and

space bounds are unchanged. For the query time, in addition to the

distance query, we report a path of length ℓ . To find each next vertex, we

find the correct transit pair in constant time, then test 𝒪(1/𝜀) alignment

options. We may have to go up the tree; however, as we never go down

the tree, that traversal happens only once per query. Therefore, the

extra time needed to report the path with ℓ vertices is 𝒪(log 𝑛 + ℓ/𝜀).
It remains to show that the reported path indeed corresponds to a

(1 + 𝜀)-approximation.

Lemma 6.13. For query 𝑝𝑞, if 𝜋 = arg min𝜋∗ 𝑑F(𝜋∗ , 𝑝𝑞) has the shape
𝜋 : 𝑢 → 𝑢′ 〜 𝑠, and 𝑢′ is aligned to some 𝑝′ ∈ 𝑝𝑞 under the Fréchet
alignment, then 𝜋′ = arg min𝜋∗ 𝑑F(𝜋∗ , 𝑝′𝑞) of the shape 𝜋′

: 𝑢′ 〜 𝑠 is a
subpath of 𝜋.

Proof. Without loss of generality, we can assume that 𝑠 is a transit vertex.

If the distances were computed exactly, the statement would clearly

hold. We need to show that the sampling and the grid do not introduce

inconsistencies.

Recall that the sample points are placed on the line segment inde-

pendently from context. Therefore, the location of sample points is

the same on 𝑝𝑞 and 𝑝′𝑞. Furthermore, we always snap these original

sample points to the grid, and the grid does not depend on the path.

Therefore, we can view 𝑝𝑞 as a sequence of grid points that all possible

sample points would snap to; and 𝑝′𝑞 then snaps to a subsequence

Chapter 6. Map-Matching Queries on Low-Density Spanners 180

of those grid points. For the pairs of grid points, the distances are

computed directly. Therefore, we do not introduce any additional error,

compared to a distance query, and so the reported path corresponds to

a (1 + 𝜀)-approximation. □

Data structure for finding the path endpoints. So far, we only required

that 𝑃 is 𝜏-lanky. For the next data structure, we also need 𝑃 to be a

𝑡-spanner. Recall that 𝑑𝑃(𝑢, 𝑣) denotes the shortest path distance in the

graph between the vertices 𝑢 and 𝑣. If 𝑃 = (𝑉, 𝐸) is a 𝑡-spanner, then

for any 𝑢, 𝑣 ∈ 𝑉 , we have 𝑑𝑃(𝑢, 𝑣) ≤ 𝑡 · ∥𝑢 − 𝑣∥. To solve Problem 6.10,

we need one more data structure. Lemma 6.12 still requires us to

pick vertices 𝑢 and 𝑣 to check the paths 𝜋 : 𝑢 〜 𝑣. We need to be

able to select a subset of candidate vertices, so that we can obtain a

(1 + 𝜀)-approximation, but the subset is still small enough. To that aim,

we perform the same procedure as Gudmundsson et al. [127], but get

different bounds.

In particular, we run Gonzalez’s 𝑘-centre clustering algorithm [118]

for 𝑘 = 𝑛 on the vertices of the graph 𝑃 = (𝑉, 𝐸) using the distance 𝑑𝑃 .

In short, the algorithm selects cluster centres from 𝑉 iteratively, starting

with a random one; and each following one is the furthest away from

any other centre. Let 𝑐1 be the first (random) centre. Define the radius of

a clustering to be the maximum distance from any vertex to its closest

centre. Denote 𝐶𝑖 = {𝑐1 , . . . , 𝑐𝑖}. Then for all 2 ≤ 𝑖 ≤ 𝑛, we compute

𝑐𝑖 = arg max

𝑣∈𝑉
min

𝑐∈𝐶𝑖−1

𝑑𝑃(𝑣, 𝑐) , 𝑟𝑖 = max

𝑣∈𝑉
min

𝑐∈𝐶𝑖
𝑑𝑃(𝑣, 𝑐) .

We obtain a sequence ⟨(𝐶1 , 𝑟1), . . . , (𝐶𝑛 , 𝑟𝑛)⟩, where 𝑟𝑛 = 0, since all

vertices are centres. Using this sequence, we can show the following

lemma.

Lemma 6.14. Let 𝑃 = (𝑉, 𝐸) be a 𝑡-spanner and let 𝑆 be a square in the plane
with side length 2𝑟. Then there exists a set of vertices 𝑇 ⊆ 𝑉 satisfying two
properties:

1. |𝑇 | = 𝒪((𝑡/𝜀)2), and

2. for all 𝑣 ∈ 𝑉 ∩ 𝑆, there is 𝑧 ∈ 𝑇 such that 𝑑𝑃(𝑣, 𝑧) ≤ 𝜀𝑟.

Proof. Let 𝑖 be the index so that 𝑟𝑖 ≥ 𝜀𝑟 and 𝑟𝑖+1 < 𝜀𝑟. This is always

possible, since 𝑟𝑛 = 0. Take 𝑆′ to be the square concentric with 𝑆, but

Chapter 6. Map-Matching Queries on Low-Density Spanners 181

with the side length of 4𝑟, and let 𝑇 = 𝐶𝑖+1 ∩ 𝑆′. The second property is

immediately satisfied, since any vertex, including those in 𝑆, is closer

than 𝜀𝑟 to some centre; and choosing 𝑆′ this way ensures that we cannot

exclude any relevant centres, since 𝜀 < 1.

To see that the first property is true, consider 𝐶𝑖 . Due to the sequence

of picking centres, we know that any two vertices 𝑐 𝑗 and 𝑐ℓ with 𝑗 < ℓ in

𝑇 are far apart, i.e. 𝑑𝑃(𝑐 𝑗 , 𝑐ℓ) ≥ 𝜀𝑟. If this were not true, then 𝑐ℓ would

not have been chosen as a centre, since there still are vertices in 𝑉 that

are further than 𝜀𝑟 away from any centre. But then we know

𝜀𝑟 ≤ 𝑑𝑃(𝑐 𝑗 , 𝑐ℓ) ≤ 𝑡 · ∥𝑐 𝑗 − 𝑐ℓ ∥ ,

so any two points are at least 𝜀/𝑡 · 𝑟 apart in the plane. In a square with

side length 4𝑟, we can only pack 𝒪((𝑡/𝜀)2) of these vertices. 𝐶𝑖+1 has only

one more vertex, so the first property holds for 𝑇, as well. □

Gudmundsson et al. [127] show how to construct a data structure

based on their version of Lemma 6.14. The proof is exactly the same;

only the bounds change.

Lemma 6.15. Let𝑃 = (𝑉, 𝐸) be a 𝑡-spanner, and let 0 ≤ 𝜀 ≤ 1. In𝒪(𝑛2
log 𝑛)

time and using 𝒪(𝑛 log 𝑛) space, we can construct a data structure that, given
a query square 𝑆 in the plane with side length 2𝑟, returns a set of vertices 𝑇
satisfying Lemma 6.14 in time 𝒪(log 𝑛 + (𝑡/𝜀)2)).

The main theorem of this section follows using our data structures.

Theorem 6.16. Given a 𝜏-lanky 𝑡-spanner of complexity 𝑛, we can construct
the data structure for Problem 6.10 in time 𝒪(𝜏𝜀−4

log
2(1/𝜀)𝑛5/2

log 𝑛) and
using 𝒪(𝜏𝜀−4

log
2(1/𝜀)𝑛

√
𝑛) space, so the distance queries can be answered in

time 𝒪(𝜏𝑡8𝜀−9
√
𝑛 log 𝑛(log 𝑛 + 𝜏/𝜀)); and the reporting queries for a path of

length ℓ can be answered in 𝒪(ℓ/𝜀) additional time.

Proof. The changes we made for reporting do not affect Lemma 6.15, so

the proof of Gudmundsson et al. [127] applies. We only discuss the time

bounds. Preprocessing simply consists of building the data structures

for Lemmas 6.12 and 6.15. For the query time, consider first the decision

version of the algorithm. We query the data structure of Lemma 6.15

twice; and then for every pair of possible matching vertices, we query

the data structure of Lemma 6.12. The second step dominates, taking

𝒪(𝜏𝑡4𝜀−5
√
𝑛) time.

Chapter 6. Map-Matching Queries on Low-Density Spanners 182

For the optimisation version, we use parametric search with𝑁𝑃 =
√
𝑛

parallel processors. The sequential version runs in the same time as

the decision version, so 𝑇𝑆 = 𝒪(𝜏𝑡4𝜀−5
√
𝑛). In the parallel version,

querying the distance data structure can be done with

√
𝑛 processors,

each performing 𝒪(𝜏/𝜀) amount of work, then combining the values to

find the minimum in 𝒪(log 𝑛) time. Thus, 𝑇𝑃 = 𝒪((𝑡/𝜀)4 · (𝜏/𝜀 + log 𝑛)).
The time for the optimisation version is now 𝒪(𝑁𝑃𝑇𝑃 + 𝑇𝑃𝑇𝑆 log𝑁𝑃).
This amounts to 𝒪(𝜏𝑡8𝜀−9

√
𝑛 log 𝑛(log 𝑛 + 𝜏/𝜀)).

For the reporting query, perform the distance query and record the

optimal path endpoints; then, as we discussed, it costs extra 𝒪(ℓ/𝜀) time

to report a path of length ℓ . □

6.3 General Map-Matching Queries

In this section, we generalise the problem again to handle a polygonal

curve rather than a line segment as a query. The procedure is very

similar; however, we want to make sure that the Fréchet alignment

between a query curve and a path can align vertices of the query to

points on graph edges, and not just to graph vertices. To that effect, we

need to extend Lemma 6.14 so we can sample a small number of points

on graph edges.

Gudmundsson et al. [127] use 𝑐-packedness again; however, in our

setting, the 𝑡-spanner property is not sufficient, as it does not give us

guarantees about the graph distance between points on the edges. Here

we require the graph to also be 𝜆-low density.

Lemma 6.17. Let 𝑃 = (𝑉, 𝐸) be a 𝜆-low-density 𝑡-spanner, let 𝐹 = { 𝑓 ∈ ℝ2 |
𝑓 ∈ 𝑒 , 𝑒 ∈ 𝐸}, and let 𝑆 be a square in the plane with side length 2𝑟. Then
there exists a set of points 𝑇 ⊆ 𝐹 satisfying two properties:

1. |𝑇 | = 𝒪(𝑡2/𝜀2 + 𝜆/𝜀3), and

2. for all 𝑝 ∈ 𝐹 ∩ 𝑆, there is 𝑧 ∈ 𝑇 such that 𝑑𝑃(𝑝, 𝑧) ≤ 𝜀𝑟.

Proof. We can use Lemma 6.14 with 𝜀′ = 𝜀/2 to obtain the set 𝑇1 of size

𝒪((𝑡/𝜀′)2) so that for all 𝑣 ∈ 𝑉 ∩ 𝑆, 𝑑𝑃(𝑝, 𝑧) ≤ 𝜀′𝑟 for some 𝑧 ∈ 𝑇1. Define

𝐸𝑟 ⊆ 𝐸 to contain the edges of length at least 𝜀𝑟. Let 𝑆′ be a square

concentric with 𝑆 but with the side length 4𝑟. For each 𝑒 ∈ 𝐸𝑟 , choose

𝒪(1/𝜀) evenly spaced points on 𝑒 ∩ 𝑆′ with the distance between them of

at most 𝜀𝑟. Let 𝑇2 be the set of all such points, and assign 𝑇 = 𝑇1 ∪ 𝑇2.

Chapter 6. Map-Matching Queries on Low-Density Spanners 183

We first show that the first property holds. For 𝑇2, we need to bound

the size of 𝐸𝑟 ∩ 𝑆′. As 𝑃 is 𝜆-low density, we know that there are at

most 𝜆 edges of length at least 𝜀𝑟 intersecting any disk of diameter 𝜀𝑟,
and every edge has 𝒪(1/𝜀) sample points. We can cover 𝑆′ with 𝒪((1/𝜀)2)
such disks, so |𝑇2 | = 𝒪(𝜆(1/𝜀)3). Therefore, |𝑇 | = 𝒪(𝑡2/𝜀2 + 𝜆/𝜀3).

Now consider the second property. Note that 𝑉 ⊂ 𝐹. For any 𝑣 ∈
𝑉 ∩ 𝑆, we immediately conclude that the property holds by Lemma 6.14.

For any 𝑝 ∈ 𝑒∩𝑆, 𝑒 ∈ 𝐸with |𝑒 | ≤ 𝜀𝑟, note that both endpoints of 𝑒 lie in𝑆′.
So there is a vertex 𝑣 ∈ 𝑉 ∩ 𝑆′ so that 𝑑𝑃(𝑝, 𝑣) ≤ 𝜀′𝑟, and by Lemma 6.14,

𝑑𝑃(𝑣, 𝑧) ≤ 𝜀′𝑟 for some 𝑧 ∈ 𝑇1. Therefore, 𝑑𝑃(𝑝, 𝑧) ≤ 2𝜀′𝑟 = 𝜀𝑟. Finally,

for any 𝑝 ∈ 𝑒 ∩ 𝑆, 𝑒 ∈ 𝐸𝑟 , it is clear that there is a point not further than

𝜀𝑟 in 𝑇2. □

We can build a data structure just as Gudmundsson et al. [127]. We

need to show that it is possible to do so in our setting. We start by stating

a definition of 𝜆-low density in 𝑅3
.

Definition 6.18. A set of objects in ℝ3
is 𝑘-low density if, for every

axis-parallel cube 𝐻𝑟 with side length 𝑟, there are at most 𝑘 objects of

size at least 𝑟 that intersect 𝐻𝑟 . The size of an object is the side length of

its smallest axis-parallel enclosing cube.

Definition 6.19. Given a segment 𝑒 ⊂ ℝ2
and 0 < 𝜀 < 1, define

trough(𝑒 , 𝜀) = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑑((𝑥, 𝑦), 𝑒) ≤ 4𝑧 ≤ 8|𝑒 |/𝜀} ,

where 𝑑((𝑥, 𝑦), 𝑒) is the distance from (𝑥, 𝑦) to the closest point on 𝑒.

A trough is a three-dimensional object consisting of two half-cones

and a triangular prism. Any 𝑧-slice can be seen as a 𝑧-neighbourhood

of 𝑒. We show the following lemma.

Lemma 6.20. Let 𝑃 = (𝑉, 𝐸) be 𝜆-low density, and let 0 < 𝜀 < 1. The set
{trough(𝑒 , 𝜀) | 𝑒 ∈ 𝐸} is 𝑘-low density for 𝑘 = 𝒪(𝜆/𝜀2).

Proof. We first bound the size of trough(𝑒 , 𝜀). Let (𝑥, 𝑦, 𝑧) ∈ trough(𝑒 , 𝜀).
Note that 0 ≤ 𝑧 ≤ 2|𝑒 |/𝜀. Furthermore, 𝑑((𝑥, 𝑦), 𝑒) ≤ 8|𝑒 |/𝜀, so (𝑥, 𝑦) must

lie inside a disk centred at the midpoint of 𝑒 with radius 9|𝑒 |/𝜀. Thus

(𝑥, 𝑦, 𝑧) lies inside a cube with side length 18|𝑒 |/𝜀, which bounds the size

of trough(𝑒 , 𝜀).

Chapter 6. Map-Matching Queries on Low-Density Spanners 184

Let 𝐻𝑟 be an axis-parallel cube with side length 𝑟, and let its smallest

𝑧-coordinate be 𝑧min ≥ 0. Suppose trough(𝑒 , 𝜀) of size at least 𝑟 intersects

𝐻𝑟 , and let (𝑥, 𝑦, 𝑧) be a point in the intersection. Let ℎ be the projection

of the centre of 𝐻𝑟 onto the plane 𝑧 = 0. Then

𝑑(ℎ, 𝑒) ≤ 𝑑(ℎ, (𝑥, 𝑦)) + 𝑑((𝑥, 𝑦), 𝑒) ≤ 𝑟 + 4𝑧 ≤ 5𝑟 + 4𝑧min ,

where the first step follows by the triangle inequality, the second by

(𝑥, 𝑦, 𝑧) lying in the intersection, and the third by 𝑧 ≤ 𝑧min + 𝑟. Further-

more, the size of trough(𝑒 , 𝜀) is at least 𝑟 and at most 18|𝑒 |/𝜀, so 𝑟 ≤ 18|𝑒 |/𝜀;
and 𝑧min ≤ 2|𝑒 |/𝜀. Therefore,

5𝑟 + 4𝑧min ≤ 98|𝑒 |/𝜀 .

So we know |𝑒 | ≥ (5𝑟 + 4𝑧min) · 𝜀/98. By 𝜆-low-density property, any

ball with diameter (5𝑟 + 4𝑧min) · 𝜀/98 is intersected by at most 𝜆 such

edges. Consider a disk in 𝑧 = 0 with diameter 2 · (5𝑟 + 4𝑧min) centred

at ℎ. It can be covered by 𝑐/𝜀2 smaller disks for a constant 𝑐, so there

may be at most 𝑘 = 𝑐𝜆/𝜀2 edges close enough to ℎ for 𝐻𝑟 to intersect their

troughs; and so the set of troughs is 𝑘-low density. □

Using the range searching data structure for low-density sets by

Schwarzkopf and Vleugels [199], we obtain the following result.

Lemma 6.21. Let 𝑃 = (𝑉, 𝐸) be a 𝜆-low-density 𝑡-spanner, let 0 ≤ 𝜀 ≤ 1,
and let 𝐹 = { 𝑓 ∈ ℝ2 | 𝑓 ∈ 𝑒 , 𝑒 ∈ 𝐸}. In 𝒪(𝑛2

log 𝑛 + 𝜆/𝜀2 · 𝑛 log 𝑛) time
and using 𝒪(𝑛 log

2 𝑛 + 𝑛 · 𝜆/𝜀2) space, we can construct a data structure that,
given a query square 𝑆 in the plane with side length 2𝑟, returns a set of vertices
𝑇 satisfying Lemma 6.17 in time 𝒪(log

2 𝑛 + 𝑡2/𝜀2 + 𝜆/𝜀3).

Finally, we obtain the main result of the chapter. The proof of

Gudmundsson et al. [127, Theorem 3] applies here directly, instead

using the data structures of Lemmas 6.12 and 6.21. In short, one can

design a decision procedure and then use parametric search. For the

decision procedure, we can find a small set of points that each vertex of

the query curve may match to, and then construct a directed graph with

these as vertices where the weights correspond to the Fréchet distance

obtained from our other data structure. For querying that data structure,

when considering a point on an edge, we check both its endpoints.

Chapter 6. Map-Matching Queries on Low-Density Spanners 185

Theorem 6.3. Suppose we are given a 𝜆-low-density 𝑡-spanner of complexity
𝑛 and a fixed 0 < 𝜀 < 1. Let 𝜒 = 1/𝜀2 log 1/𝜀 and let 𝜑 = (𝜆/𝜀3 + 𝑡2/𝜀2)2. In
time 𝒪(𝜆𝜒2𝑛

5/2

log 𝑛) and using 𝒪(𝜆𝜒2𝑛
3/2) space, we can construct a data

structure for Problem 6.2 achieving a (1 + 𝜀)-approximation that performs
distance queries in time 𝒪(𝑚

√
𝑛 log𝑚𝑛 ·𝜑 · 𝜆/𝜀 · (log

2 𝑛+ log 𝑛 ·𝜑+𝜑 · 𝜆/𝜀)),
and answers the reporting queries for a path of length ℓ in 𝒪(ℓ/𝜀) extra time.

Proof. See the proof by Gudmundsson et al. [127, Theorem 3], but using

Lemmas 6.12 and 6.21. We analyse the space and time requirements.

For preprocessing and space, we construct the two data structures. For

distance queries, we first analyse the decision version.

We query the data structure of Lemma 6.21 𝑚 times to obtain the

candidate points. Then we construct a directed graph with 𝒪(𝑚 · (𝜆/𝜀3 +
𝑡2/𝜀2)2) edges. For each edge, we do a constant number of queries to

the data structure of Lemma 6.12, each taking 𝒪(
√
𝑛 · 𝜆/𝜀) time. Finally,

we decide if there is a suitable directed path in the graph. Overall, the

decision version takes 𝒪(𝑚
√
𝑛 · 𝜆/𝜀 · (𝜆/𝜀3 + 𝑡2/𝜀2)2) time.

For the optimisation version, we apply parametric search using

𝑁𝑃 = 𝑚
√
𝑛 parallel processors. The sequential version runs in the same

time as the decision version, so 𝑇𝑆 = 𝒪(𝑚
√
𝑛 · 𝜆/𝜀 · (𝜆/𝜀3 + 𝑡2/𝜀2)2). In

the parallel version, the steps for each of 𝑚 points can be executed in

parallel; and finding the weight of an edge by querying the distance

data structure can be done with

√
𝑛 processors, each performing 𝒪(𝜆/𝜀)

amount of work, then combining the values to find the minimum in

𝒪(log 𝑛) time. Thus, 𝑇𝑃 = 𝒪(log
2 𝑛 + (𝜆/𝜀 + log 𝑛) · (𝜆/𝜀3 + 𝑡2/𝜀2)2). The

time for the optimisation version is now 𝒪(𝑁𝑃𝑇𝑃 + 𝑇𝑃𝑇𝑆 log𝑁𝑃). Let

𝜑 = (𝜆/𝜀3 + 𝑡2/𝜀2)2; then the query time is

𝒪
(︁
𝑚
√
𝑛 log𝑚𝑛 · 𝜑 · 𝜆/𝜀 · (log

2 𝑛 + log 𝑛 · 𝜑 + 𝜑 · 𝜆/𝜀)
)︁
.

Treating 𝑡 and 𝜆 as constant, we get 𝒪(𝑚
√
𝑛 log𝑚𝑛 · 𝜀−7 · (log

2 𝑛 +
𝜀−6

log 𝑛 + 𝜀−7)); and treating also 𝜀 as a constant, the query time

becomes 𝒪(𝑚
√
𝑛 log𝑚𝑛 log

2 𝑛).
Finally, for the reporting query, we first run the distance query and

record the path in the graph, as well as the edges aligned with the query

curve vertices, and record the optimal order of endpoints of these edges.

Now we can simply perform the individual segment reporting queries,

as before, costing us extra 𝒪(ℓ/𝜀) time for a path of length ℓ . □

Chapter 6. Map-Matching Queries on Low-Density Spanners 186

6.4 Conclusions

In this chapter, we have considered the problem of matching an unres-

tricted trajectory to a realistic map under the Fréchet distance, having

preprocessed the map to achieve faster queries. We have shown how to

compute the approximate distance to the closest path in the map and

how to report the corresponding path. We believe this approach has a

very natural set of graph assumptions and reasonable running times.

The running times depend on 𝑡 and 𝜆, but we do not need to compute

these parameters to execute the algorithm. However, we need to set 𝜀
before building the data structure; while not a significant issue, it is a

minor obstacle in face of practicality, so it would be interesting to resolve

it—in particular, the solution then cannot use exponential grids as we

do. In future work, it would be interesting to see if one could change the

machinery for matching the endpoints to lower the assumptions on the

graph even further. Of course, it is also possible that there is an equally

reasonable set of assumptions that would make the procedure faster.

CHAPTER 7
Segment Visibility Counting

Queries in Polygons

In this final chapter, we turn our attention to the following problem. Let

𝑃 be a simple polygon with 𝑛 vertices, and let 𝐴 be a set of 𝑚 points or

line segments inside 𝑃. We develop efficient data structures for visibility
counting queries in which we wish to report the number of objects from 𝐴

visible to some (constant-complexity) query object 𝑄. An object 𝑋 in 𝐴

is visible from 𝑄 if there is a line segment connecting 𝑋 and 𝑄 contained

in 𝑃; other objects in 𝐴 do not block visibility. We focus on the case when

𝑄 is a point or a line segment. We aim to obtain fast, 𝒪(polylog 𝑛𝑚),
query times, using as little space as possible.

Our work is motivated by problems in movement analysis where we

have sets of moving entities, for example, an animal species and their

predators, and we wish to determine if there is mutual visibility between

the entities of different sets. We also want to quantify ‘how much’ the

sets can see each other. Given measurements at certain points in time,

solving the mutual visibility problem between two such times reduces

to counting visibility between line segments (for moving entities) and

points (for static objects). This visibility counting problem is also of

general interest.

187

Chapter 7. Segment Visibility Counting Queries in Polygons 188

Where is uncertainty? At first glance, this problem does not have

anything to do with uncertainty; however, there is a natural connection.

Suppose you are tracking the movement of two subjects, and you have

their trajectories with measurement uncertainty, with some probability

distribution associated with each measured location. Rather than

moving on an endless plane, they move around obstacles, modelled as

a simple polygon. The two subjects can only interact when there is a

direct line of sight between them. You wish to know the likelihood of

them having interacted with each other.

To suitably approximate the solution to this problem, instead of

working directly with the probability distributions, one may instead

sample them, getting indecisive points with a uniform distribution. If

we sample 𝑘 times per measurement, then we can connect the two con-

secutive measurements with 𝑘2
line segments. If we use a probabilistic

model between the measurements, we can also sample ℓ points in the

middle of the paths, giving us a sequence of 2𝑘ℓ line segments. We can

do the same for both subjects. Then the original question essentially

becomes a counting problem: on how many pairs of line segments can

the two subjects see each other? We touch upon this particular variation

in Section 7.5, as it seems more complicated still than what we discuss

here. However, when one of the subjects is static, our approach can be

used directly.

Related work. Computing visibility in polygons is a classical problem

in computational geometry [116, 186]. Algorithms for efficiently testing

visibility between a pair of points, for computing visibility polygons [101,

148, 168], and for constructing visibility graphs [189] have been a topic

of study for over thirty years. There is even a host of work on computing

visibility on terrains and in other three-dimensional environments [187,

Section 33.8]. For many of these problems, the data structure version of

the problem has also been considered. In these versions, the polygon

is given up front, and the task is to store it so that we can efficiently

query whether a pair of points 𝑝, 𝑞 is mutually visible [77, 131, 141],

or report the visibility polygon 𝑉(𝑞) of 𝑞 [27]. In particular, when 𝑃

is a simple polygon with 𝑛 vertices, the former type of queries can be

answered optimally—in 𝒪(log 𝑛) time using linear space [141]. The

latter type of queries can be answered in 𝒪(log
2 𝑛 + |𝑉(𝑞)|) time using

𝒪(𝑛2) space [27]. The visibility polygon itself has complexity 𝒪(𝑛) [102].

Chapter 7. Segment Visibility Counting Queries in Polygons 189

Visibility polygons inherit structure from the boundaries of 𝑃, so the

approaches that use it do not transfer to our setting.

Computing the visibility polygon of a line segment has been con-

sidered as well. When the polygon modelling the environment is simple,

the visibility polygon, called a weak visibility polygon, denoted 𝑉(𝑝𝑞) for

a line segment 𝑝𝑞, still has linear complexity, and can be computed in

𝒪(𝑛) time [131]. Chen and Wang [81] consider the data structure version

of the problem: they describe a linear-space data structure that can be

queried in 𝒪(|𝑉(𝑝𝑞)| log 𝑛) time, and an 𝒪(𝑛3)-space data structure that

can be queried in 𝒪(log 𝑛 + |𝑉(𝑝𝑞)|) time.

Computing the visibility polygon of a line segment 𝑝𝑞 allows us to

answer whether an entity moving along 𝑝𝑞 can see a particular fixed

point 𝑟, i.e. there is a time at which the moving entity can see 𝑟 if and only

if 𝑟 lies inside 𝑉(𝑝𝑞). If the point 𝑟 may also move, it is not necessarily

true that the entity can see 𝑟 if the trajectory of 𝑟 intersects𝑉(𝑝𝑞). Eades

et al. [99] present data structures that can answer such queries efficiently.

In particular, they present data structures of size 𝒪(𝑛 log
5 𝑛) that can

answer such a query in time 𝒪(𝑛3/4

log
3 𝑛). They present results even

in case the polygon has holes. Aronov et al. [27] show that we can also

efficiently maintain the visibility polygon of an entity as it is moving.

Visibility counting queries have been studied before, as well. Bose et

al. [34] studied the case where, for a simple polygon and a query point,

the number of visible polygon edges is reported. The same problem has

been considered for weak visibility from a query segment [67]. For the

case of a set of disjoint line segments and a query point, approximation

algorithms exist [20, 126, 206]. In contrast to these settings, we wish

to count visible line segments with visibility obstructed by a simple

polygon (other than the line segments). Closer to our setting is the

problem of reporting all pairs of visible points in a simple polygon [30].

Results and organisation. Our goal is to efficiently count the objects,

in particular, line segments or points, in a set 𝐴 that are visible to a query

object 𝑄. We denote this count by 𝐶(𝑄, 𝐴). Given 𝑃, 𝐴, and 𝑄, we can

easily compute 𝐶(𝑄, 𝐴) in optimal 𝒪(𝑛 +𝑚 log 𝑛) time (see Lemma 7.1).

We are mostly interested in the data structure version of the problem, in

which we are given the polygon 𝑃 and the set 𝐴 in advance, and we wish

to compute 𝐶(𝑄, 𝐴) efficiently once we are given the query object 𝑄.

We show that we can indeed answer such queries efficiently, that is, in

Chapter 7. Segment Visibility Counting Queries in Polygons 190

Table 7.1. Results in this chapter. • and / denote points and line segments,

respectively.

𝐴 𝑄
data structure

space preprocessing query

• • 𝒪(𝑛𝑚2) 𝒪(𝑛𝑚 log 𝑛 + 𝑛𝑚2) 𝒪(log 𝑛𝑚)
• • 𝒪(𝑛 + 𝑚2+𝜀

log 𝑛) 𝒪(𝑛 + 𝑚 log
2 𝑛 𝒪(log 𝑛 log 𝑛𝑚)

+ 𝑚2+𝜀
log 𝑛)

/ • 𝒪(𝑛𝑚2) 𝒪(𝑛𝑚 log 𝑛 + 𝑛𝑚2) 𝒪(log 𝑛𝑚)
• / 𝒪(𝑛2 + 𝑛𝑚2+𝜀) 𝒪(𝑛2

log𝑚 + 𝑛𝑚2+𝜀) 𝒪(log 𝑛 log 𝑛𝑚)
/ / 𝒪(𝑛2 + 𝑛𝑚2+𝜀) 𝒪(𝑛2

log𝑚 + 𝑛𝑚2+𝜀) 𝒪(log 𝑛 log 𝑛𝑚)

polylogarithmic time in 𝑛 and 𝑚. The exact query times and the space

usage and preprocessing times depend on the type of the query object

and the type of objects in 𝐴. See Table 7.1 for an overview. Here and in

the rest of the chapter, 𝜀 > 0 denotes an arbitrarily small constant.

In Section 7.2, we consider the case where the query object is a point.

We show how to answer queries efficiently using the arrangement of all

(weak) visibility polygons. As Bose et al. [34, Section 6.2] argued, such

an arrangement has complexity Θ(𝑛𝑚2) in the worst case. We then show

that if the objects in𝐴 are points, we can do significantly better. We argue

that we do not need to construct the visibility polygons of all points

in 𝐴, avoiding an 𝒪(𝑛𝑚) term in the space and preprocessing time. We

use a hierarchical decomposition of the polygon and the fact that the

visibility of a point 𝑎 ∈ 𝐴 in a subpolygon into another subpolygon is

described by a single constant-complexity cone. Aronov et al. [27] also

use hierarchical decomposition, but the rest of their approach cannot

be efficiently used in our setting, since it uses the cyclic ordering of the

vertices of a visibility polygon. We discuss this in detail in Section 7.5.

In Section 7.3, we turn our attention to the case where the query

object is a line segment 𝑝𝑞 and the objects in 𝐴 are points. One possible

solution in this scenario would be to store the visibility polygons for the

points in 𝐴 so that we can count such polygons stabbed by the query

segment. However, since these visibility polygons have total complexity

𝒪(𝑛𝑚) and the query may have an arbitrary orientation, a solution

achieving polylogarithmic query time will likely use at least Ω(𝑛2𝑚2)
space [13, 15, 135]. So, we again use an approach that hierarchically

Chapter 7. Segment Visibility Counting Queries in Polygons 191

decomposes the polygon to limit the space usage. Unfortunately, testing

visibility between the points in 𝐴 and the query segment is more

complicated in this case. Moreover, the segment can intersect multiple

regions of the decomposition, so we have to avoid double counting.

All of this makes the problem significantly harder. We manage to

overcome these difficulties using careful geometric arguments and an

inclusion–exclusion-style counting scheme. Our result in Table 7.1 saves

at least a linear factor compared to an approach based on stabbing

visibility polygons. We then show that we can extend these arguments

even further and solve the scenario where the objects in 𝐴 are also

line segments. Surprisingly, this does not impact the space or time

complexity of the data structure.

Finally, in Section 7.5, we discuss some extensions of our results.

In particular, we show that just testing whether the count 𝐶(𝑄, 𝐴) is

non-zero (i.e. whether 𝑄 is visible from any of the objects) is easier,

and that we can compute the pairwise visibility of two sets of objects—

that is, solve one of the problems that motivated this work—in time

subquadratic in the number of objects.

7.1 Preliminaries

In this section, we review some basic tools we use to build our data

structures.

Visibility in a simple polygon. Denote the (weak) visibility polygon

in a simple polygon 𝑃 of a point 𝑝 (resp. line segment 𝑝𝑞) by 𝑉(𝑝)
(resp.𝑉(𝑝𝑞)). A cone is a subset of the plane that is enclosed by two rays

starting at some point 𝑝, called the apex of the cone; the angle between

any two rays in the cone is acute. We refer to the two bounding rays as

the left and the right ray, so that moving clockwise from the left to the

right ray traverses the cone. A subcone of some cone 𝐶 is a cone with the

same apex as 𝐶 that is a subset of 𝐶. For a segment 𝑟𝑠 ⊂ 𝑃, define the

visibility cone of a point 𝑝 ∈ 𝑃 through 𝑟𝑠, denoted 𝑉(𝑝, 𝑟𝑠), as a region

consisting of the rays from 𝑝 that intersect 𝑟𝑠 before properly crossing

the boundary of 𝑃.1 Define a visibility cone 𝐶(𝑝) into a subpolygon𝑈 for

1
In case 𝑝 ∈ 𝑟𝑠 holds, this definition yields ℝ2

. We handle such cases separately.

Chapter 7. Segment Visibility Counting Queries in Polygons 192

𝑝 ∈ 𝑃 \𝑈 as the visibility cone through the diagonal of 𝑃 that separates

𝑈 from the subpolygon containing 𝑝.

Lemma 7.1. Let 𝑃 be a simple polygon with 𝑛 vertices, and let 𝐴 be a set of
𝑚 points or line segments in 𝑃. For a point or a line segment 𝑄, we can find
𝐶(𝑄, 𝐴) in time 𝒪(𝑛 + 𝑚 log 𝑛).

Proof. If 𝐴 is a set of points, it suffices to compute the visibility polygon

of 𝑄 and preprocess it for 𝒪(log 𝑛)-time point location queries. Both

preprocessing steps take linear time [131, 153], and querying takes

𝒪(𝑚 log 𝑛) time in total. In case 𝐴 consists of line segments, we can

similarly test if one of the endpoints of each segment of 𝐴 is visible,

thus making the segment visible. We also need to count the number

of visible segments whose endpoints lie outside 𝑉(𝑄). This can be

done in 𝒪(𝑛 +𝑚 log 𝑛) time by computing a sufficiently large bounding

box 𝐵 of 𝑉(𝑄) and constructing an 𝒪(log 𝑛)-time ray shooting data

structure on 𝐵 \ 𝑉(𝑄). This allows us to test if a segment intersects

𝑉(𝑄) in 𝒪(log 𝑛) time. The polygon 𝐵 \𝑉(𝑄) has only a single hole, so

we can connect the boundary of 𝑉(𝑄) to the boundary of 𝐵 with a line

segment 𝑟𝑠 and cut 𝐵 \𝑉(𝑄) along 𝑟𝑠 to obtain a simple polygon. We

can then build a ray shooting structure [141] on this simple polygon,

and answer a query by 𝒪(1) ray shooting queries. In particular, for any

segment in 𝐴 that does not cross 𝑟𝑠, we get the result directly; and for

any segment that crosses 𝑟𝑠, we detect that the ray hits 𝑟𝑠 and do a

second query on the other side of the cut. Either way, we use 𝒪(1) ray

shooting queries. □

Lemma 7.2. Given a visibility polygon 𝑉(𝑝) ⊆ 𝑃 for some point 𝑝 ∈ 𝑃 and a
line segment 𝑟𝑠 ⊂ 𝑃, either 𝑟𝑠 and 𝑉(𝑝) do not intersect, or their intersection
is a line segment.

Proof. Assume for contradiction that the intersection between 𝑉(𝑝) and

𝑟𝑠 consists of multiple, possibly degenerate, line segments, 𝑆1 , . . . , 𝑆𝑘
for some 𝑘 ∈ ℕ, 𝑘 > 1. Take some 𝑖 ∈ {1, . . . , 𝑘} and pick some points

𝑞𝑖 and 𝑞𝑖+1 on consecutive segments 𝑆𝑖 and 𝑆𝑖+1. Consider the line

segments 𝑝𝑞𝑖 and 𝑝𝑞𝑖+1. By definition of the visibility polygon, these

segments are inside 𝑃. Since 𝑟𝑠 is inside 𝑃, the segment 𝑞𝑖𝑞𝑖+1 is also

inside 𝑃. Since 𝑃 is simple, it must then hold that the interior of the

triangle 𝑇 with vertices 𝑝, 𝑞𝑖 , and 𝑞𝑖+1 is also inside 𝑃. More precisely, 𝑇

Chapter 7. Segment Visibility Counting Queries in Polygons 193

cannot contain any of the boundary of 𝑃. Now consider a line segment

𝑝𝑞𝑜 for a point 𝑞𝑜 between segments 𝑆𝑖 and 𝑆𝑖+1 on 𝑟𝑠. Since its endpoint

𝑞𝑜 is outside 𝑉(𝑝), the line segment must cross the boundary of 𝑃

inside 𝑇. This contradicts the previous claim that 𝑇 is empty; thus, it

must be that the intersection between 𝑉(𝑝) and 𝑟𝑠 is a line segment if

they intersect. □

Corollary 7.3. The intersection between the line segment 𝑟𝑠 ⊂ 𝑃 and the
visibility cone 𝑉(𝑝, 𝑟𝑠) for some 𝑝 ∈ 𝑃 is either empty or a line segment.

Proof. The visibility cone intersected with 𝑃 is by definition a subset of

the visibility polygon 𝑉(𝑝). Since the intersection between 𝑟𝑠 and 𝑉(𝑝)
is either empty or a line segment by Lemma 7.2, the same must hold

for 𝑉(𝑝, 𝑟𝑠). □

Cutting trees. A cutting tree [74, 78, 85] is a data structure commonly

used for efficient half-plane range queries. Nesting multiple cutting

trees in levels allows one to efficiently perform simplex range searching

and solve other related queries; we make extensive use of this. See

Figure 7.1 for an illustration. We now discuss this data structure in more

detail.

Suppose we want to preprocess a set ℒ of 𝑚 lines in the plane so

that given a query point 𝑞, we can count the number of lines below the

query point. Let 𝑟 ∈ [1, 𝑚] be a parameter; then a (1/𝑟)-cutting of ℒ is a

subdivision of the plane with the property that each cell is intersected

by at most 𝑚/𝑟 lines [74]. If 𝑞 lies in a certain cell of the cutting, we

know, for all lines that do not cross the cell, whether they are above or

below 𝑞, and so we can store the count with the cell, or report the lines

in a precomputed canonical subset; for the lines that cross the cell, we can

recurse. The data structure that performs such a query is called a cutting
tree; it can be constructed in 𝒪(𝑚2+𝜀) time, uses 𝒪(𝑚2+𝜀) space, and

supports answering the queries in time 𝒪(log𝑚) for any constant 𝜀 > 0.

Intuitively, the parameter 𝑟 here determines the trade-off between the

height of the recursion tree and the number of nodes for which a certain

line in ℒ is relevant. If we pick 𝑟 = 𝑚, the (1/𝑟)-cutting of ℒ is just the

arrangement of ℒ. The bounds above are based on picking 𝑟 ∈ 𝒪(1), so

the height of the recursion tree is 𝒪(log𝑚). This approach follows the

work of Clarkson [85], with Chazelle [74] obtaining the bounds above

by improving the cutting construction.

Chapter 7. Segment Visibility Counting Queries in Polygons 194

An obvious benefit of this approach over just constructing the

arrangement on ℒ and doing point location in that arrangement is that

using cuttings, we can obtain 𝒪(log𝑚) canonical subsets and perform

nested queries on them without an explosion in storage required; the

resulting data structure is called a multilevel cutting tree. Specifically,

we can query with 𝑘 points and a direction associated with each point

(above or below) and return the lines of ℒ that pass on the correct side

(above or below) of all 𝑘 query points. If we pick 𝑟 ∈ 𝒪(1) and nest

𝑘 levels in a 𝑘-level cutting tree, we get the same construction time

and storage bounds as for a regular cutting tree; but the query time is

now 𝒪(log
𝑘 𝑚). Chazelle et al. [78] show that if we set 𝑟 = 𝑛

𝜀/2

, each

level of a multilevel cutting tree is a constant-height tree, so the answer

to the query can be represented using only 𝒪(1) canonical subsets

and the query time is reduced to 𝒪(log𝑚). The space used and the

preprocessing time remains 𝒪(𝑚2+𝜀).

Lemma 7.4 ([78]). Let ℒ be a set of 𝑚 lines and let 𝑘 be a constant. Suppose
we want to answer the following query: given 𝑘 points and associated directions
(above or below), find the lines in ℒ that lie on the correct side of all 𝑘 points.
In time 𝒪(𝑚2+𝜀), we can construct a data structure using 𝒪(𝑚2+𝜀) storage
that supports such queries. The lines are returned as 𝒪(1) canonical subsets,
and the query time is 𝒪(log𝑚).

Dualising the problem in the usual way, we can alternatively report

or count points from the set 𝐴 that lie in a query half-plane; or in the

intersection of several half-planes, using a multilevel cutting tree.

Lemma 7.5 ([78]). Let 𝐴 be a set of 𝑚 points and let 𝑘 be a constant. In
time 𝒪(𝑚2+𝜀), we can construct a data structure using 𝒪(𝑚2+𝜀) storage that
returns 𝒪(1) canonical subsets with the points in 𝐴 that lie in the intersection
of the 𝑘 query half-planes in time 𝒪(log𝑚).

Lemma 7.6. Let 𝐴 be a set of 𝑚 arbitrary points in 𝑃, with each 𝑎 ∈ 𝐴 an
apex of some cone 𝐶𝑎 . At query time, we get the point 𝑞, an apex of a cone 𝐶𝑞 .
In time 𝒪(𝑚2+𝜀), we can construct a data structure using 𝒪(𝑚2+𝜀) space that
returns a representation of the points in 𝐴′ ⊆ 𝐴, so that for any 𝑝 ∈ 𝐴′, we
have 𝑞 ∈ 𝐶𝑝 and 𝑝 ∈ 𝐶𝑞 . The points are returned as 𝒪(1) canonical subsets,
and the query time is 𝒪(log𝑚); they can be counted in the same time.

Chapter 7. Segment Visibility Counting Queries in Polygons 195

𝑃𝑅

𝑃𝐿

𝑞

(a) (b)

(c) (d)

𝐷

𝑃𝑅

𝑞 𝑞

𝑞

𝐷 𝐷

𝐷𝑃𝐿

Figure 7.1. A query in a multilevel cutting tree, top left to bottom right. The

query point is red; the selected points of 𝐴 are blue. Black outline shows the

relevant part of the polygon. (a, b) We select points in 𝐴 above (resp. below)

the right (resp. left) cone boundary of 𝑞. (c, d) We refine by taking points whose

left (resp. right) cone boundary is below (resp. above) 𝑞.

Proof. We can construct a four-level cutting tree; the first two levels can

select the nodes that represent points from 𝐴 lying in 𝐶𝑞 . Note that

to select the points that lie in 𝐶𝑞 , we need to perform two consecutive

half-plane queries, as 𝐶𝑞 is an intersection of two half-planes that meet

at point 𝑞.2 We can use Lemma 7.5 to handle these; note that every time

we get a constant number of canonical subsets, so any new point location

queries can be done in 𝒪(log𝑚) time on each level. After two levels,

we get 𝒪(1) canonical subsets. The next two levels handle the other

condition: select the points whose cones contain 𝑞. This can be done by

checking that 𝑞 lies below the upper boundaries of the cones and that

𝑞 lies above the lower boundaries of the cones. Again, we need to do

point location queries on each level and for each canonical subset; we

can use Lemma 7.4 to see that we still have a constant number of those.

Overall, we do a constant number of point location queries and go down

a four-level data structure, where every level is a constant-depth tree.

Therefore, the query overall takes 𝒪(log𝑚) time. As stated previously,

adding the levels does not increase the storage or the preprocessing

time requirements. □

2
The cone 𝐶𝑞 can deviate from our definition of a cone, so the two rays can lie on the

same supporting line. We can still query twice with the same half-plane.

Chapter 7. Segment Visibility Counting Queries in Polygons 196

Lemma 7.7. Let 𝐿 be a vertical line and let 𝐴 be a set of 𝑚 cones starting
left of 𝐿 and whose left and right rays intersect 𝐿. In time 𝒪(𝑚2+𝜀), we can
construct two two-level cutting trees for 𝐴 of total size 𝒪(𝑚2+𝜀), so that for a
query segment 𝑝𝑞 that is fully to the right of 𝐿, we can count the cones that
contain or intersect 𝑝𝑞 in 𝒪(log𝑚) time.

Proof. A cone 𝐶 ∈ 𝐴 partitions the space to the right of 𝐿 in three regions:

the regions above and below 𝐶 and the region inside 𝐶. Segment 𝑝𝑞

does not intersect 𝐶 if it is contained in either the top or the bottom

region. This is exactly when either both points of 𝑝𝑞 are above the

supporting line of the upper boundary of 𝐶, formed by its left ray, or

when both are below the supporting line of the lower boundary of 𝐶,

formed by its right ray. Hence, if we store the supporting lines of the left

and right rays of 𝐴 in two two-level cutting trees, similarly to Lemma 7.6,

we can count the cones that are not visible for 𝑝𝑞. By storing the total

number of cones, we can now determine the number of visible cones. □

Lemma 7.8. Let ℒ be a set of 𝑚 lines and 𝑝𝑞 a query line segment. We can
store ℒ in a multilevel cutting tree, using 𝒪(𝑚2+𝜀) space and preprocessing
time, so that we can count the lines in ℒ intersected by 𝑝𝑞 in time 𝒪(log𝑚).

Proof. Consider the dual version of this problem. The set ℒ is dualised

to the set Λ of 𝑚 points, and 𝑝𝑞 becomes a double wedge bounded

by two intersecting lines. The key property is that 𝑝𝑞 intersects a line

in the original problem if and only if the corresponding point in the

dual problem lies inside the double wedge. Observe that the double

wedge is just the union of two cones, and a cone is an intersection of two

half-planes; so we can construct a two-level cutting tree using Lemma 7.5

and perform two queries in it, getting 𝒪(1) counts from each query. The

bounds follow from Lemma 7.5. □

Polygon decomposition. For a simple polygon 𝑃 on 𝑛 vertices, we

can construct a balanced hierarchical decomposition of 𝑃 by recursively

splitting the polygon into two subpolygons of roughly equal size, using

only diagonals (segments between two vertices of the polygon), as shown

by Chazelle [73]. The recursion stops when reaching triangles. The

decomposition can be computed in 𝒪(𝑛) time and stored using 𝒪(𝑛)
space in a balanced binary tree [73, 75, 130].

Chapter 7. Segment Visibility Counting Queries in Polygons 197

Hourglasses and the shortest path data structure. An hourglass for

two diagonals 𝑝𝑞 and 𝑟𝑠 in a simple polygon 𝑃 is the union of geodesic

shortest paths in 𝑃 from points on 𝑝𝑞 to points on 𝑟𝑠 [130]. Such

an hourglass is bounded by two diagonals and two inward convex

chains. Call one of the diagonals the left diagonal and the other the right
diagonal. By following the hourglass boundary in a clockwise manner,

starting from the left diagonal, we visit the upper convex chain, the right

diagonal, and the lower convex chain. If the upper chain and lower chain

of an hourglass share vertices, it is closed, otherwise it is open. We only

explicitly use open hourglasses in our constructions.3 A visibility glass is

a subset of the hourglass, restricted to the line segments between points

on 𝑝𝑞 and points on 𝑟𝑠 [99].

Guibas and Hershberger [130, 140] describe a data structure to

compute shortest paths in a simple polygon 𝑃. They use the polygon

decomposition by Chazelle [73] and also store hourglasses between the

splitting diagonals of the decomposition. The data structure uses 𝒪(𝑛)
storage and preprocessing time and can answer the following queries in

𝒪(log 𝑛) time:

Segment location query. Given a segment 𝑝𝑞, return the two leaf tri-

angles containing 𝑝 and 𝑞 in the decomposition and the 𝒪(log 𝑛)
pairwise disjoint open hourglasses so that the triangles and

hourglasses fully cover 𝑝𝑞. We call this structure the polygon
cover of 𝑝𝑞.

Shortest path query. Given points 𝑝, 𝑞 ∈ 𝑃, return the geodesic shortest

path between 𝑝 and 𝑞 in 𝑃 as a set of 𝒪(log 𝑛) nodes of the decom-

position. The shortest path between 𝑝 and 𝑞 is a concatenation of

subcurves of the polygonal chains of the appropriate boundaries

of the (open or closed) hourglasses in these 𝒪(log 𝑛) nodes to-

gether with at most 𝒪(log 𝑛) segments connecting two consecutive

subcurves.

Cone query. Given a point 𝑠 and a line segment 𝑝𝑞 in 𝑃, return𝑉(𝑠, 𝑝𝑞).
This can be done by computing the shortest paths from 𝑠 to 𝑝 and

to 𝑞 and taking the first segments of each path starting at 𝑠 to

extend them into the bounding rays of a cone.

3
If an hourglass is closed, the two chains are only inward convex from the endpoints

of a diagonal until they meet.

Chapter 7. Segment Visibility Counting Queries in Polygons 198

7.2 Point Queries

In this section, given a set 𝐴 of 𝑚 points in a simple polygon 𝑃 on 𝑛

vertices, we count the points of 𝐴 that are in the visibility polygon of

a query point 𝑞 ∈ 𝑃. We present two solutions: (i) an arrangement-

based approach that also applies in the case where 𝐴 contains line

segments, which achieves low query time at the cost of large storage

and preprocessing time; and (ii) a cutting-tree-based approach with

query times slower by a factor of 𝒪(log 𝑛), but with much better storage

requirements and preprocessing time.

7.2.1 Point Location in an Arrangement

The approach relies on the fact that the number of objects in 𝐴 visible

to a query point 𝑞 is equal to the number of (weak) visibility polygons

of the objects in 𝐴 stabbed by 𝑞. We construct all (weak) visibility

polygons of the objects in 𝐴 and compute the arrangement 𝒜 of the

edges of these polygons. For each cell 𝐶 in the arrangement, we store

the number of visibility polygons that contain 𝐶. Then a point location

query for 𝑞 yields the number of visible objects in 𝐴. Computing the

visibility polygons takes 𝒪(𝑛𝑚) time, and constructing the arrangement

using an output-sensitive line segment intersection algorithm takes

𝒪(𝑛𝑚 log 𝑛𝑚 + |𝒜|) time [76], where |𝒜| is the number of vertices

of 𝒜. Building a point location structure on 𝒜 for 𝒪(log|𝒜|)-time point

location queries takes 𝒪(|𝒜|) time [153]; the space used is 𝒪(|𝒜|). As

Bose et al. [34] show, the worst-case complexity of 𝒜 is Θ(𝑛𝑚2).

Theorem 7.9. Let 𝑃 be a simple polygon with 𝑛 vertices, and let 𝐴 be a set of
𝑚 points or line segments in 𝑃. In 𝒪(𝑛𝑚2 + 𝑛𝑚 log 𝑛𝑚) time, we can build a
data structure of size 𝒪(𝑛𝑚2) that can report the number of points or segments
in 𝐴 visible from a query point 𝑞 in 𝒪(log 𝑛𝑚) time.

7.2.2 Hierarchical Decomposition

To design a data structure that uses less storage than that of Section 7.2.1,

we observe that if we subdivide the polygon, we can count the visible

objects by summing up the number of visible objects in the cells of the

subdivision. To efficiently compute these counts, we use the polygon

decomposition approach (see Section 7.1). With each split in our

Chapter 7. Segment Visibility Counting Queries in Polygons 199

𝑃𝑅

𝐷

𝑃𝐿 𝑃𝑅

𝐷

(a) (b)

𝑃𝐿

Figure 7.2. Visibility cones (coloured regions) of (coloured) points w.r.t. some

diagonal 𝐷. (a) Blue and red are mutually visible. (b) Green and blue cannot

see each other, nor can orange and blue.

decomposition, we store data structures that can efficiently count the

visible objects in the associated subpolygon.

Cone containment. Let us solve the following problem first. We are

given a simple polygon 𝑃 and a (w.l.o.g.) vertical diagonal 𝐷 that splits

it into two simple polygons 𝑃𝐿 and 𝑃𝑅. Furthermore, we are given a

set 𝐴 of 𝑚 points in 𝑃𝐿. Given a query point 𝑞 in 𝑃𝑅, we want to count

the points in 𝐴 that see 𝑞. We base our approach on the following

observation.

Lemma 7.10. Given a simple polygon 𝑃, split into two simple polygons 𝑃𝐿
and 𝑃𝑅 by a diagonal 𝐷 between two vertices; and given two points 𝑝 ∈ 𝑃𝐿
and 𝑞 ∈ 𝑃𝑅, consider the visibility cones 𝑉(𝑝, 𝐷) and 𝑉(𝑞, 𝐷), i.e. the cones
from 𝑝 and 𝑞 through 𝐷 into the other subpolygons. Point 𝑝 sees 𝑞 in 𝑃 if and
only if 𝑞 ∈ 𝑉(𝑝, 𝐷) and 𝑝 ∈ 𝑉(𝑞, 𝐷).

Proof. First suppose that 𝑝 ∈ 𝑉(𝑞, 𝐷) and 𝑞 ∈ 𝑉(𝑝, 𝐷). We need to show

that 𝑝 and 𝑞 see each other, that is, that the line segment 𝑝𝑞 lies in 𝑃.

Observe that both 𝑝 and 𝑞 lie in 𝑉(𝑝, 𝐷), and 𝑉(𝑝, 𝐷) is convex, so 𝑝𝑞

lies in𝑉(𝑝, 𝐷); symmetrically, 𝑝𝑞 lies in𝑉(𝑞, 𝐷). Furthermore, note that

since both cones are cones through 𝐷, the segment 𝑝𝑞 must cross 𝐷

at some point 𝑟. Then by construction of 𝑉(𝑝, 𝐷), the segment 𝑝𝑟 lies

entirely in 𝑃𝐿; similarly, 𝑟𝑞 lies entirely in 𝑃𝑅. As 𝐷 also lies in 𝑃, we

conclude that 𝑝𝑞 lies in 𝑃.

Now suppose that 𝑝 and 𝑞 see each other in 𝑃. They are on the

opposite sides of the diagonal𝐷 and the polygon 𝑃 is simple, so 𝑝𝑞 must

cross 𝐷 at some point 𝑟. As 𝑝𝑞 lies inside 𝑃, clearly, 𝑝𝑟 lies inside 𝑃𝐿
and 𝑟𝑞 lies inside 𝑃𝑅. Then the visibility cone 𝑉(𝑝, 𝐷) must include

Chapter 7. Segment Visibility Counting Queries in Polygons 200

Figure 7.3. Augmented polygon decomposition following the approach by

Chazelle [73]. Each node corresponds to the splitting diagonal (blue dashed

line). Along the tree edges (blue lines), we store the multilevel cutting tree (red

box) for the polygon in the child using the diagonal of the parent.

the ray from 𝑝 through 𝑟, and so 𝑞 is in 𝑉(𝑝, 𝐷); symmetrically, 𝑝 is

in 𝑉(𝑞, 𝐷). □

Lemma 7.10 shows that to count the points in 𝐴 that see 𝑞, it suffices

to construct the cones from all points in 𝐴 through 𝐷 and the cone

from 𝑞 through 𝐷 and count the points in 𝐴 satisfying the condition of

Lemma 7.10 (see Figure 7.2). The cones 𝑉(𝑝, 𝐷) from all 𝑝 ∈ 𝐴 can be

precomputed (we shall handle this later), so only the cone𝑉(𝑞, 𝐷) needs

to be computed at query time. The query of this type can be realised

using a multilevel cutting tree (Lemma 7.6).

Decomposition. Let us return to the original problem. To solve it,

we can use the balanced polygon decomposition [73] (see Section 7.1).

Following Guibas and Hershberger [130, 140], we represent it as a binary

tree (see Figure 7.3). Observe that as long as there is some diagonal 𝐷

separating our query point from a subset of points of 𝐴, we can use the

approach above.

Every node of the tree is associated with a diagonal, and the two

children correspond to the left and the right subpolygons. With each

node, we store two data structures described above: one for the query

point to the left of the diagonal and one for the query to the right.

The query then proceeds as follows. Suppose the polygon 𝑃 is trian-

gulated, and the triangles correspond to the leaves in the decomposition.

Given a query point 𝑞, find the triangle it belongs to; then traverse the

Chapter 7. Segment Visibility Counting Queries in Polygons 201

tree bottom up. In the leaf, 𝑞 can see all the points of 𝐴 that are in the

same triangle, so we start with that count. As we proceed up the tree,

we query the correct associated data structure—if 𝑞 is to the right of the

diagonal, we want to count the points to the left of the diagonal in the

current subpolygon that see 𝑞. It is easy to see that this way we end up

with the total number of points in 𝐴 that see 𝑞, since the subsets of 𝐴

that we count are disjoint as we move up the tree and cover the entire

set 𝐴.

Theorem 7.11. Let 𝑃 be a simple polygon with 𝑛 vertices, and let 𝐴 be a set
of 𝑚 points inside 𝑃. In 𝒪(𝑛 + 𝑚2+𝜀

log 𝑛 + 𝑚 log
2 𝑛) time, we can build a

data structure of size 𝒪(𝑛 + 𝑚2+𝜀
log 𝑛) that can report the number of points

from 𝐴 visible from a query point 𝑞 in 𝒪(log 𝑛 log𝑚 + log
2 𝑛) time.

Proof. The correctness follows from the considerations above; it remains

to analyse the time and storage requirements. For the query time, we do

point location of the query point 𝑞 in the triangulation of 𝑃 and make a

single pass up the decomposition tree, making queries in the associated

multilevel cutting trees. Clearly, the height of the tree is 𝒪(log 𝑛). At

every level of the decomposition tree, we need to construct the visibility

cone from the query point to the current diagonal; this can be done in

𝒪(log 𝑛) time with a cone query (see Section 7.1). Then we need to query

the associated data structure, except at the leaf, where we simply fetch the

count. The query then takes time 𝒪(log 𝑛 log𝑚+ log
2 𝑛). For the storage

requirements, we need to store the associated data structures on in total

𝑚 points at every level of the tree, as well as a single copy of the shortest

path data structure, yielding overall 𝒪(𝑛 + 𝑚2+𝜀
log 𝑛) storage. Finally,

we analyse the preprocessing time. Triangulating a simple polygon

takes 𝒪(𝑛) time [75]. Constructing the decomposition can be done in

additional 𝒪(𝑛) time [130]. Constructing the associated data structures

takes time 𝒪(𝑚2+𝜀) per level, so 𝒪(𝑚2+𝜀
log 𝑛) overall, after determining

the visibility cones for the points of𝐴 to all the relevant diagonals, which

can be done in time 𝒪(𝑚 log
2 𝑛), as each point of 𝐴 occurs a constant

number of times per level of the decomposition, and constructing the

cone takes 𝒪(log 𝑛) time. Overall we need 𝒪(𝑛 + 𝑚2+𝜀
log 𝑛 + 𝑚 log

2 𝑛)
time. □

Observation 7.12. While this approach uses many of the ideas needed to tackle
the setting with segment queries, Lemma 7.10 does not apply—see Figure 7.4.

Chapter 7. Segment Visibility Counting Queries in Polygons 202

𝐷

(a)

𝐷

(b)

𝑠 𝑠

𝑞

𝑝 𝑝

𝑞

Figure 7.4. (a) For the cone that describes visibility of 𝑝𝑞 through 𝐷,

Lemma 7.10 does not hold—there can be visibility without visibility between

the apices of the cones. (b) The segment 𝑝𝑞 intersects the cone of 𝑠, and 𝑠 is in

the cone of 𝑝𝑞, but they cannot see each other, so testing intersection between

the objects and the cones also does not work directly.

𝑝 𝑞

𝐸(𝑢𝑣) 𝑆𝑈

𝑇𝑝 𝑇𝑞

𝐸(𝑢𝑤)

𝐻

𝑆𝐿

𝑣

𝑢 𝑤

𝐷𝐿 𝐷𝑅

Figure 7.5. Partitioning of the polygon based on the polygon cover of 𝑝𝑞. The

hourglasses and triangles are shown in orange; the side polygons in green; and

the end polygons in red.

7.3 Segment Queries

In this section, we are given a simple polygon 𝑃 and a set 𝐴 of stationary

entities (points) in 𝑃. We construct a data structure to count the points

in 𝐴 that see a query segment 𝑝𝑞. We cannot reuse the approach using

arrangements from Section 7.2.1, as the query 𝑝𝑞 may intersect Ω(𝑛)
arrangement cells. In addition, the hierarchical decomposition approach

in Section 7.2 does not carry over directly to the setting with segment

query objects. Thus, we construct a new data structure using the insights

of the hierarchical decomposition. We first show a high-level overview

of our argument where, given 𝑝𝑞, we decompose the polygon 𝑃 into

three types of regions. Then we show how to count the points visible to

𝑝𝑞 per type.

High-level overview. We use the data structure by Guibas and

Hershberger [130] (abbreviated GHDS) on 𝑃 as the basis and augment

the elements of the GHDS with data structures that allow us to perform

Chapter 7. Segment Visibility Counting Queries in Polygons 203

the queries. Recall from Section 7.1 that we can obtain the polygon

cover for a query segment 𝑝𝑞 using the GHDS, consisting of 𝒪(log 𝑛)
hourglasses and two triangles 𝑇𝑝 , 𝑇𝑞 containing 𝑝 and 𝑞. For a given

query 𝑝𝑞, the polygon cover partitions 𝑃 into regions of three types (see

Figure 7.5):

1. Hourglasses and triangles 𝑇𝑝 , 𝑇𝑞 intersecting 𝑝𝑞 and containing 𝑝

or 𝑞, respectively.

2. Side polygons, each incident to the upper or lower chain of an

hourglass.

3. End polygons that are adjacent to 𝑇𝑝 and 𝑇𝑞 .

For each type, we now count the points in 𝐴 in a region of that type that

see 𝑝𝑞. First, we review how to construct the relevant visibility cones.

Lemma 7.13. At preprocessing, for every side polygon or end polygon 𝑆

bounded by an hourglass 𝐻 or a triangle 𝑇, we can compute
• the number of points in 𝑆 ∩ 𝐴 and
• the cones 𝐶(𝑎) for 𝑎 ∈ 𝑆 ∩ 𝐴 into 𝐻 or 𝑇

in 𝒪(𝑛 log
2 𝑛 + 𝑛𝑚 log

2 𝑛) total time.

Proof. We do this using the approach of Eades et al. [99]. For complete-

ness, we sketch it here. We first construct the GHDS data structure on 𝑃.

For any point 𝑎 and any vertex 𝑣 ∈ 𝑃, this data structure can return

the shortest path 𝜋(𝑝, 𝑣) in 𝒪(log 𝑛) time, represented as a balanced

decomposition. We augment this decomposition so that any vertex 𝑥 on

𝜋(𝑝, 𝑣) stores whether the two edges incident to 𝑥 have an acute or an

obtuse angle. Then we iterate over all explicit 𝒪(𝑛 log 𝑛) hourglasses 𝐻

or triangles 𝑇. We describe the procedure for an hourglass 𝐻 and a side

polygon 𝑆, the other combinations are symmetric.

We count the number of points in 𝑆∩𝐴 as follows. For each 𝑎 ∈ 𝑆∩𝐴,

we compute the shortest paths from 𝑎 to the diagonals of 𝐻 in 𝒪(log 𝑛)
time. We know 𝑎 ∈ 𝑆 if and only if these shortest paths intersect the

upper chain 𝜋𝑈 . Thus, we identify all the points in 𝑆 ∩ 𝐴 in 𝒪(𝑚 log 𝑛)
time per (𝐻, 𝑆).

For every 𝑎 ∈ 𝑆 ∩ 𝐴, we compute the cone 𝐶(𝑎) into 𝐻. Denote

the subpolygon of 𝑆 that contains 𝑎 by 𝑆′. This is a subpolygon of 𝑃

bounded by a single edge (𝑥, 𝑦) which is a part of the boundary of 𝐻

(or of the triangle 𝑇). We obtain the shortest paths 𝜋(𝑎, 𝑥) and 𝜋(𝑎, 𝑦)

Chapter 7. Segment Visibility Counting Queries in Polygons 204

in 𝑃 as a balanced binary tree in 𝒪(log 𝑛) time. These two paths are

semi-convex chains, with a ‘peak’ vertex 𝑥′ and 𝑦′, respectively. We

can identify these peaks in 𝒪(log 𝑛) time as these are the first vertices

of 𝜋(𝑎, 𝑥) and 𝜋(𝑎, 𝑦) where the angles change from being obtuse to

acute (or vice versa). The cone 𝐶(𝑎) into 𝐻 is defined by the rays from 𝑎

through 𝑥′ and 𝑦′. Thus, we compute all cones 𝐶(𝑎) into𝐻 in 𝒪(𝑚 log 𝑛)
time per (𝐻, 𝑆). □

Since the construction time of Lemma 7.13 is dominated by the

construction time of Theorem 7.26, we henceforth assume that for any

hourglass 𝐻 or triangle 𝑇 and any side or end polygon 𝑆, we have access

to the visibility cones from points in 𝐴 ∩ 𝑆 into 𝐻 or 𝑇.

7.3.1 Counting Points in Triangles and Hourglasses

We count the points in 𝐴 contained in a triangle or an hourglass that

see 𝑝𝑞. Triangles are convex, so any point in a triangle can see 𝑝𝑞.

Similarly, each hourglass is completely traversed by 𝑝𝑞, so every point

inside an hourglass can see 𝑝𝑞. At preprocessing, for every region in

the GHDS (a triangle 𝑇 or an hourglass 𝐻), we count the points from

𝐴 in the region. Specifically, we construct a half-plane range query

data structure in 𝒪(𝑚2+𝜀) time and, for a triangle 𝑇, count the points

in 𝐴 ∩ 𝑇 with three consecutive half-plane range queries. The total

complexity of the hourglasses in the GHDS is 𝒪(𝑛 log
3 𝑛) [99, Lemma 7].

We triangulate each hourglass𝐻 to compute |𝐴∩𝐻 | in 𝒪(𝑛 log
3 𝑛 log𝑚)

total time. Given 𝑝𝑞, we compute the sum over all 𝒪(log 𝑛) hourglasses

and 𝒪(1) triangles in 𝒪(log 𝑛) time.

Lemma 7.14. We can construct an 𝒪(𝑛)-size data structure in 𝒪(𝑚2+𝜀 +
𝑛 log

3 𝑛 log𝑚) time, so that we can count all points in hourglasses and
triangles that see 𝑝𝑞 in 𝒪(log 𝑛) time.

7.3.2 Counting Points in Side Polygons

The points in side polygon do not always see 𝑝𝑞. Let 𝐻 be an hourglass

with two diagonals 𝐷𝐿, 𝐷𝑅 and two chains 𝜋𝑈 , 𝜋𝐿. Let 𝑆𝑈 be the side

polygon bounded by the upper chain 𝜋𝑈 ; the analysis for 𝑆𝐿 bounded

by the lower chain 𝜋𝐿 is symmetrical. For a point 𝑎 ∈ 𝐴 ∩ 𝑆𝑈 to see 𝑝𝑞,

Chapter 7. Segment Visibility Counting Queries in Polygons 205

its visibility cone 𝐶(𝑎) into 𝑃 \ 𝑆𝑈 cannot be empty. Furthermore, we

discern three mutually exclusive types of cones (Figure 7.6):

(a) 𝐶(𝑎) intersects the lower chain 𝜋𝐿 of 𝐻;

(b) 𝐶(𝑎) intersects only the left diagonal 𝐷𝐿 of 𝐻; and

(c) 𝐶(𝑎) intersects only the right diagonal 𝐷𝑅 of 𝐻.

Cones of Type (a) see 𝑝𝑞, since 𝑝𝑞 separates the upper and the lower

chain, and the interior of 𝐻 does not contain any polygon edges that

may block visibility. At preprocessing, we can identify the number of

cones of Type (a) for each of the 𝒪(𝑛) hourglasses in 𝒪(𝑛𝑚 log
3 𝑛) total

time by checking for an intersection with the cone boundary for each

boundary edge of 𝐻. This time is dominated by the construction time

in Lemma 7.17. Given a query 𝑝𝑞, we need 𝒪(1) per each of 𝒪(log 𝑛)
hourglasses to retrieve the number of cones of Type (a).

Types (b) and (c) are symmetrical; we discuss Type (b) for a fixed

side polygon 𝑆𝑈 and, without loss of generality, we assume that the

directed segment 𝑝𝑞 crosses 𝐷𝐿 before 𝐷𝑅. At preprocessing, we store

𝐴𝐿 ⊆ 𝐴∩𝑆𝑈 where for all 𝑎 ∈ 𝐴𝐿, visibility cone 𝐶(𝑎) intersects only𝐷𝐿;

and we store |𝐴𝐿 |. To count the visible cones of Type (b) at query time,

we subtract from |𝐴𝐿 | the number of elements in 𝐴𝐿 that do not see 𝑝𝑞.

(a) (b) (c)left ray

Figure 7.6. The three cases (a), (b), and (c) for cones originating from a side

polygon 𝑆𝑈 .

𝑆𝑈
𝑝 𝑞

(a)

𝐶(𝑎)

𝑠

𝐷𝐿

𝑆𝑈
𝑝 𝑞

𝑣

(b)

𝐶(𝑎)

𝑥
𝐷𝑅𝐼

𝑋

Figure 7.7. The construction used in the proof of Lemma 7.15. The left rays of

each cone are highlighted in red. (a) The first direction of the bi-implication

considers some area 𝐼. (b) The second direction of the bi-implication considers

some ray 𝑟 in blue and some area 𝑋.

Chapter 7. Segment Visibility Counting Queries in Polygons 206

Lemma 7.15. A point 𝑎 ∈ 𝐴𝐿 is not visible to 𝑝𝑞 if and only if the left ray
of 𝐶(𝑎) intersects the shortest path from 𝑝 to the top of 𝐷𝐿.

Proof. Let 𝐻 be bounded by diagonals 𝐷𝐿 and 𝐷𝑅. Let 𝐴𝐿 be the set of

points in 𝑆𝑈 ∩ 𝐴 whose visibility cone 𝐶(𝑎) intersects 𝐷𝐿. The proof is

illustrated by Figure 7.7.

First assume that 𝑎 ∈ 𝐴𝐿 does not see 𝑝𝑞. Let 𝑣 be the top vertex

of 𝐷𝐿, and let 𝜋(𝑝, 𝑣) be the shortest path from 𝑝 to 𝑣 in 𝑃. Suppose 𝐷𝐿

and 𝑝𝑞 intersect in point 𝑠. Since 𝑎 does not see 𝑝𝑞, this implies that

𝐶(𝑎) does not intersect 𝑠𝑞. Thus, any ray in 𝐶(𝑎) intersects 𝐷𝐿 in the

segment 𝑠𝑣.

Let 𝐼 be the region bounded by 𝑝𝑠, 𝑠𝑣, and 𝜋(𝑝, 𝑣). The region 𝐼

cannot contain any polygon vertices; it lies to the left of the supporting

line of 𝐷𝐿; and any ray of 𝐶(𝑎) must enter this region via 𝑠𝑣. Therefore,

any ray of 𝐶(𝑎) must leave this region via 𝜋(𝑝, 𝑣) or via 𝑝𝑠. If 𝑎 does not

see 𝑝𝑞, then no ray in𝐶(𝑎) can intersect 𝑝𝑠, and so it must intersect𝜋(𝑝, 𝑣).
It follows that the left ray of 𝐶(𝑎) intersects 𝜋(𝑝, 𝑣).

Now assume that 𝑎 ∈ 𝐴𝐿 sees 𝑝𝑞. Whenever 𝑎 sees 𝑝𝑞, there must

be a ray 𝑟 ∈ 𝐶(𝑎) which hits 𝑝𝑞 in some point 𝑥 and passes through the

interior of 𝑃. Consider the region 𝑋 bounded by 𝜋(𝑝, 𝑣), 𝜋(𝑣, 𝑎), 𝑎𝑥, and

𝑝𝑥. The region𝑋 and the left ray of 𝐶(𝑎) are separated by the supporting

line of 𝑟. Thus, the left ray of 𝐶(𝑎) cannot intersect 𝜋(𝑝, 𝑣). □

On a high level, we count the points 𝑎 ∈ 𝐴𝐿 for which the left ray

of 𝐶(𝑎) intersects the shortest path from 𝑝 to the top vertex 𝑣 of 𝐷𝐿 as

follows. For each hourglass in the GHDS, we store the shortest path

map SPM(𝑣) rooted at 𝑣 [131], and for each edge 𝑒 in SPM(𝑣), we store

the number of points 𝑎 ∈ 𝐴𝐿 for which the left ray of 𝐶(𝑎) intersects 𝑒.

We construct the SPMs and the cutting trees for the 𝒪(𝑛) hourglasses

in the GHDS using 𝒪(𝑛𝑚2+𝜀 + 𝑛2) space and 𝒪(𝑛𝑚2+𝜀 + 𝑛2
log𝑚) time.

At query time, we obtain the shortest path 𝜋(𝑝, 𝑣) from 𝑝 to 𝑣 as a single

segment 𝑝𝑢, followed by a path 𝜋(𝑢, 𝑣) in SPM(𝑣) for some vertex 𝑢.

We count the points 𝑎 ∈ 𝐴𝐿 where the left ray of 𝐶(𝑎) intersects 𝑝𝑢 in

𝒪(log𝑚) time, and those where the left ray of 𝐶(𝑎) intersects 𝜋(𝑢, 𝑣)
in 𝒪(log 𝑛) time, thus avoiding double counting. Thus, we count the

elements in 𝐴𝐿 that do not see 𝑝𝑞 in 𝒪(log 𝑛𝑚) time per side polygon.

Given 𝑝𝑞, we apply this strategy for all 𝒪(log 𝑛) hourglasses.

Chapter 7. Segment Visibility Counting Queries in Polygons 207

Lemma 7.16. We can construct a data structure using 𝒪(𝑚2+𝜀 + 𝑛) space in
𝒪(𝑚2+𝜀 + 𝑛 log𝑚) time for each hourglass 𝐻 so that we can count all points
of Type (b) (or Type (c)) that see the query 𝑝𝑞 in 𝒪(log𝑚𝑛) time.

Proof. By Lemma 7.15, whenever we want to count the visible points of

Type (b), we only need to count the points in 𝐴𝐿 and subtract the points

whose cones’ left ray intersects the shortest path from 𝑝 to the top vertex

of 𝐷𝐿, denoted by 𝑣.

For an hourglass 𝐻 and a side polygon 𝑆𝑈 , we count the elements

in 𝐴𝐿 in 𝒪(𝑚) time by checking the left ray of each 𝐶(𝑎) in constant time.

We store the left rays of cones 𝐶(𝑎) for 𝑎 ∈ 𝐴𝐿 in a multilevel cutting tree

in 𝒪(𝑚2+𝜀) time. In addition, we compute a shortest path map SPM𝐻 on

the polygon 𝑃𝐿 to the left of 𝐷𝐿 with 𝑣 as its root—it can be computed in

𝒪(𝑛) time and uses 𝒪(𝑛) space [131]. Finally, we augment the shortest

path map SPM𝐻 : for every edge 𝑒 stored in SPM𝐻 , we compute the

number of left rays that intersect 𝑒 in 𝒪(log𝑚) time using our multilevel

cutting tree. For every vertex 𝑤 in SPM𝐻 , we consider the shortest

path 𝜋 between 𝑤 and 𝑣 and store the total number of intersections

between all edges 𝑒 in 𝜋 and the rays that intersect 𝑒. This data structure

needs 𝒪(𝑚2+𝜀 + 𝑛) space and can be constructed in 𝒪(𝑚2+𝜀 + 𝑛 log𝑚)
time per hourglass.

Given a query segment 𝑝𝑞, we now want to count the points 𝑎 ∈ 𝐴𝐿
for which the left ray of 𝐶(𝑎) intersects the shortest path𝜋(𝑝, 𝑣). Observe

that the area 𝑋 bounded by 𝜋(𝑝, 𝑣) and 𝑝𝑣 is convex. A ray intersects

𝜋(𝑝, 𝑣) if and only if it intersects 𝑋. Moreover, due to convexity, any ray

that intersects 𝑋 must intersect two edges of 𝑋 (assuming no ray goes

through a vertex of 𝑋). Then to answer our query, we compute the sum

over all the edges 𝑒 bounding 𝑋 of the number of rays that intersect 𝑒,

and halve this sum.

Specifically, 𝜋(𝑝, 𝑣) consists of a convex chain of segments of the

shortest path between 𝑣 and some vertex 𝑢, followed by a segment 𝑝𝑢.

We retrieve the shortest path from 𝑢 to 𝑣 in 𝒪(log 𝑛) time. Observing

this, we do the following.

• Using the multilevel cutting tree, we count the rays that intersect

𝑝𝑣 in 𝒪(log𝑚) time.

• Using the multilevel cutting tree, we count the rays that intersect

𝑝𝑢 in 𝒪(log𝑚) time.

Chapter 7. Segment Visibility Counting Queries in Polygons 208

• We retrieve the rest of the sum from the augmented SPM𝐻 in 𝒪(1)
time.

Summing these values in constant time, we answer a query in 𝒪(log 𝑛𝑚)
time. □

Finally, we construct a data structure that can count the points in

𝐴 ∩ 𝑆𝑈 that see the query 𝑝𝑞, for any hourglass 𝐻 in the GHDS and for

any side polygon 𝑆𝑈 of 𝐻. We summarise the steps per type.

(a) Cones of Type (a) intersect the lower chain of an hourglass; they

see 𝑝𝑞. We count them at preprocessing in 𝒪(𝑛𝑚 log
3 𝑛) total time

using 𝒪(𝑛) total space. Given a query 𝑝𝑞, we can report the count

in 𝒪(1) time per hourglass returned by the GHDS, for the total time

of 𝒪(log 𝑛).
(b) Cones of Type (b) intersect only the left diagonal of an hourglass.

For each of the 𝒪(𝑛) hourglasses in the GHDS, we construct a

𝒪(𝑚2+𝜀+𝑛)-space data structure in 𝒪(𝑚2+𝜀+𝑛 log𝑚) time. Given a

query 𝑝𝑞, we need 𝒪(log 𝑛𝑚) time per hourglass, so 𝒪(log 𝑛 log 𝑛𝑚)
total time, to count the cones of this type.

(c) Cones of Type (c) intersect only the right diagonal of an hourglass.

They are symmetric to Type (b).

Lemma 7.17. We can construct an 𝒪(𝑛𝑚2+𝜀 + 𝑛2)-size data structure in time
𝒪(𝑛𝑚2+𝜀 + 𝑛2

log𝑚), so we can count all points in side polygons that see 𝑝𝑞
in 𝒪(log 𝑛 log 𝑛𝑚) time.

7.3.3 Counting Points in End Polygons

End polygons are bounded by triangles in the decomposition 𝑇𝑝 or 𝑇𝑞 ,

containing 𝑝 or 𝑞, respectively. Let 𝑇𝑝 = 𝑢𝑣𝑤; it is incident to at most

three end polygons. We describe the data structure for the end polygon

𝐸(𝑢𝑣) incident to 𝑇𝑝 through the edge 𝑢𝑣 (see Figure 7.8). All other

data structures are symmetrical. We count the points in 𝐴 ∩ 𝐸(𝑢𝑣) that

see 𝑝𝑞. Denote the set of all visibility cones 𝑉(𝑎, 𝑢𝑣) by 𝒞𝑢𝑣 over all

𝑎 ∈ 𝐴 ∩ 𝐸(𝑢𝑣).
Consider the special case where 𝑝𝑞 is fully contained in a triangle

(𝑇𝑝 = 𝑇𝑞). A triangle is convex, so we can immediately apply Lemma 7.8.

Now assume𝑇𝑝 ≠ 𝑇𝑞 . The query segment 𝑝𝑞 intersects some boundary of

𝑇𝑝 . We construct a data structure under the assumption that 𝑝𝑞 intersects

Chapter 7. Segment Visibility Counting Queries in Polygons 209

𝑣

𝑢

𝑤

(a) (b)

𝑣

𝑢
𝑤

𝑇𝑝

𝐶′

left ray

Figure 7.8. (a) We replace any cone 𝐶(𝑎) ∈ 𝒞𝑢𝑣 that contains 𝑤 by the cone

𝐶′ of rays that pass above 𝑤. (b) We then partition 𝒞𝑢𝑣 into 𝒞↑(𝑢𝑣) (blue) and

𝒞↓(𝑢𝑣) (red) based on whether the cone passes over or under 𝑤.

edge 𝑣𝑤 of 𝑇𝑝 ; for 𝑝𝑞 intersecting 𝑢𝑤, we construct a symmetrical

structure. So, given a triangle 𝑇𝑝 , where 𝑝𝑞 intersects 𝑣𝑤, we want to

count the cones 𝐶(𝑎) ∈ 𝒞𝑢𝑣 whose apex 𝑎 sees 𝑝𝑞. For brevity, we say

that such a cone sees 𝑝𝑞, meaning that 𝑝𝑞 is visible from the cone’s apex.

Our argument is a multilevel case distinction on 𝒞𝑢𝑣 . We first partition

𝒞𝑢𝑣 during preprocessing (Figure 7.8) into two sets:

1. 𝒞↓(𝑢𝑣) are the cones in 𝒞𝑢𝑣 that pass entirely below the vertex 𝑤;

and

2. 𝒞↑(𝑢𝑣) are the cones in 𝒞𝑢𝑣 that pass entirely above the vertex 𝑤.

We crop the cones that contain 𝑤; we now show why this is correct.

Lemma 7.18. Let 𝐶(𝑎) ∈ 𝒞𝑢𝑣 be a cone which contains the vertex 𝑤 of 𝑇.
Denote by 𝐶′ its subcone that passes above 𝑤. The apex 𝑎 sees 𝑝𝑞 if and only if
𝑎 sees 𝑝𝑞 through a ray in 𝐶′.

Proof. Let 𝐶′′
be the region 𝐶(𝑎) \ 𝐶′

. Suppose for the sake of contradic-

tion that 𝑎 see 𝑝𝑞 but there is no ray 𝑟 ∈ 𝐶′
that hits 𝑝𝑞. Then 𝑝𝑞 must

contain some point 𝑠 ∈ 𝐶′′
. Denote by 𝑠∗ the intersection between 𝑝𝑞

and the edge 𝑣𝑤, which must exist by construction. Then the segment

from 𝑠 to 𝑠∗ must intersect 𝐶′
; the first point of intersection is hit by a

ray 𝑟′ ∈ 𝐶′
which realises visibility to 𝑝𝑞, which is a contradiction. □

As a consequence of this lemma, we replace at preprocessing any

cone 𝐶 ∈ 𝒞𝑢𝑣 that contains the vertex 𝑤 with the subcone 𝐶′
that passes

above 𝑤.

Counting the cones in 𝒞↓(𝑢𝑣) that see 𝑝𝑞. For this class of cones, we

can prove the following statement.

Chapter 7. Segment Visibility Counting Queries in Polygons 210

Lemma 7.19. A cone 𝐶(𝑎) ∈ 𝒞↓(𝑢𝑣) sees 𝑝𝑞 if and only if 𝑝 lies below the
supporting line of the left ray of 𝐶(𝑎).

Proof. We assumed earlier that the 𝑝𝑞 intersects the segment 𝑣𝑤 of the

triangle 𝑇𝑝 . Since 𝑇𝑝 is convex, 𝑎 sees 𝑝𝑞 if and only if 𝑝𝑞 intersects

the left ray of 𝐶(𝑎). By construction, the vertex 𝑞 lies above the left ray

of 𝐶(𝑎). Hence, the latter occurs if and only if 𝑝 lies below the left ray

of 𝐶(𝑎). □

This means we can count the rays in 𝒞↓(𝑢𝑣) where 𝑝 lies below the

corresponding supporting line of the left ray by storing these rays in a

half-space range data structure, which has 𝒪(log𝑚) query time.

Lemma 7.20. In 𝒪(𝑛𝑚2+𝜀) time, we can construct a data structure of size
𝒪(𝑛𝑚2+𝜀) so that given a query segment 𝑝𝑞, a triangle 𝑇 = 𝑢𝑣𝑤, and set of
cones 𝒞↓(𝑢𝑣), we can count the cones 𝐶(𝑎) ∈ 𝒞↓(𝑢𝑣) that see 𝑝𝑞 in 𝒪(log𝑚)
time.

Counting the cones in 𝒞↑(𝑢𝑣) that see 𝑝𝑞. We partition 𝒞↑(𝑢𝑣) with

an elaborate double case distinction. Observe that this conceptual case

distinction can only be made at query time when we have access to

𝑠 = 𝑝𝑞 ∩ 𝑣𝑤 and 𝑞 (Figures 7.8 and 7.9).

(b) 𝑈 ⊆ 𝒞↑(𝑢𝑣) are the cones where both boundary rays intersect 𝑣𝑠

(but not 𝑠):

• 𝑈∗ ⊆ 𝑈 are the cones whose apices lie above the supporting

line of 𝑠𝑞;

• 𝑈□ ⊆ 𝑈 is the set𝑈 \𝑈∗
.

(c) 𝑆 ⊆ 𝒞↑(𝑢𝑣) are the cones which contain 𝑠:

• 𝑆(𝑖) ⊆ 𝑆 are the cones whose right ray intersects 𝑠𝑞;

• 𝑆(𝑖𝑖) ⊆ 𝑆 is the set 𝑆 \ 𝑆(𝑖).
(d) 𝐷 ⊆ 𝒞↑(𝑢𝑣) are the cones where both boundary rays intersect 𝑠𝑤

(but not 𝑠):

• 𝐷(𝑖) ⊆ 𝐷 are the cones whose right ray intersects 𝑠𝑞;

• 𝐷(𝑖𝑖) ⊆ 𝐷 is the set 𝐷 \ 𝐷(𝑖)
.

Chapter 7. Segment Visibility Counting Queries in Polygons 211

𝑣

𝑢
𝑤

𝑝
𝑠

𝑞

𝑣

𝑢
𝑤

𝑝

𝑞

𝑣

𝑢
𝑤

𝑝

𝑞

𝑣

𝑢
𝑤

𝑝 𝑠

𝑞

𝑣

𝑢
𝑤

𝑝

𝑞 𝑣

𝑢
𝑤

𝑝

𝑞

𝑠

𝑠

𝑠

𝑠

𝑈□

𝑈∗

𝑆(𝑖)

𝑆(𝑖𝑖)

𝐷(𝑖)

𝐷(𝑖𝑖)

Figure 7.9. We partition 𝒞↑(𝑢𝑣) into six sets: 𝑈∗, 𝑈□, 𝑆(𝑖), 𝑆(𝑖𝑖), 𝐷(𝑖), and 𝐷(𝑖𝑖).

Counting the cones in 𝑈 that see 𝑝𝑞. Both 𝑈∗
and 𝑈□

may contain

cones whose apex sees 𝑝𝑞. We show how to count these for both sets

using a data structure only on 𝒞↑(𝑢𝑣). We show that cones in 𝑈□
are

visible if and only if they intersect the segment 𝑝𝑠; we can test this in

𝒪(log𝑚) time. We count the cones in 𝑈∗
whose apices see 𝑝𝑞 via an

inclusion–exclusion argument. Specifically, we observe that all cones in

𝒞↑(𝑢𝑣) \𝑈∗
have one of two mutually exclusive properties:

(i) For all cones in 𝑆(𝑖), 𝐷(𝑖)
, and𝑈□

, their right ray intersects 𝜋(𝑣, 𝑞)
and lies above 𝑠.

(ii) For all cones in 𝑆(𝑖𝑖) and 𝐷(𝑖𝑖)
, their right ray lies below 𝑠 and does

not intersect 𝜋(𝑣, 𝑞).
Cones in 𝑈∗

never have Property (ii). Moreover, they are not visible

if and only if their right ray intersects 𝜋(𝑣, 𝑞), i.e. invisible cones have

Property (i). Thus, the number of cones in 𝑈∗
whose apices see 𝑝𝑞 is

equal to |𝒞↑(𝑢𝑣)| minus all cones with Property (i) or (ii). We count

cones with Property (i) using a shortest path map in 𝒪(log 𝑛) time,

identically to Section 7.3.2. We count cones with Property (ii) using

half-plane range queries in 𝒪(log𝑚) time. We now elaborate on these

points further.

Lemma 7.21. For all 𝐶(𝑎) ∈ 𝑈□, the right ray of 𝐶(𝑎) passes over 𝑠. Moreover,
𝑎 sees 𝑝𝑞 if and only if the right ray of 𝐶(𝑎) intersects the segment 𝑝𝑠.

Chapter 7. Segment Visibility Counting Queries in Polygons 212

Proof. By definition, the right ray of 𝐶(𝑎) passes over 𝑠. Assume w.l.o.g.

that 𝑣𝑤 is vertical. Since 𝑎 lies below the supporting line of 𝑝𝑞, the right

ray of 𝐶(𝑎) must have greater slope than 𝑝𝑞. Thus, no rays in 𝐶(𝑎) can

hit 𝑠𝑞. This implies the lemma. □

Using Lemma 7.21, we can count the cones 𝐶(𝑎) ∈ 𝑈□
that see 𝑝𝑞 as

follows. At preprocessing, for every triangle 𝑇 and for every set 𝒞↑(𝑢𝑣),
we construct a multilevel cutting tree on the right rays in 𝒞↑(𝑢𝑣). Given

a query 𝑝𝑞 and the point of intersection 𝑠, we identify in 𝒪(log𝑚) time

the unique cones of 𝒞↑(𝑢𝑣)
1. whose right ray passes over 𝑠, or

2. whose right ray intersects the segment 𝑝𝑠.

Lemma 7.22. In 𝒪(𝑛𝑚2+𝜀) time and using 𝒪(𝑛𝑚2+𝜀) space, we can construct
a data structure so that given a query segment 𝑝𝑞, a triangle𝑇, and a set 𝒞↑(𝑢𝑣),
we can count the cones 𝐶(𝑎) ∈ 𝑈□ that see 𝑝𝑞 in 𝒪(log𝑚) time.

It remains to identify the cones𝐶(𝑎) ∈ 𝑈∗
that see 𝑝𝑞. We observe that

all cones in 𝒞↑(𝑢𝑣) \𝑈∗
have one of two mutually exclusive properties:

(i) For all cones in 𝑆(𝑖), 𝐷(𝑖)
, and𝑈□

, their right ray intersects 𝜋(𝑣, 𝑞)
(and lies above 𝑠).

(ii) For all cones in 𝑆(𝑖𝑖) and 𝐷(𝑖𝑖)
, their right ray lies below 𝑠 (and does

not intersect 𝜋(𝑣, 𝑞)).

Lemma 7.23. All cones 𝐶(𝑎) ∈ 𝑈∗ do not have Property (ii). They have
Property (i) if and only if they do not see 𝑝𝑞.

Proof. These cones do not have Property (ii) by definition of the set𝑈 .

The proof for the second claim is identical to the proof of Lemma 7.15. □

Therefore, the number of cones in𝑈∗
visible to 𝑝𝑞 is |𝒞↑(𝑢𝑣)| without

all cones with Property (i) or (ii).

Lemma 7.24. In 𝒪(𝑛𝑚2+𝜀 + 𝑛2
log𝑚) time and using 𝒪(𝑛𝑚2+𝜀 + 𝑛𝑚)

space, we can construct a data structure so that given a query segment 𝑝𝑞, a
triangle 𝑇, and a set 𝒞↑(𝑢𝑣), we can count the cones 𝐶(𝑎) ∈ 𝑈∗ that see 𝑝𝑞 in
𝒪(log 𝑛𝑚) time.

Proof. Our data structure consists of two parts for a given triangle 𝑇 and

a set 𝒞↑(𝑢𝑣): a multilevel cutting tree on the right rays of the cones and

an augmented shortest path map of Section 7.3.2. Constructing these

Chapter 7. Segment Visibility Counting Queries in Polygons 213

for every triangle and set 𝒞↑(𝑢𝑣) requires 𝒪(𝑛𝑚2+𝜀 + 𝑛𝑚) space and

𝒪(𝑛𝑚2+𝜀 + 𝑛2
log𝑚) total time.

Given a query 𝑝𝑞, we count the cones in 𝒞↑(𝑢𝑣) with Property (i) in

𝒪(log𝑚) time using the cutting tree. We also count the cones in 𝒞↑(𝑢𝑣)
with Property (ii) in 𝒪(log 𝑛) time using the augmented shortest path

map. Overall, we count the cones in 𝐶(𝑎) ∈ 𝑈∗
that see 𝑝𝑞 in 𝒪(log 𝑛𝑚)

time. □

Counting the cones in 𝑆 and 𝐷 that see 𝑝𝑞. The apices of all cones

in 𝑆 see 𝑝𝑞. We identify these in 𝒪(log𝑚) time using a stabbing query

on 𝒞↑(𝑢𝑣). For cones in 𝐷, we can make a symmetrical case distinction,

creating the sets 𝐷∗
and 𝐷□

, and we can handle them through an

identical data structure.

Completing the argument. Using Lemmas 7.20, 7.22 and 7.24, we

construct a data structure of 𝒪(𝑚2+𝜀+𝑛) size in 𝒪(𝑚2+𝜀+𝑛 log 𝑛𝑚) time

for all 𝒪(𝑛) triangles and end polygons. At query time, we retrieve 𝒪(1)
triangles, with 𝒪(1) end polygons each. For every such combination,

we query the corresponding data structure in 𝒪(log 𝑛𝑚) time.

Lemma 7.25. We can construct an 𝒪(𝑛𝑚2+𝜀 + 𝑛2)-size data structure in time
𝒪(𝑛𝑚2+𝜀 + 𝑛2

log𝑚), so we can count all points in end polygons that see 𝑝𝑞
in 𝒪(log 𝑛 log 𝑛𝑚) time.

We store all points and visibility cones in the data structures of

Lemmas 7.14, 7.17 and 7.25 to show the main result of this section.

Theorem 7.26. Let 𝑃 be a simple polygon with 𝑛 vertices, and let 𝐴 be a
set of 𝑚 points inside 𝑃. In time 𝒪(𝑛𝑚2+𝜀 + 𝑛2

log𝑚), we can build a data
structure of size 𝒪(𝑛𝑚2+𝜀 + 𝑛2) to count the points from 𝐴 visible from a
query segment 𝑝𝑞 in 𝒪(log 𝑛 log 𝑛𝑚) time.

7.4 Segment Query for a Set of Segments

As a natural extension to our GHDS, we consider the case where 𝐴 is a

set of segments and we want to count the segments that see query 𝑝𝑞.

As we show next, we can reuse the approach of the previous section

with some minor additions and answer this query in polylogarithmic

time.

Chapter 7. Segment Visibility Counting Queries in Polygons 214

A difficulty that arises in this setting is that the segments in 𝐴 are no

longer partitioned by the polygon cover of 𝑝𝑞, that is, segments in 𝐴may

start or end in the polygon cover or pass through the cover. To be able to

correctly count the visible cones, we propose instead to count the cones

that we cannot see and subtract this from the total count. Observe that

any line segment that is not entirely contained in a single end polygon

or side polygon intersects a triangle or an hourglass and thus is visible

to 𝑝𝑞. Hence, it suffices to count the invisible line segments inside the

individual side and end polygons and subtract that count from the total.

7.4.1 Using Visibility Glasses

To determine visibility of the segments in 𝐴, we use the visibility glasses,
i.e. the collections of all visibility lines between two line segments (see

Figure 7.10 and Section 7.1). Let 𝑎𝑐 be a segment to the left of a (vertical)

diagonal 𝐷 = 𝑢𝑣 in 𝑃 (see Figure 7.10). We now check what 𝑎𝑐 sees in

the subpolygon to the right of the diagonal. To do this, we construct the

visibility glass 𝐿(𝑎𝑐, 𝐷) between 𝑎𝑐 and the diagonal. Eades et al. [99]

show that 𝐿(𝑎𝑐, 𝐷) is an hourglass defined by some subsegment 𝑜𝑟 ⊆ 𝑎𝑐

and a subsegment 𝑤𝑥 ⊆ 𝐷 (potentially, 𝑜 = 𝑟 or 𝑤 = 𝑥). We can now

compute the lines connecting the opposite endpoints of the visibility

glass that still provide visibility, that is, the lines through 𝑜𝑥 and 𝑟𝑤.

Note that these lines define the most extreme slopes under which there

can still be visibility. These two lines intersect in a single point 𝑖. We

now consider this point and the lines through it as a new cone that

describes the visible region to the right of diagonal 𝐷. We call this cone

the visibility glass cone. Note that the left and the right rays of the cone

are actual visibility rays to points 𝑜 and 𝑟 on the line segment for points

to the right of 𝐷.

Lemma 7.27. Consider a polygon 𝑃, split into subpolygons 𝑃𝐿 and 𝑃𝑅 by a
diagonal 𝐷 = 𝑢𝑣, and let 𝑎𝑐 be a line segment in 𝑃𝐿. Let 𝐶 be the visibility
glass cone of 𝑎𝑐 into 𝑃𝑅 through 𝐷. If a point 𝑝 ∈ 𝑃𝑅 sees 𝑎𝑐, then 𝑝 ∈ 𝐶.

Proof. Assume w.l.o.g. that 𝑣 is above 𝑢, and let 𝑤𝑥, with 𝑥 above 𝑤, be

the part of 𝐷 inside 𝐶. See Figure 7.10. Suppose for a contradiction that

𝑝 sees 𝑎𝑐 but is not in 𝐶. Let 𝑞 be a visible point on 𝑎𝑐 and let 𝐿 be the

line segment connecting 𝑝 and 𝑞. Since 𝐷 separates 𝑃𝐿 from 𝑃𝑅, and 𝐿

must be inside 𝑃 to be a visibility line, 𝐿 must cross 𝐷. Suppose w.l.o.g.

Chapter 7. Segment Visibility Counting Queries in Polygons 215

𝐷

𝑎

𝑐

𝑢

𝑣

𝑟

𝑜

𝑥

𝑤
𝑖

(a)

𝐷

𝑖

(b)

Figure 7.10. (a) The visibility glass (dark region) inside the hourglass (orange

region) from segment 𝑎𝑐 to diagonal 𝐷 = 𝑢𝑣. (b) The intersection point 𝑖

and the two rays from 𝑖 through 𝑤 and 𝑥 form a new visibility region in the

subpolygon to the right of 𝐷.

that 𝐿 crosses 𝐷 above 𝑥, that is, above the left ray 𝑅𝐿 of 𝐶. The left

ray must intersect a reflex vertex of the upper chain of its associated

hourglass 𝐻, so there is a region above 𝑅𝐿 bounded by the upper chain,

𝑅𝐿, and 𝑥𝑣. Since 𝐿 enters this region, it must also exit the region. There

can only be visibility if 𝐿 is inside 𝑃, hence, it must exit the region via the

edge bounded by 𝑅𝐿. Therefore, its slope is higher than the slope of 𝑅𝐿.

However, 𝑅𝐿 is the visibility ray with the highest slope, so by definition

of the visibility glass, 𝐿 then cannot see 𝑎𝑐, leading to a contradiction.

Thus, 𝑝 is in 𝐶. □

Corollary 7.28. If 𝑝 is visible, the ray from 𝑝 through the apex 𝑖 of 𝐶 is a
visibility line to 𝑎𝑐.

Lemma 7.27 shows that the visibility glass cones are functionally

the same as the visibility cones of points, thus we can reuse our data

structures of Section 7.3 for side and end polygons.

Observation 7.29. If a segment 𝑎𝑐 ∈ 𝐴 cannot see 𝑝𝑞, it must be fully
contained in a side or an end polygon.

This follows easily from the fact that if a segment 𝑎𝑐 is not contained

in either an end or a side polygon, then it is in the polygon cover or

intersects the boundary of the polygon cover. This then means that 𝑎𝑐

sees 𝑝𝑞. It now suffices to count the segments in the side and the end

polygons that are not visible to determine the total number of entities

invisible to 𝑝𝑞, and thus determine the number of entities in 𝐴 visible

to 𝑝𝑞.

Chapter 7. Segment Visibility Counting Queries in Polygons 216

Since our data structure of Section 7.3 can already correctly count

visible segments from the end and the side polygons, we can simply

determine the number of invisible segments by subtracting the number

of visible segments from the total number of segments in the end or side

polygon.

Theorem 7.30. Let 𝑃 be a simple polygon with 𝑛 vertices, and let 𝐴 be a set of
𝑚 segments in 𝑃. In time 𝒪(𝑛𝑚2+𝜀 + 𝑛2

log𝑚), we can build a data structure
of size 𝒪(𝑛𝑚2+𝜀 + 𝑛2) that can report the number of segments in 𝐴 visible
from a query segment 𝑝𝑞 in 𝒪(log 𝑛 log 𝑛𝑚) time.

Proof. We can reuse the data structures of Section 7.3 for the side and

the end polygon queries, provided we use the visibility glass cones of

the segments in 𝐴 that fall strictly inside the side and the end polygons.

Using the data structure by Eades et al. [99], we can compute the visibility

glasses to all diagonals in 𝒪(𝑛𝑚 log
4 𝑛 + 𝑛 log

3 𝑛) time and extract the

visibility glass cones in constant time per visibility glass. We can then

use these cones to build the data structures of Section 7.3. Construction

time of the data structure dominates the time required to construct the

visibility glass cones, and storage requirements remain the same. In

addition, we store the total number of segments for each possible side

and end polygon, requiring a total of 𝒪(𝑛) extra space.

Given the query, we determine the total number of invisible segments

in the side and the end polygons by subtracting the number of reported

visible segments from the total number of segments in the side and

the end polygons in 𝒪(log 𝑛 log 𝑛𝑚) time. We then subtract this count

from 𝑚 to arrive at the result. □

7.5 Extensions, Discussion, and Future Work

In this section, we present some natural extensions to our work and

discuss possible variations, as well as the obstacles in the way of obtaining

results in those settings.

In particular, we extend the approach of Section 7.4 to the case

where 𝐴 contains constant-complexity simple polygons, with the same

bounds. We also discuss the approach using visibility polygons by

Aronov et al. [27] and point out why it would be inefficient in our setting.

Furthermore, we consider a version of the problem where we only want

Chapter 7. Segment Visibility Counting Queries in Polygons 217

𝑣

𝑢

𝑦

𝑥

𝑝

𝑠

𝑎

𝑐

𝑟

𝑤

𝑆

𝐶

𝐿𝐿

𝐿𝑅

Figure 7.11. The visibility glass cone 𝐶 for a region 𝑆 and a diagonal 𝐷 = 𝑢𝑣.

to test if at least one object in 𝐴 sees the query. Finally, we tackle the

question of subquadratic counting, where given two sets 𝐴 and 𝐵 with

𝑚 points each, we wish to count the pairs from 𝐴× 𝐵 that see each other

in the simple polygon in time subquadratic in 𝑚.

7.5.1 Preprocessing Polygons

Instead of line segments in the set 𝐴, we can extend our approach to

polygons in 𝐴. So consider now the setting where we have a query

segment 𝑝𝑞 and a set of polygons 𝐴.

For this extension, we mainly have to show that an equivalent to

Lemma 7.27 holds—the rest then easily follows as for line segments in

Section 7.4. We first have to define the visibility glass and the visibility

glass cone. The visibility glass between a diagonal𝐷 = 𝑢𝑣 and a polygon

𝑆 ∈ 𝐴 is defined as the set of segments 𝑎𝑤 where 𝑎 ∈ 𝑆 and 𝑤 ∈ 𝐷.

Without loss of generality, assume that 𝐷 is vertical and that it splits

𝑃 into subpolygons 𝑃𝐿 and 𝑃𝑅, left and right of 𝐷, respectively, and

assume 𝑆 ⊆ 𝑃𝐿.

Consider the segment 𝑎𝑦 of the visibility glass with the highest

slope. In case of ties, take the shortest segment, so the intersection of 𝑎𝑦

and 𝑆 consists of only 𝑎. Similarly, define 𝑐𝑥 as the segment with the

lowest slope. Let 𝐿𝐿 and 𝐿𝑅 denote the supporting lines of 𝑎𝑦 and 𝑐𝑥,

respectively. The visibility glass cone of 𝑆 through 𝐷 is then the cone

defined by 𝐿𝐿 and 𝐿𝑅 that passes through 𝐷. We are now ready to prove

an equivalent to Lemma 7.27.

Chapter 7. Segment Visibility Counting Queries in Polygons 218

Lemma 7.31. Consider a polygon 𝑃, split into subpolygons 𝑃𝐿 and 𝑃𝑅 by a
diagonal 𝐷 = 𝑢𝑣 between two vertices 𝑢 and 𝑣, and let 𝑆 be a simple polygon
in 𝑃𝐿. Let 𝐶 be the visibility glass cone of 𝑆 into 𝑃𝑅 through 𝐷. If some point
𝑝 ∈ 𝑃𝑅 sees 𝑆, it must be in 𝐶.

Proof. For a contradiction, assume that there is a point 𝑝 ∈ 𝑃𝑅 that

sees 𝑆 but lies outside of 𝐶. Without loss of generality, suppose that

𝑝 is below 𝐶. Let 𝑠 ∈ 𝑆 be a point that is visible to 𝑝, and let 𝑟 ∈ 𝑆 be

the point closest to 𝑝 on the line segment 𝑠𝑝—see also Figure 7.11. Let

𝑤 be the intersection point of 𝑠𝑝 and 𝐷. We first note that 𝑠 cannot

lie above (or on) 𝐿𝑅. If that were the case, then the line segment 𝑤𝑠

would have a lower slope than 𝐿𝑅 and would be in the visibility glass,

contradicting the definition of the visibility glass cone. So we can

assume that 𝑠 is below 𝐿𝑅. However, if 𝑠 is below 𝐿𝑅, then so is 𝑟.

Now consider the region defined by 𝑐𝑥, 𝑥𝑤, 𝑤𝑟, and the path from 𝑐

to 𝑟 along the boundary of 𝑆 in clockwise direction (green region in

Figure 7.11). None of these segments or the path can be intersected

by the polygon boundary, so the region is empty. However, in that

case, also the line segment 𝑐𝑤 must be in the visibility glass and has

a lower slope, again contradicting the definition of the visibility glass

cone. From this contradiction we can conclude that any 𝑝 ∈ 𝑃𝑅 that

sees 𝑆 must be inside the visibility glass cone 𝐶. □

Using this lemma, we can apply the same methods as in Section 7.4

for a set of segments.

7.5.2 Details of Visibility Polygon Computation

We recap the approach of Aronov et al. [27] and indicate why it is not

efficient in our case.

They preprocess a simple polygon 𝑃 with 𝑛 vertices so that given a

query point 𝑞 ∈ 𝑃, they can report the visibility polygon 𝑉(𝑞) in time

𝒪(log
2 𝑛 + |𝑉(𝑞)|). The data structure uses 𝒪(𝑛2) space and can be

constructed in 𝒪(𝑛2
log 𝑛) time. Similar to our approach in Section 7.2.2,

they use a hierarchical decomposition of the polygon.

For all polygons 𝑃 split into two subpolygons 𝑃𝐿 and 𝑃𝑅 by a

diagonal 𝐷, assuming 𝑞 ∈ 𝑃𝑅, they compute the partial visibility

polygon 𝑉(𝑞) ∩ 𝑃𝐿. Then they recurse on 𝑃𝑅. They precompute partial

visibility polygons of 𝑃𝐿 that ignore the obstacles in 𝑃𝑅. Then they create

Chapter 7. Segment Visibility Counting Queries in Polygons 219

an arrangement on 𝑃𝑅 so that all points in one cell combinatorially get

the same partial visibility polygon in 𝑃𝐿. At query time, one wants to

receive the actual visibility polygon of 𝑞 and not just a partial one. To

obtain this, they compute the visibility cone through the diagonal 𝐷

(denoted by 𝑉(𝑞, 𝐷)) in the same way as we do. To compute the result

at each level of the decomposition, they do point location for 𝑞 in the

arrangement, retrieve the corresponding partial visibility polygon, and

intersect it with 𝑉(𝑞, 𝐷). They store the partial polygons in a persistent

red–black tree, making it efficient to compute the visibility polygons for

each cell of the arrangement, as well as to compute the intersection with

the cone 𝑉(𝑞, 𝐷).
In our work, we want to return at each level the set 𝐴 ∩ 𝑃𝐿 rather

than the region 𝑉(𝑞) ∩ 𝑃𝐿. The partial visibility polygons by Aronov

et al. [27] can be stored as a sequence of vertices and edges in cyclic

order along the boundary of 𝑃. This property is what saves one from

storing an explicit polygon for each cell in the arrangement, which

would significantly increase the space used. We do not have a clear

order for arbitrary points in 𝐴. Moreover, the cyclic order of the vertices

of the visibility polygons in 𝑃𝐿 is the same for all points in 𝑃𝑅; but the

cyclic order of points in 𝐴 ∩ 𝑃𝐿 depends on 𝑞.

Due to the these considerations, a naïve adaptation of their approach

would be slow. Using the multilevel cutting trees within the general

framework of hierarchical decomposition avoids the issue.

7.5.3 Testing for Visibility

Here we discuss the emptiness version of the problem: given a query 𝑄,

can any of the objects from 𝐴 see 𝑄? The solution is the same for all

four versions of the problem, whether 𝑄 is a point or a line segment

and whether 𝐴 contains points or line segments. We explicitly compute

the union of all (weak) visibility polygons of all 𝑚 objects in 𝐴 and build

a point location or ray shooting data structure on top of it. In all cases,

this leads to a 𝒪(𝑚(𝑚 + 𝑛))-space data structure that can answer queries

in 𝒪(log(𝑚 + 𝑛))-time. We start with some simple observations.

Observation 7.32. The union of two visibility polygons is either disconnected
or simply connected (has no holes).

Chapter 7. Segment Visibility Counting Queries in Polygons 220

Proof. We prove this by contradiction. Let 𝑝 and 𝑞 be two objects, and

assume that𝑉(𝑝)∪𝑉(𝑞) has a hole 𝐻. Since there is a cycle surrounding

𝐻 that lies completely inside the union of 𝑉(𝑝) ∪ 𝑉(𝑞) ⊆ 𝑃 and 𝑃 is

simple, it follows𝐻 is contained in 𝑃 as well. However, since 𝑝 cannot see

points in𝐻, there must be a part of the boundary of the polygon 𝑃 on the

boundary of 𝐻. Hence, polygon 𝑃 has a hole as well. Contradiction. □

Observation 7.33. A single visibility polygon intersects a polygon edge in a
single contiguous line segment.

This now allows us the prove the following key lemma.

Lemma 7.34. Let 𝑃 be a simple polygon with 𝑛 vertices. Let 𝐴 be a set of
𝑚 points or line segments in 𝑃. The complexity of the union𝑈 of the (weak)
visibility polygons of the elements of 𝐴 inside 𝑃 is Θ(𝑚(𝑚 + 𝑛)) in the worst
case.

Proof. A window is an edge of a visibility polygon that lies in the interior

of 𝑃. The union𝑈 of the visibility polygons can then have three types

of vertices:

1. vertices of 𝑃;

2. intersections between two windows; or

3. intersections between an edge of 𝑃 and a window.

The number of vertices of Type 1 is clearly 𝒪(𝑛).
To bound the number of vertices of Type 2, we argue that each pair

of viewpoints can only lead to a constant number of vertices, and hence

the total number of vertices of Type 2 is 𝒪(𝑚2). We argue as follows.

Consider two different objects 𝑝, 𝑞 ∈ 𝐴. By Observation 7.32, either

the visibility polygons of 𝑝 and 𝑞 are disjoint, or their union is simply

connected. In the first case, there is no vertex of𝑈 that is caused by 𝑝

and 𝑞, so assume the second case. Since the union is simply connected

(and the original regions are also simply connected), the regions are

pseudo-ellipses: their boundaries intersect each other in at most four

contiguous curves. These four curves can be degenerate points: if so,

they are intersections between windows (one originating from 𝑝 and one

from 𝑞) and there are only four of them, 𝑝 and 𝑞 contribute a constant

number of vertices of Type 2 to 𝑈 as required. If they are not points,

then either the shared boundaries are a part of the boundary of 𝑃, or 𝑝

Chapter 7. Segment Visibility Counting Queries in Polygons 221

(a) (b)

Figure 7.12. Lower bound constructions. (a) A construction with a union

complexity of Ω(𝑚2). (b) A construction with a union complexity of Ω(𝑚𝑛).

and 𝑞 produce partially coinciding windows; in both cases, they do not

contribute any vertices of Type 2 to𝑈 .

The number of vertices of Type 3 is at most𝒪(𝑛𝑚)by Observation 7.33.

□

The bound in Lemma 7.34 is tight, as sketched in Figure 7.12: we

present two separate constructions with a lower bound of Ω(𝑚2) and

Ω(𝑚𝑛). Clearly, the two constructions can happen simultaneously in

a single instance, leading to a bound of Ω(𝑚2 + 𝑛𝑚) as required. Note

that this construction is very similar to the one of Bose et al. [34].

Constructing the data structure. To construct 𝑈 , we first compute

all (weak) visibility polygons and merge them using a divide-and-

conquer approach. Constructing the visibility polygons takes 𝒪(𝑚𝑛)
time. Merging two planar subdivisions of sizes 𝒪(𝑚1(𝑚1 + 𝑛)) and

𝒪(𝑚2(𝑚2 + 𝑛)) into one of size 𝒪(𝑚(𝑚 + 𝑛)), where 𝑚 = 𝑚1 + 𝑚2, can

be done in 𝒪(𝑚(𝑚 + 𝑛) log(𝑚 + 𝑛)) = 𝒪(𝑚2
log(𝑚 + 𝑛) +𝑚𝑛 log(𝑚 + 𝑛))

time [76]. The running time thus follows the recurrence𝑇(𝑚) = 2𝑇(𝑚/2)+
𝒪(𝑚2

log(𝑚 + 𝑛) + 𝑚𝑛 log(𝑚 + 𝑛)), which solves to 𝒪(𝑚2
log(𝑚 + 𝑛) +

𝑚𝑛 log(𝑚 + 𝑛) log𝑚).
By storing𝑈 in a data structure for point location queries [198], we

can directly test if a query point 𝑞 is visible from any of the objects in 𝐴

in 𝒪(log(𝑛+𝑚)) time. In case the query is a segment 𝑝𝑞, we additionally

preprocess all components of 𝑃 \𝑈 for ray shooting queries. Note that

each such component is indeed a simple polygon (i.e. it is either a hole

of𝑈 or a region bounded by the outer boundary of𝑈 and the polygon

boundary), and thus we can answer such queries in logarithmic time

using linear space [141]. The total space and preprocessing time for

these structures is thus only 𝒪(𝑚(𝑚+ 𝑛)). To answer a query, we use the

Chapter 7. Segment Visibility Counting Queries in Polygons 222

𝑚
2

𝑚
2

Θ(𝑚2)

(a) (b)

Figure 7.13. The arrangement of 𝑚 visibility polygons in a simple polygon with

𝑛 vertices can have complexity Ω(𝑚2𝑛).

point location structure to find the faces containing the two endpoints.

If either endpoint lies inside𝑈 , we can immediately answer that 𝑝𝑞 is

visible from an object in 𝐴. Otherwise, we use the ray shooting data

structure associated with the face containing endpoint 𝑝, and shoot a

ray towards 𝑞. If the ray enters 𝑈 before reaching 𝑞, we also find that

𝑝𝑞 is visible from an an object in 𝐴, otherwise (i.e. we reach 𝑞 before

entering𝑈 or we hit the boundary of 𝑃) 𝑝𝑞 is not visible.

Theorem 7.35. Let 𝑃 be a simple polygon with 𝑛 vertices and let 𝐴 be a set
of 𝑚 points or line segments inside 𝑃. We can construct a data structure of
𝒪(𝑚(𝑚 + 𝑛)) size, in 𝒪(𝑚2

log(𝑚 + 𝑛) + 𝑚𝑛 log(𝑚 + 𝑛) log𝑚) time, that
can test if a given query point 𝑞 or query segment 𝑝𝑞 is visible from any of the
objects in 𝐴 in 𝒪(log(𝑚 + 𝑛)) time.

In contrast, the total arrangement of all𝑚 visibility polygons may have

complexity Ω(𝑚2𝑛) (see Figure 7.13). This implies that the same solution

for counting or reporting queries would be much slower. Instead, in the

remainder of the chapter we explore a different approach.

7.5.4 Subquadratic Counting

Given our data structures, we can generalise the problem: given two

sets of points or line segments 𝐴 and 𝐵, each of size 𝑚, in a simple

polygon 𝑃 with 𝑛 vertices, count the number of pairs in 𝐴 × 𝐵 that see

each other. Using previous work by Guibas and Hershberger [130] and

Eades et al. [99], we can solve this problem by checking the visibility for

all pairs. If 𝑛 ≫ 𝑚, this approach is optimal. In particular, if both sets

𝐴 and 𝐵 consist of points, or if one of the sets contains only segments,

this yields a solution with the running time 𝒪(𝑛 + 𝑚2
log 𝑛). However,

when 𝑚 ≫ 𝑛, we want to avoid the 𝑚2
factor. Furthermore, the setting

of Section 7.4 is novel, so we consider the full spectrum of trade-offs.

Chapter 7. Segment Visibility Counting Queries in Polygons 223

The trick is to use the following well-known technique. Suppose we

have a data structure for visibility counting queries with query time

𝑄(𝑚, 𝑛) and preprocessing time 𝑃(𝑚, 𝑛). Pick 𝑘 = 𝑚𝑠
with 0 ≤ 𝑠 ≤ 1.

We split the set 𝐴 into sets 𝐴1 , . . . , 𝐴𝑘 , with 𝑚/𝑘 objects each; then

we construct a data structure for each set. Finally, with each point

in 𝐵, we query these 𝑘 data structures and sum up the counts. It

is easy to see that the count is correct; the time that this approach

takes is 𝒪
(︁
𝑘 · 𝑃(𝑚/𝑘, 𝑛) + 𝑚𝑘 · 𝑄(𝑚/𝑘, 𝑛)

)︁
. We need to pick 𝑠 to minimise

𝒪
(︁
𝑚𝑠 · 𝑃(𝑚1−𝑠 , 𝑛) + 𝑚1+𝑠 · 𝑄(𝑚1−𝑠 , 𝑛)

)︁
.

Let us show the results for the various settings. Suppose that

both sets 𝐴 and 𝐵 contain points. First, let us consider the approach

of Section 7.2. We have 𝑃(𝑚, 𝑛) = 𝒪(𝑛 + 𝑚2+𝜀
log 𝑛 + 𝑚 log

2 𝑛) and

𝑄(𝑚, 𝑛) = 𝒪(log
2 𝑛 + log 𝑛 log𝑚). The summands depending only on

𝑛 come from preprocessing of the polygon that only needs to be done

once; so we get

𝒪
(︁
𝑛 + 𝑚𝑠 · (𝑚(1−𝑠)(2+𝜀)

log 𝑛 + 𝑚1−𝑠
log

2 𝑛)
+ 𝑚1+𝑠

log
2 𝑛 + 𝑚1+𝑠

log 𝑛 log𝑚1−𝑠)︁
= 𝒪(𝑛 + 𝑚(1−𝑠)(2+𝜀)+𝑠

log 𝑛 + 𝑚1+𝑠
log

2 𝑛 + 𝑚1+𝑠
log 𝑛 log𝑚) .

Unless 𝑛 ≫ 𝑚, we pick 𝑠 such that (1 − 𝑠)(2 + 𝜀) + 𝑠 = 1 + 𝑠; we find

𝑠 = (1 + 𝜀)/(2 + 𝜀). Therefore, the running time is 𝒪(𝑛 +𝑚3/2+𝜀′
log 𝑛 log 𝑛𝑚)

for this choice of 𝑠, where 𝜀′ > 0 is an arbitrarily small constant.

Alternatively, we could apply the arrangement-based method of

Section 7.2.1. We have 𝑃(𝑚, 𝑛) ∈ 𝒪(𝑛𝑚2 + 𝑛𝑚 log 𝑛) and 𝑄(𝑚, 𝑛) ∈
𝒪(log 𝑛𝑚). Using the formula above, we get

𝒪
(︁
𝑚𝑠 · (𝑛𝑚2−2𝑠 + 𝑛𝑚1−𝑠

log 𝑛) + 𝑚1+𝑠 · log(𝑛𝑚1−𝑠)
)︁

= 𝒪(𝑛𝑚2−𝑠 + 𝑛𝑚 log 𝑛 + 𝑚1+𝑠
log 𝑛𝑚) .

If 𝑚 ≫ 𝑛, we can pick 𝑠 to balance the powers of 𝑚 in the terms; so we

set 𝑠 = 1/2 to get

𝒪(𝑚3/2 · (𝑛+ log 𝑛+ log𝑚)+𝑛𝑚 log 𝑛) = 𝒪(𝑛𝑚3/2+𝑚3/2

log𝑚+𝑛𝑚 log 𝑛) .

If 𝑛 ≫ 𝑚, it is best to use the pairwise testing approach; however,

if 𝑚 ≫ 𝑛, the arrangement-based approach performs best, and if

𝑚 ≈ 𝑛, we obtain best results with the decomposition-based approach

of Section 7.2.

Chapter 7. Segment Visibility Counting Queries in Polygons 224

Now suppose that one of the sets contains points and the other

set contains line segments. As it turns out, using the approach of

Section 7.3 is always inefficient here; if 𝑚 ≫ 𝑛, we can use the approach

of Section 7.2.1, making sure that we do point queries, and otherwise

pairwise testing is fastest.

Finally, suppose both sets consist of line segments. We have𝑃(𝑚, 𝑛) ∈
𝒪(𝑛2

log𝑚 + 𝑛𝑚2+𝜀) and 𝑄(𝑚, 𝑛) ∈ 𝒪(log
2 𝑛 + log 𝑛 log𝑚). We get

𝒪
(︁
𝑚𝑠 · (𝑛2

log𝑚1−𝑠 + 𝑛𝑚(1−𝑠)(2+𝜀)) + 𝑚1+𝑠
log 𝑛 log 𝑛𝑚1−𝑠)︁

= 𝒪(𝑛2𝑚𝑠
log𝑚 + 𝑛𝑚(1−𝑠)(2+𝜀)+𝑠 + 𝑚1+𝑠

log
2 𝑛 + 𝑚1+𝑠

log 𝑛 log𝑚) .

For 𝑛 ≫ 𝑚, the time is dominated by 𝒪(𝑛2𝑚𝑠
log𝑚), so we pick 𝑠 = 0

and get 𝒪(𝑛2
log𝑚 + 𝑛𝑚2+𝜀) time. For 𝑛 ≈ 𝑚 or 𝑚 ≫ 𝑛, we balance the

powers by picking 𝑠 = (1 + 𝜀)/(2 + 𝜀) to get 𝒪(𝑛2𝑚
1/2+𝜀′

log𝑚 + 𝑛𝑚3/2+𝜀′ +
𝑚

3/2+𝜀′
log 𝑛 log𝑚) time for this choice of 𝑠, where 𝜀′ > 0 is an arbitrarily

small constant.

7.5.5 Moving Points

In the context of moving objects, we may interpret a segment as a

moving object that traverses the segment from start to end with a

constant velocity. This applies both to the objects in a given set 𝐴 and the

query object. More formally, consider objects 𝑝, 𝑞 that have trajectories

𝑝(𝑡) : ℝ → ℝ2 ∩ 𝑃 and 𝑞(𝑡) : ℝ → ℝ2 ∩ 𝑃 inside a polygon 𝑃. We say

that 𝑝 and 𝑞 are mutually visible in 𝑃 if and only if at some time 𝑡, the

line segment 𝑝(𝑡)𝑞(𝑡) is inside the polygon 𝑃. In this case, we could

be interested in counting how many objects can be seen by the query

object at some point during their movement. Note that the settings we

discuss in Sections 7.2 and 7.3 lend themselves to this interpretation

immediately, since either the query or the objects of 𝐴 do not move. On

the other hand, the setting of a query segment with a set of segments

from Section 7.4 does not translate to moving objects.

Eades et al. [99] present a data structure that supports determining

whether two query objects see each other at some point in time by

preprocessing only the polygon. There is no obvious extension to their

data structure that also preprocesses the set of objects. A possible (slow)

solution would be to track time as a third dimension and construct the

visibility polygon of each point 𝑝 ∈ 𝐴 as it moves. Given a moving object

Chapter 7. Segment Visibility Counting Queries in Polygons 225

as a query, we would then need to count the visibility polygons (that

include a time dimension) that are pierced by the segment. It seems

difficult to avoid double counting the points in this scenario; actually

solving this problem would be an interesting continuation of the work

presented in this paper.

7.5.6 Query Variations

There are many other settings that one could consider as extensions of

this work, in addition to the ones we have considered in this paper. For

instance, we could consider the reporting version of the problem rather

than counting; this works immediately for the point query approaches

of Section 7.2, but our use of inclusion–exclusion arguments for segment

queries in Sections 7.3 and 7.4 prevents us from easily adapting those

to reporting in time proportional to the number of reported segments.

Bose et al. [34] showed how to use the arrangement-based approach for

reporting, also in the case of querying with line segments. Finally, when

considering segments, one can ask many other questions: how much

of each segment is seen by a query segment and vice versa, for each

segment or in total; these questions and more can also be considered for

moving objects as in Section 7.5.5. All of these would be highly exciting

directions for future work.

CHAPTER 8
Conclusions

Trajectory analysis is a broad topic, encompassing many useful tools for

analysing movement with applications in many areas of science and

engineering. In most of those areas, collected data are uncertain, due

to the measurement methods or sampling rates. We have investigated

the topic of trajectory analysis under uncertainty in this thesis, with the

focus on similarity using the Fréchet distance and on further analysis

tasks that heavily rely on similarity. Chapter 7, devoted to visibility

questions, deviates from this pattern, hinting at the true breadth of the

topic. As there has been little research into trajectory analysis under

uncertainty in computational geometry, this thesis can be a start of a

systematic study, but it has also barely scratched the surface of what

is possible. We recall our main results in Section 8.1 and discuss the

possible directions for future work in Section 8.2.

8.1 Discussion of Results

First, we studied trajectory similarity under uncertainty using the

Fréchet distance, in Chapters 3 and 4. In both two dimensions and one

dimension, we provided a host of hardness results and algorithms for the

various variants of the (discrete) (weak) Fréchet distance. In particular,

we showed NP-hardness for the upper bound discrete and continuous

Fréchet distance for indecisive points and intervals in 1D (and higher),

226

Chapter 8. Conclusions 227

and for imprecise points modelled as disks and line segments in 2D

(and higher). Following these results, we showed #P-hardness for the

problem of finding the expected Fréchet distance under the uniform

distribution on the uncertain points. We also showed NP-hardness

for the lower bound Fréchet distance in 2D for vertical line segments,

but provided polynomial-time algorithms for indecisive points in 2D

(and lower) and for intervals in 1D. For the lower bound weak Fréchet

distance, we provided an algorithm in 1D, but NP-hardness proofs

in 2D and for the discrete weak Fréchet distance. Finally, we gave

algorithms for a restricted case for the upper bound Fréchet distance

and approximation algorithms for the lower bound Fréchet distance.

We further studied the problem of simplification under uncertainty

in Chapter 5. In particular, we considered the variant where the output

sequence of (uncertain) points is a subsequence of the input sequence,

and for any realisation of the input, the corresponding realisation of the

output is a valid simplification. We provided algorithms that solve the

problem for the Hausdorff and the Fréchet distance on line segments,

disks, and constant-complexity convex polygons.

These first chapters have been centred around the fundamental

task of computing trajectory similarity. Considering the importance of

similarity, it is worthwhile effort to find efficient algorithms for practical

variants of the problem. Unfortunately, many variants turn out to

be hard. There are still a few gaps in the various complexity tables,

as discussed in Chapters 3 and 4, but perhaps filling them in is less

important than obtaining practical approximation algorithms for the

hard problems: maximising and especially computing the expected

value of the Fréchet distance could both be used in analysis tasks, but

now we only have exact solutions for a restricted setting and hardness

results for general curves.

Switching to a different view of uncertainty, we discussed map

matching in Chapter 6. We showed how to preprocess a realistic map to

efficiently answer map-matching queries for an arbitrary trajectory. In

particular, we described how to approximate the Fréchet distance to the

closest path in the map and how to report a path realising this distance.

Finally, in Chapter 7, we discussed the question of visibility: as-

suming uncertain measurements, we may sample a collection of line

segments connecting two consecutive measurements and ask how many

of these are seen by a different subject that is either static or in motion.

Chapter 8. Conclusions 228

The particular problem we studied is that of preprocessing a simple

polygon and a set 𝑆 of points or line segments so that, given a query

point or line segment, we can efficiently count the number of objects

in 𝑆 that have an unobstructed line of sight to the query. This problem

is likely to have applications outside of uncertainty as well.

The results of the last two chapters demonstrate how questions

involving uncertainty can be answered using approaches that, at first

sight, have little connection to the uncertainty models. Perhaps such

connections can be found for other problems in the future.

8.2 Future Work

Every problem mentioned in the thesis can be studied both in the

extremal and the probabilistic model, the latter being more useful but

also more complex; in a practical sense, we would greatly benefit from

efficient approximations to probabilistic problems.

Beyond the problems adjacent to those in this thesis, there are many

further analysis tasks to consider. Some, like clustering, would benefit

from more research into similarity measures, but others, like map

matching or segmenting trajectories based on periods of (dis)similar

behaviour, could be studied separately. For map matching, perhaps

there are fewer useful ways to model uncertainty in measurements—as

discussed in Chapter 6, implicit modelling can be made explicit with

relatively little effort—but for segmentation, it can be incorporated into

the algorithms.

In both cases and many more, it makes sense to consider uncertainty

between measurements, a subject we barely touched upon in this thesis.

Uncertainty models as developed in geographic information science and

biology could serve as a base for geometric algorithms on trajectories that

incorporate uncertainty. At some level of complexity, this topic may tie

into using the context of movement to resolve such uncertainty. However,

one can definitely benefit from studying even the simplest models—like

the space–time prisms, that merely impose a bound on the speed of the

subject—in the context of trajectory analysis and processing tasks such

as simplification. A concerted effort in studying the uncertainty between

measurements would give us a principled way to interpolate the data

between such measurements in algorithms for trajectory analysis.

Chapter 8. Conclusions 229

* * *

We should remember that uncertainty can never be ‘solved’ definitively.

It is a fact of life that the data we collect is uncertain and we can only

make practically useful statements to a certain degree of accuracy, no

matter our techniques. The best we can do is to accept uncertainty, and

deal with it openly and honestly, and there is plenty of room to do so—at

least when developing algorithms for trajectory analysis.

Bibliography

[1] Amirali Abdullah, Samira Daruki, and Jeff M. Phillips. ‘Range Counting Coresets

for Uncertain Data’. In: Proceedings of the 29th Annual Symposium on Computational
Geometry (SoCG 2013). Ed. by Guilherme D. da Fonseca, Thomas Lewiner, Luis

Peñaranda, Timothy M. Chan, Rolf Klein, and Alexander Kröller. New York, NY,

USA: Association for Computing Machinery, 2013, pp. 223–232. isbn: 978-1-4503-

2031-3. doi: 10.1145/2462356.2462388.

[2] Jonathan S. Abel and James W. Chaffee. ‘Existence and Uniqueness of GPS

Solutions’. In: IEEE Transactions on Aerospace and Electronic Systems 27.6 (1991),

pp. 952–956. issn: 0018-9251. doi: 10.1109/7.104271.

[3] Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe,

Lihong Ma, Belén Palop, and Vera Sacristán. ‘Smallest Color-Spanning Objects’.

In: Algorithms – ESA 2001. Ed. by Friedhelm Meyer auf der Heide. Lecture Notes

in Computer Science 2161. Berlin, Germany: Springer, 2001, pp. 278–289. isbn:

978-3-540-42493-2. doi: 10.1007/3-540-44676-1_23.

[4] Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehr-

abi. ‘Range-Clustering Queries’. In: Proceedings of the 33rd International Symposium
on Computational Geometry (SoCG 2017). Ed. by Boris Aronov and Matthew J. Katz.

Leibniz International Proceedings in Informatics 77. Wadern, Germany: Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2017, 5. isbn: 978-3-95977-038-5. doi:

10.4230/LIPIcs.SoCG.2017.5.

[5] Peyman Afshani, Pankaj K. Agarwal, Lars Arge, Kasper Green Larsen, and Jeff M.

Phillips. ‘(Approximate) Uncertain Skylines’. In: Theory of Computing Systems 52.3

(2013), pp. 342–366. issn: 1432-4350. doi: 10.1007/s00224-012-9382-7.

[6] Pankaj K. Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M. Phillips, Ke Yi, and

Wuzhou Zhang. ‘Nearest-Neighbor Searching Under Uncertainty II’. In: ACM
Transactions on Algorithms 13.1, 3 (2016). issn: 1549-6325. doi: 10.1145/2955098.

[7] Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. ‘Com-

puting the Discrete Fréchet Distance in Subquadratic Time’. In: SIAM Journal on
Computing 43.2 (2014), pp. 429–449. issn: 0097-5397. doi: 10.1137/130920526.

230

https://doi.org/10.1145/2462356.2462388
https://doi.org/10.1109/7.104271
https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.4230/LIPIcs.SoCG.2017.5
https://doi.org/10.1007/s00224-012-9382-7
https://doi.org/10.1145/2955098
https://doi.org/10.1137/130920526

Bibliography 231

[8] Pankaj K. Agarwal, Siu-Wing Cheng, Yufei Tao, and Ke Yi. ‘Indexing Uncertain

Data’. In: Proceedings of the 28th ACM Symposium on Principles of Database Systems
(PODS 2009). Ed. by Jan Paredaens and Jianwen Su. New York, NY, USA: Associ-

ation for Computing Machinery, 2009, pp. 137–146. isbn: 978-1-60558-553-6. doi:

10.1145/1559795.1559816.

[9] Pankaj K. Agarwal, Siu-Wing Cheng, and Ke Yi. ‘Range Searching on Uncertain

Data’. In: ACM Transactions on Algorithms 8.4, 43 (2012). issn: 1549-6325. doi:

10.1145/2344422.2344433.

[10] Pankaj K. Agarwal, Alon Efrat, Swaminathan Sankararaman, and Wuzhou Zhang.

‘Nearest-Neighbor Searching Under Uncertainty I’. In: Discrete & Computational
Geometry 58.3 (2017), pp. 705–745. issn: 0179-5376. doi: 10.1007/s00454-017-

9903-x.

[11] Pankaj K. Agarwal, Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. ‘Near-

Linear Time Approximation Algorithms for Curve Simplification’. In: Algorithmica
42.3 (2005), pp. 203–219. issn: 0178-4617. doi: 10.1007/s00453-005-1165-y.

[12] Pankaj K. Agarwal, Sariel Har-Peled, Subhash Suri, Hakan Yıldız, and Wuzhou

Zhang. ‘Convex Hulls under Uncertainty’. In: Algorithmica 79.2 (2017), pp. 340–367.

issn: 0178-4617. doi: 10.1007/s00453-016-0195-y.

[13] Pankaj K. Agarwal and Marc J. van Kreveld. ‘Connected Component and Simple

Polygon Intersection Searching’. In: Algorithmica 15 (1996), pp. 626–660. issn:

0178-4617. doi: 10.1007/BF01940884.

[14] Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. ‘Range-Max

Queries on Uncertain Data’. In: Journal of Computer and System Sciences 94 (2018),

pp. 118–134. issn: 0022-0000. doi: 10.1016/j.jcss.2017.09.006.

[15] Pankaj K. Agarwal and Micha Sharir. ‘Applications of a New Space-Partitioning

Technique’. In: Discrete & Computational Geometry 9 (1993), pp. 11–38. issn: 0179-

5376. doi: 10.1007/BF02189304.

[16] Mahmuda Ahmed and Carola Wenk. ‘Constructing Street Networks From GPS

Trajectories’. In: Algorithms – ESA 2012. Ed. by Leah Epstein and Paolo Ferragina.

Lecture Notes in Computer Science 7501. Berlin, Germany: Springer, 2012, pp. 60–

71. isbn: 978-3-642-33089-6. doi: 10.1007/978-3-642-33090-2_7.

[17] Hee-Kap Ahn, Sang Won Bae, and Shin-ichi Tanigawa. ‘Rectilinear Covering for

Imprecise Input Points’. Extended Abstract. In: Proceedings of the 23rd International
Symposium on Algorithms and Computation (ISAAC 2012). Ed. by Kun-Mao Chao,

Tsan-sheng Hsu, and Der-Tsai Lee. Lecture Notes in Computer Science 7676. Berlin,

Germany: Springer, 2012, pp. 309–318. isbn: 978-3-642-35260-7. doi: 10.1007/978-

3-642-35261-4_34.

[18] Hee-Kap Ahn, Christian Knauer, Marc Scherfenberg, Lena Schlipf, and Antoine

Vigneron. ‘Computing the Discrete Fréchet Distance with Imprecise Input’. In:

International Journal of Computational Geometry & Applications 22.1 (2012), pp. 27–44.

issn: 0218-1959. doi: 10.1142/S0218195912600023.

https://doi.org/10.1145/1559795.1559816
https://doi.org/10.1145/2344422.2344433
https://doi.org/10.1007/s00454-017-9903-x
https://doi.org/10.1007/s00454-017-9903-x
https://doi.org/10.1007/s00453-005-1165-y
https://doi.org/10.1007/s00453-016-0195-y
https://doi.org/10.1007/BF01940884
https://doi.org/10.1016/j.jcss.2017.09.006
https://doi.org/10.1007/BF02189304
https://doi.org/10.1007/978-3-642-33090-2_7
https://doi.org/10.1007/978-3-642-35261-4_34
https://doi.org/10.1007/978-3-642-35261-4_34
https://doi.org/10.1142/S0218195912600023

Bibliography 232

[19] Mohamed Ali, John Krumm, Travis Rautman, and Ankur Teredesai. ‘ACM SIGSPA-

TIAL GIS Cup 2012’. In: Proceedings of the 20th International Conference on Advances
in Geographic Information Systems (SIGSPATIAL 2012). Ed. by Isabel Cruz, Craig

Knoblock, Peer Kröger, Egemen Tanin, and Peter Widmayer. New York, NY, USA:

Association for Computing Machinery, 2012, pp. 597–600. isbn: 978-1-4503-1691-0.

doi: 10.1145/2424321.2424426.

[20] Sharareh Alipour, Mohammad Ghodsi, Alireza Zarei, and Maryam Pourreza.

‘Visibility Testing and Counting’. In: Information Processing Letters 115.9 (2015),

pp. 649–654. issn: 0020-0190. doi: 10.1016/j.ipl.2015.03.009.

[21] Sharareh Alipour and Salman Parsa. ‘Hardness of Uncertain Segment Cover,

Contiguous SAT and Visibility with Uncertain Obstacles’. In: Discrete Mathematics,
Algorithms and Applications 15.1, 2250063 (2023). issn: 1793-8309. doi: 10.1142/

S179383092250063X.

[22] Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. ‘Matching Planar Maps’. In:

Journal of Algorithms 49.2 (2003), pp. 262–283. issn: 0196-6774. doi: 10.1016/S0196-

6774(03)00085-3.

[23] Helmut Alt and Michael Godau. ‘Computing the Fréchet Distance between Two

Polygonal Curves’. In: International Journal of Computational Geometry & Applications
5.1–2 (1995), pp. 75–91. issn: 0218-1959. doi: 10.1142/S0218195995000064.

[24] Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen. ‘The

𝑘-Fréchet Distance: How to Walk Your Dog While Teleporting’. In: Proceedings of
the 30th International Symposium on Algorithms and Computation (ISAAC 2019). Ed. by

Pinyan Lu and Guochuan Zhang. Leibniz International Proceedings in Informatics

149. Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019,

50. isbn: 978-3-95977-130-6. doi: 10.4230/LIPIcs.ISAAC.2019.50.

[25] Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J. Katz, Joseph

S. B. Mitchell, and Marina Simakov. ‘Selecting and Covering Colored Points’. In:

Discrete Applied Mathematics 250 (2018), pp. 75–86. issn: 0166-218X. doi: 10.1016/

j.dam.2018.05.011.

[26] Boris Aronov, Kevin Buchin, Maike Buchin, Bart Jansen, Tom de Jong, Marc J. van

Kreveld, Maarten Löffler, Jun Luo, Rodrigo I. Silveira, and Bettina Speckmann.

‘Connect the Dot: Computing Feed-Links for Network Extension’. In: Journal of
Spatial Information Science 3 (2011), pp. 3–31. issn: 1948-660X. doi: 10.5311/JOSIS.

2011.3.47.

[27] Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. ‘Visibility

Queries and Maintenance in Simple Polygons’. In: Discrete & Computational Geo-
metry 27 (2002), pp. 461–483. issn: 0179-5376. doi: 10.1007/s00454-001-0089-9.

[28] Erik Axell, Peter Johansson, Mikael Alexandersson, and Jouni Rantakokko. Estima-
tion of the Position Error in GPS Receivers. Tech. rep. FOI-R–3840–SE. Totalförsvarets

Forskningsinstitut, 2014. url: https://www.foi.se/rest-api/report/FOI-R--

3840--SE (visited on 24/06/2023).

https://doi.org/10.1145/2424321.2424426
https://doi.org/10.1016/j.ipl.2015.03.009
https://doi.org/10.1142/S179383092250063X
https://doi.org/10.1142/S179383092250063X
https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.4230/LIPIcs.ISAAC.2019.50
https://doi.org/10.1016/j.dam.2018.05.011
https://doi.org/10.1016/j.dam.2018.05.011
https://doi.org/10.5311/JOSIS.2011.3.47
https://doi.org/10.5311/JOSIS.2011.3.47
https://doi.org/10.1007/s00454-001-0089-9
https://www.foi.se/rest-api/report/FOI-R--3840--SE
https://www.foi.se/rest-api/report/FOI-R--3840--SE

Bibliography 233

[29] Gill Barequet, Danny Z. Chen, Ovidiu Daescu, Michael T. Goodrich, and Jack

S. Snoeyink. ‘Efficiently Approximating Polygonal Paths in Three and Higher

Dimensions’. In: Algorithmica 33.2 (2002), pp. 150–167. issn: 0178-4617. doi: 10.

1007/s00453-001-0096-5.

[30] Boaz Ben-Moshe, Olaf Hall-Holt, Matthew J. Katz, and Joseph S. B. Mitchell.

‘Computing the Visibility Graph of Points within a Polygon’. In: Proceedings of
the 20th Annual Symposium on Computational Geometry (SoCG 2004). Ed. by Jack

S. Snoeyink and Jean-Daniel Boissonnat. New York, NY, USA: Association for

Computing Machinery, 2004, pp. 27–35. isbn: 978-1-58113-885-6. doi: 10.1145/

997817.997825.

[31] Mark de Berg, Elena Mumford, and Marcel Roeloffzen. Finding Structures on
Imprecise Points. Presented at EuroCG 2010, Dortmund, Germany. 2010. url:

https://eurocg.org/2010/proceedings.pdf (visited on 15/06/2023).

[32] Donald J. Berndt and James Clifford. ‘Using Dynamic Time Warping to Find

Patterns in Time Series’. In: AAAI-94 Workshop on Knowledge Discovery in Databases
(KDD-94). Ed. by Usama M. Fayyad and Ramasamy Uthurusamy. Menlo Park,

CA, USA: AAAI Press, 1994, pp. 359–370. url: https://ww.aaai.org/Papers/

Workshops/1994/WS-94-03/WS94-03-031.pdf (visited on 11/05/2023).

[33] Dimitris Bertsimas and Louis H. Howell. ‘Further Results on the Probabilistic

Traveling Salesman Problem’. In: European Journal of Operational Research 65.1

(1993), pp. 68–95. issn: 0377-2217. doi: 10.1016/0377-2217(93)90145-D.

[34] Prosenjit Bose, Anna Lubiw, and James Ian Munro. ‘Efficient Visibility Queries in

Simple Polygons’. In: Computational Geometry: Theory & Applications 23.3 (2002),

pp. 313–335. issn: 0925-7721. doi: 10.1016/S0925-7721(01)00070-0.

[35] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. ‘On Map-

Matching Vehicle Tracking Data’. In: Proceedings of the 31st International Conference
on Very Large Data Bases (VLDB 2005). Ed. by Kjell Bratbergsengen. Los Angeles,

CA, USA: VLDB Endowment, 2005, pp. 853–864. isbn: 978-1-59593-154-2. url:

https://dl.acm.org/doi/10.5555/1083592.1083691 (visited on 15/06/2023).

[36] Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser, Aleksandr Popov,

and Sampson Wong. ‘(𝑘, ℓ)-Medians Clustering of Trajectories Using Continuous

Dynamic Time Warping’. In: Proceedings of the 28th International Conference on
Advances in Geographic Information Systems (SIGSPATIAL 2020). Ed. by Chang-Tien

Lu, Fusheng Wang, Goce Trajcevski, Yan Huang, Shawn Newsam, and Li Xiong.

New York, NY, USA: Association for Computing Machinery, 2020, pp. 99–110.

isbn: 978-1-4503-8019-5. doi: 10.1145/3397536.3422245.

[37] Karl Bringmann and Bhaskar Ray Chaudhury. ‘Polyline Simplification Has Cubic

Complexity’. In: Proceedings of the 35th International Symposium on Computational
Geometry (SoCG 2019). Ed. by Gill Barequet and Yusu Wang. Leibniz International

Proceedings in Informatics 129. Wadern, Germany: Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2019, 18. isbn: 978-3-95977-104-7. doi: 10.4230/LIPIcs.

SoCG.2019.18.

https://doi.org/10.1007/s00453-001-0096-5
https://doi.org/10.1007/s00453-001-0096-5
https://doi.org/10.1145/997817.997825
https://doi.org/10.1145/997817.997825
https://eurocg.org/2010/proceedings.pdf
https://ww.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
https://ww.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
https://doi.org/10.1016/0377-2217(93)90145-D
https://doi.org/10.1016/S0925-7721(01)00070-0
https://dl.acm.org/doi/10.5555/1083592.1083691
https://doi.org/10.1145/3397536.3422245
https://doi.org/10.4230/LIPIcs.SoCG.2019.18
https://doi.org/10.4230/LIPIcs.SoCG.2019.18

Bibliography 234

[38] Karl Bringmann, Marvin Künnemann, and André Nusser. ‘Fréchet Distance

under Translation: Conditional Hardness and an Algorithm via Offline Dynamic

Grid Reachability’. In: Proceedings of the 30th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA 2019). Ed. by Timothy M. Chan. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2019, pp. 2902–2921. isbn:

978-1-61197-548-2. doi: 10.1137/1.9781611975482.180.

[39] Karl Bringmann and Wolfgang Mulzer. ‘Approximability of the Discrete Fréchet

Distance’. In: Journal of Computational Geometry 7.2 (2016), pp. 46–76. issn: 1920-180X.

doi: 10.20382/jocg.v7i2a4.

[40] Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs,

Vera Sacristán, Rodrigo I. Silveira, Frank Staals, and Carola Wenk. ‘Clustering

Trajectories for Map Construction’. In: Proceedings of the 25th International Conference
on Advances in Geographic Information Systems (SIGSPATIAL 2017). Ed. by Erik Hoel,

Shawn Newsam, Siva Ravada, Roberto Tamassia, and Goce Trajcevski. New York,

NY, USA: Association for Computing Machinery, 2017, 14. isbn: 978-1-4503-5490-5.

doi: 10.1145/3139958.3139964.

[41] Kevin Buchin, Maike Buchin, and Joachim Gudmundsson. ‘Constrained Free Space

Diagrams: A Tool for Trajectory Analysis’. In: International Journal of Geographical
Information Science 24.7 (2010), pp. 1101–1125. issn: 1365-8816. doi: 10.1080/

13658810903569598.

[42] Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and

Sampson Wong. Map-Matching Queries under Fréchet Distance on Low-Density
Spanners. Presented at EuroCG 2023, Barcelona, Spain. 2023. url: https://dccg.

upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf

(visited on 01/07/2023).

[43] Kevin Buchin, Maike Buchin, Christian Knauer, Günter Rote, and Carola Wenk.

How Difficult Is It to Walk the Dog? Presented at EuroCG 2007, Graz, Austria. 2007.

url: https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+

it+to+walk+the+dog.pdf (visited on 15/06/2023).

[44] Kevin Buchin, Maike Buchin, Marc J. van Kreveld, Bettina Speckmann, and Frank

Staals. ‘Trajectory Grouping Structure’. In: Journal of Computational Geometry 6.1

(2015), pp. 75–98. issn: 1920-180X. doi: 10.20382/jocg.v6i1a3.

[45] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. ‘Four

Soviets Walk the Dog: Improved Bounds for Computing the Fréchet Distance’. In:

Discrete & Computational Geometry 58.1 (2017), pp. 180–216. issn: 0179-5376. doi:

10.1007/s00454-017-9878-7.

[46] Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr

Popov, Marcel Roeloffzen, and Frank Staals. ‘Segment Visibility Counting Queries

in Polygons’. In: Proceedings of the 33rd International Symposium on Algorithms
and Computation (ISAAC 2022). Ed. by Sang Won Bae and Heejin Park. Leibniz

International Proceedings in Informatics 248. Wadern, Germany: Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 2022, 58. isbn: 978-3-95977-258-7. doi: 10.4230/

LIPIcs.ISAAC.2022.58.

https://doi.org/10.1137/1.9781611975482.180
https://doi.org/10.20382/jocg.v7i2a4
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1080/13658810903569598
https://doi.org/10.1080/13658810903569598
https://dccg.upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf
https://dccg.upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf
https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf
https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf
https://doi.org/10.20382/jocg.v6i1a3
https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.4230/LIPIcs.ISAAC.2022.58
https://doi.org/10.4230/LIPIcs.ISAAC.2022.58

Bibliography 235

[47] Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina

Kostitsyna, Maarten Löffler, and Martĳn Struĳs. ‘Approximating (𝑘, ℓ)-Center

Clustering for Curves’. In: Proceedings of the 30th Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA 2019). Ed. by Timothy M. Chan. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2019, pp. 2922–2938. isbn:

978-1-61197-548-2. doi: 10.1137/1.9781611975482.181.

[48] Kevin Buchin, Anne Driemel, Natasja van de L’Isle, and André Nusser. ‘klcluster:

Center-Based Clustering of Trajectories’. In: Proceedings of the 27th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2019). Ed. by

Farnoush Banaei-Kashani, Goce Trajcevski, Ralf Hartmut Güting, Lars Kulik, and

Shawn Newsam. New York, NY, USA: Association for Computing Machinery,

2019, pp. 496–499. isbn: 978-1-4503-6909-1. doi: 10.1145/3347146.3359111.

[49] Kevin Buchin, Anne Driemel, and Martĳn Struĳs. ‘On the Hardness of Computing

an Average Curve’. In: Proceedings of the 17th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2020). Ed. by Susanne Albers. Leibniz International

Proceedings in Informatics 162. Wadern, Germany: Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2020, 19. isbn: 978-3-95977-150-4. doi: 10.4230/LIPIcs.

SWAT.2020.19.

[50] Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel,

and Marcel Roeloffzen. ‘Fréchet Distance for Uncertain Curves’. In: Proceedings of the
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Ed. by Artur Czumaj, Anuj Dawar, and Emanuela Merelli. Leibniz International

Proceedings in Informatics 168. Wadern, Germany: Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2020, 20. isbn: 978-3-95977-138-2. doi: 10.4230/LIPIcs.

ICALP.2020.20.

[51] Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel,

and Marcel Roeloffzen. ‘Fréchet Distance for Uncertain Curves’. In: ACM Transac-
tions on Algorithms 19.3, 29 (2023). issn: 1549-6325. doi: 10.1145/3597640.

[52] Kevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin

Rehs, André van Renssen, and Sampson Wong. ‘Oriented Spanners’. In: Proceedings
of the 31st Annual European Symposium on Algorithms (ESA 2023). Ed. by Inge Li

Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman. Leibniz

International Proceedings in Informatics 274. Wadern, Germany: Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 2023, 26. isbn: 978-3-95977-295-2. doi: 10.4230/

LIPIcs.ESA.2023.26.

[53] Kevin Buchin, Maximilian Konzack, and Wim Reddingius. ‘Progressive Simplific-

ation of Polygonal Curves’. In: Computational Geometry: Theory & Applications 88,

101620 (2020). issn: 0925-7721. doi: 10.1016/j.comgeo.2020.101620.

[54] Kevin Buchin, Irina Kostitsyna, Maarten Löffler, and Rodrigo I. Silveira. ‘Region-

Based Approximation of Probability Distributions: For Visibility between Imprecise

Points among Obstacles’. In: Algorithmica 81.7 (2019), pp. 2682–2715. issn: 0178-4617.

doi: 10.1007/s00453-019-00551-2.

https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1145/3347146.3359111
https://doi.org/10.4230/LIPIcs.SWAT.2020.19
https://doi.org/10.4230/LIPIcs.SWAT.2020.19
https://doi.org/10.4230/LIPIcs.ICALP.2020.20
https://doi.org/10.4230/LIPIcs.ICALP.2020.20
https://doi.org/10.1145/3597640
https://doi.org/10.4230/LIPIcs.ESA.2023.26
https://doi.org/10.4230/LIPIcs.ESA.2023.26
https://doi.org/10.1016/j.comgeo.2020.101620
https://doi.org/10.1007/s00453-019-00551-2

Bibliography 236

[55] Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. ‘Preprocessing

Imprecise Points for Delaunay Triangulation: Simplified and Extended’. In: Al-
gorithmica 61.3 (2011), pp. 674–693. issn: 0178-4617. doi: 10.1007/s00453-010-

9430-0.

[56] Kevin Buchin, Maarten Löffler, Tim Ophelders, Aleksandr Popov, Jérôme

Urhausen, and Kevin Verbeek. ‘Computing the Fréchet Distance between

Uncertain Curves in One Dimension’. In: Proceedings of the 17th International
Symposium on Algorithms and Data Structures (WADS 2021). Ed. by Anna Lubiw,

Mohammad Salavatipour, and Meng He. Lecture Notes in Computer Science

12808. Berlin, Germany: Springer, 2021, pp. 243–257. isbn: 978-3-030-83507-1. doi:

10.1007/978-3-030-83508-8_18.

[57] Kevin Buchin, Maarten Löffler, Tim Ophelders, Aleksandr Popov, Jérôme

Urhausen, and Kevin Verbeek. ‘Computing the Fréchet Distance between Uncer-

tain Curves in One Dimension’. In: Computational Geometry: Theory & Applications
109, 101923 (2023). issn: 0925-7721. doi: 10.1016/j.comgeo.2022.101923.

[58] Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen. ‘Un-

certain Curve Simplification’. In: Proceedings of the 46th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2021). Ed. by Filippo Bon-

chi and Simon J. Puglisi. Leibniz International Proceedings in Informatics 202.

Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 26.

isbn: 978-3-95977-201-3. doi: 10.4230/LIPIcs.MFCS.2021.26.

[59] Kevin Buchin, André Nusser, and Sampson Wong. ‘Computing Continuous

Dynamic Time Warping of Time Series in Polynomial Time’. In: Proceedings of the
38th International Symposium on Computational Geometry (SoCG 2022). Ed. by Xavier

Goaoc and Michael Kerber. Leibniz International Proceedings in Informatics 224.

Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 22.

isbn: 978-3-95977-227-3. doi: 10.4230/LIPIcs.SoCG.2022.22.

[60] Kevin Buchin, Tim Ophelders, and Bettina Speckmann. ‘SETH Says: Weak Fréchet

Distance Is Faster, but Only If It Is Continuous and in One Dimension’. In:

Proceedings of the 30th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA
2019). Ed. by Timothy M. Chan. Philadelphia, PA, USA: Society for Industrial

and Applied Mathematics, 2019, pp. 2887–2901. isbn: 978-1-61197-548-2. doi:

10.1137/1.9781611975482.179.

[61] Kevin Buchin, Jeff M. Phillips, and Pingfan Tang. ‘Approximating the Distribution

of the Median and Other Robust Estimators on Uncertain Data’. In: Proceedings of the
34th International Symposium on Computational Geometry (SoCG 2018). Ed. by Bettina

Speckmann and Csaba D. Tóth. Leibniz International Proceedings in Informatics

99. Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018,

16. isbn: 978-3-95977-066-8. doi: 10.4230/LIPIcs.SoCG.2018.16.

[62] Kevin Buchin, Stef Sĳben, T. Jean Marie Arseneau, and Erik P. Willems. ‘Detecting

Movement Patterns Using Brownian Bridges’. In: Proceedings of the 20th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2012). Ed. by

Isabel Cruz, Craig Knoblock, Peer Kröger, Egemen Tanin, and Peter Widmayer.

New York, NY, USA: Association for Computing Machinery, 2012, pp. 119–128.

isbn: 978-1-4503-1691-0. doi: 10.1145/2424321.2424338.

https://doi.org/10.1007/s00453-010-9430-0
https://doi.org/10.1007/s00453-010-9430-0
https://doi.org/10.1007/978-3-030-83508-8_18
https://doi.org/10.1016/j.comgeo.2022.101923
https://doi.org/10.4230/LIPIcs.MFCS.2021.26
https://doi.org/10.4230/LIPIcs.SoCG.2022.22
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.4230/LIPIcs.SoCG.2018.16
https://doi.org/10.1145/2424321.2424338

Bibliography 237

[63] Maike Buchin, Anne Driemel, and Bettina Speckmann. ‘Computing the Fréchet

Distance with Shortcuts is NP-Hard’. In: Proceedings of the 30th Annual Symposium on
Computational Geometry (SoCG 2014). Ed. by Siu-Wing Cheng and Olivier Devillers.

New York, NY, USA: Association for Computing Machinery, 2014, pp. 367–376.

isbn: 978-1-4503-2594-3. doi: 10.1145/2582112.2582144.

[64] Maike Buchin and Ross S. Purves. ‘Computing Similarity of Coarse and Irregular

Trajectories Using Space-Time Prisms’. In: Proceedings of the 21st International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2013). Ed.

by Craig Knoblock, Peer Kröger, John Krumm, Markus Schneider, and Peter

Widmayer. New York, NY, USA: Association for Computing Machinery, 2013,

pp. 456–459. isbn: 978-1-4503-2521-9. doi: 10.1145/2525314.2525459.

[65] Maike Buchin and Stef Sĳben. Discrete Fréchet Distance for Uncertain Points. Presented

at EuroCG 2016, Lugano, Switzerland. 2016. url: http://www.eurocg2016.usi.

ch/sites/default/files/paper_72.pdf (visited on 15/06/2023).

[66] Daniel Busto, William S. Evans, and David G. Kirkpatrick. ‘Minimizing Interference

Potential among Moving Entities’. In: Proceedings of the 30th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA 2019). Ed. by Timothy M. Chan. Phil-

adelphia, PA, USA: Society for Industrial and Applied Mathematics, 2019, pp. 2400–

2418. isbn: 978-1-61197-548-2. doi: 10.1137/1.9781611975482.147.

[67] Mojtaba Nouri Bygi, Shervin Daneshpajouh, Sharareh Alipour, and Mohammad

Ghodsi. ‘Weak Visibility Counting in Simple Polygons’. In: Journal of Computational
and Applied Mathematics 288 (2015), pp. 215–222. issn: 0377-0427. doi: 10.1016/j.

cam.2015.04.018.

[68] Leizhen Cai and Mark Keil. ‘Computing Visibility Information in an Inaccurate

Simple Polygon’. In: International Journal of Computational Geometry & Applications
7 (1997), pp. 515–538. issn: 0218-1959. doi: 10.1142/S0218195997000326.

[69] Erin Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. ‘Map-

Matching Using Shortest Paths’. In: ACM Transactions on Spatial Algorithms and
Systems 6.1, 6 (2020). issn: 2374-0353. doi: 10.1145/3368617.

[70] W. S. Chan and Francis Y. L. Chin. ‘Approximation of Polygonal Curves with

Minimum Number of Line Segments or Minimum Error’. In: International Journal
of Computational Geometry & Applications 6.1 (1996), pp. 59–77. issn: 0218-1959. doi:

10.1142/S0218195996000058.

[71] Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. ‘A Survey on Map-

Matching Algorithms’. In: Databases Theory and Applications: Proceedings of the
31st Australasian Database Conference (ADC 2020). Ed. by Renata Borovica-Gajic,

Jianzhong Qi, and Weiqing Wang. Lecture Notes in Computer Science 12008. Berlin,

Germany: Springer, 2020, pp. 121–133. isbn: 978-3-030-39468-4. doi: 10.1007/978-

3-030-39469-1_10.

[72] Frederic Chazal, Daniel Chen, Leonidas J. Guibas, Xiaoye Jiang, and Christian

Sommer. ‘Data-Driven Trajectory Smoothing’. In: Proceedings of the 19th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2011). Ed. by

Isabel F. Cruz, Divyakant Agrawal, Christian S. Jensen, Eyal Ofek, and Egemen

Tanin. New York, NY, USA: Association for Computing Machinery, 2011, pp. 251–

260. isbn: 978-1-4503-1031-4. doi: 10.1145/2093973.2094007.

https://doi.org/10.1145/2582112.2582144
https://doi.org/10.1145/2525314.2525459
http://www.eurocg2016.usi.ch/sites/default/files/paper_72.pdf
http://www.eurocg2016.usi.ch/sites/default/files/paper_72.pdf
https://doi.org/10.1137/1.9781611975482.147
https://doi.org/10.1016/j.cam.2015.04.018
https://doi.org/10.1016/j.cam.2015.04.018
https://doi.org/10.1142/S0218195997000326
https://doi.org/10.1145/3368617
https://doi.org/10.1142/S0218195996000058
https://doi.org/10.1007/978-3-030-39469-1_10
https://doi.org/10.1007/978-3-030-39469-1_10
https://doi.org/10.1145/2093973.2094007

Bibliography 238

[73] Bernard Chazelle. ‘A Theorem on Polygon Cutting with Applications’. In: Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS
1982). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, 1982,

pp. 339–349. doi: 10.1109/SFCS.1982.58.

[74] Bernard Chazelle. ‘Cutting Hyperplanes for Divide-and-Conquer’. In: Discrete
& Computational Geometry 9 (1993), pp. 145–158. issn: 0179-5376. doi: 10.1007/

BF02189314.

[75] Bernard Chazelle. ‘Triangulating a Simple Polygon in Linear Time’. In: Discrete
& Computational Geometry 6 (1991), pp. 485–524. issn: 0179-5376. doi: 10.1007/

BF02574703.

[76] Bernard Chazelle and Herbert Edelsbrunner. ‘An Optimal Algorithm for Inter-

secting Line Segments in the Plane’. In: Journal of the ACM 39.1 (1992), pp. 1–54.

issn: 0004-5411. doi: 10.1145/147508.147511.

[77] Bernard Chazelle and Leonidas J. Guibas. ‘Visibility and Intersection Problems in

Plane Geometry’. In: Discrete & Computational Geometry 4 (1989), pp. 551–581. issn:

0179-5376. doi: 10.1007/BF02187747.

[78] Bernard Chazelle, Micha Sharir, and Emo Welzl. ‘Quasi-Optimal Upper Bounds

for Simplex Range Searching and New Zone Theorems’. In: Algorithmica 8 (1992),

pp. 407–429. issn: 0178-4617. doi: 10.1007/BF01758854.

[79] Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola

Wenk. ‘Approximate Map Matching with Respect to the Fréchet Distance’. In:

Proceedings of the 2011 Workshop on Algorithm Engineering and Experiments (ALENEX
2011). Ed. by Matthias Müller-Hannemann and Renato Werneck. Philadelphia,

PA, USA: Society for Industrial and Applied Mathematics, 2011, pp. 75–83. isbn:

978-1-61197-291-7. doi: 10.1137/1.9781611972917.8.

[80] Daniel Chen, Christian Sommer, and Daniel Wolleb. ‘Fast Map Matching with

Vertex-Monotone Fréchet Distance’. In: Proceedings of the 21st Symposium on Al-
gorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2021). Ed. by Matthias Müller-Hannemann and Federico Perea. Open Access Series

in Informatics 96. Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für In-

formatik, 2021, 10. isbn: 978-3-95977-213-6. doi: 10.4230/OASIcs.ATMOS.2021.10.

[81] Danny Ziyi Chen and Haitao Wang. ‘Weak Visibility Queries of Line Segments in

Simple Polygons’. In: Computational Geometry: Theory & Applications 48.6 (2015),

pp. 443–452. issn: 0925-7721. doi: 10.1016/j.comgeo.2015.02.001.

[82] Lei Chen, M. Tamer Özsu, and Vincent Oria. ‘Robust and Fast Similarity Search for

Moving Object Trajectories’. In: Proceedings of the 2005 ACM International Conference
on Management of Data (SIGMOD 2005). Ed. by Fatma Özcan. New York, NY, USA:

Association for Computing Machinery, 2005, pp. 491–502. isbn: 978-1-59593-060-6.

doi: 10.1145/1066157.1066213.

[83] Yongwan Chun, Mei-Po Kwan, and Daniel A. Griffith, eds. 33.6 (2019): Uncertainty
and Context in GIScience and Geography. issn: 1365-8816. url: https : / / www .

tandfonline.com/toc/tgis20/33/6 (visited on 10/07/2023).

https://doi.org/10.1109/SFCS.1982.58
https://doi.org/10.1007/BF02189314
https://doi.org/10.1007/BF02189314
https://doi.org/10.1007/BF02574703
https://doi.org/10.1007/BF02574703
https://doi.org/10.1145/147508.147511
https://doi.org/10.1007/BF02187747
https://doi.org/10.1007/BF01758854
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.4230/OASIcs.ATMOS.2021.10
https://doi.org/10.1016/j.comgeo.2015.02.001
https://doi.org/10.1145/1066157.1066213
https://www.tandfonline.com/toc/tgis20/33/6
https://www.tandfonline.com/toc/tgis20/33/6

Bibliography 239

[84] Gui Citovsky, Tyler Mayer, and Joseph S. B. Mitchell. ‘TSP with Locational

Uncertainty: The Adversarial Model’. In: Proceedings of the 33rd International
Symposium on Computational Geometry (SoCG 2017). Ed. by Boris Aronov and

Matthew J. Katz. Leibniz International Proceedings in Informatics 77. Wadern,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017, 32. isbn:

978-3-95977-038-5. doi: 10.4230/LIPIcs.SoCG.2017.32.

[85] Kenneth L. Clarkson. ‘New Applications of Random Sampling in Computational

Geometry’. In: Discrete & Computational Geometry 2 (1987), pp. 195–222. issn:

0179-5376. doi: 10.1007/BF02187879.

[86] Edward A. Codling, Michael J. Plank, and Simon Benhamou. ‘Random Walk

Models in Biology’. In: Journal of the Royal Society Interface 5.25 (2008), pp. 813–834.

issn: 1742-5689. doi: 10.1098/rsif.2008.0014.

[87] Jacobus Conradi and Anne Driemel. ‘On Computing the 𝑘-Shortcut Fréchet

Distance’. In: Proceedings of the 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022). Ed. by Mikołaj Bojańczyk, Emanuela Merelli, and

David P. Woodruff. Leibniz International Proceedings in Informatics 229. Wadern,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 46. isbn:

978-3-95977-235-8. doi: 10.4230/LIPIcs.ICALP.2022.46.

[88] Bram Custers, Wouter Meulemans, Marcel Roeloffzen, Bettina Speckmann, and

Kevin Verbeek. ‘Physically Consistent Map Matching’. In: Proceedings of the 30th
International Conference on Advances in Geographic Information Systems (SIGSPATIAL
2022). Ed. by Matthias Renz, Mohamed Sarwat, Mario A. Nascimento, Shashi

Shekhar, and Xing Xie. New York, NY, USA: Association for Computing Machinery,

2022, 56. isbn: 978-1-4503-9529-8. doi: 10.1145/3557915.3560991.

[89] Bram Custers, Wouter Meulemans, Bettina Speckmann, and Kevin Verbeek. ‘Route

Reconstruction from Traffic Flow via Representative Trajectories’. In: Proceedings
of the 29th International Conference on Advances in Geographic Information Systems
(SIGSPATIAL 2021). Ed. by Xiaofeng Meng, Fusheng Wang, Chang-Tien Lu, Yan

Huang, Shashi Shekhar, and Xing Xie. New York, NY, USA: Association for

Computing Machinery, 2021, pp. 41–52. isbn: 978-1-4503-8664-7. doi: 10.1145/

3474717.3483650.

[90] Sandip Das, Partha P. Goswami, and Subhas C. Nandy. ‘Smallest Color-Spanning

Object Revisited’. In: International Journal of Computational Geometry & Applications
19.5 (2009), pp. 457–478. issn: 0218-1959. doi: 10.1142/S0218195909003076.

[91] Urška Demšar, Kevin Buchin, Francesca Cagnacci, Kamran Safi, Bettina Speck-

mann, Nico van de Weghe, Daniel Weiskopf, and Robert Weibel. ‘Analysis and

Visualisation of Movement: An Interdisciplinary Review’. In: Movement Ecology 3,

5 (2015). issn: 2051-3933. doi: 10.1186/s40462-015-0032-y.

[92] Olivier Devillers. ‘Delaunay Triangulation of Imprecise Points: Preprocess and

Actually Get a Fast Query Time’. In: Journal of Computational Geometry 2.1 (2011),

pp. 30–45. issn: 1920-180X. doi: 10.20382/v2i1a3.

https://doi.org/10.4230/LIPIcs.SoCG.2017.32
https://doi.org/10.1007/BF02187879
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.4230/LIPIcs.ICALP.2022.46
https://doi.org/10.1145/3557915.3560991
https://doi.org/10.1145/3474717.3483650
https://doi.org/10.1145/3474717.3483650
https://doi.org/10.1142/S0218195909003076
https://doi.org/10.1186/s40462-015-0032-y
https://doi.org/10.20382/v2i1a3

Bibliography 240

[93] Thomas Devogele, Laurent Etienne, Maxence Esnault, and Florian Lardy. ‘Op-

timized Discrete Fréchet Distance Between Trajectories’. In: Proceedings of the
6th ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data (BigSpatial
2017). Ed. by Varun Chandola and Ranga Raju Vatsavai. New York, NY, USA:

Association for Computing Machinery, 2017, pp. 11–19. isbn: 978-1-4503-5494-3.

doi: 10.1145/3150919.3150924.

[94] David H. Douglas and Thomas K. Peucker. ‘Algorithms for the Reduction of the

Number of Points Required to Represent a Digitized Line or Its Caricature’. In:

Cartographica: The International Journal for Geographic Information and Geovisualization
10.2 (1973), pp. 112–122. issn: 0317-7173. doi: 10.3138/FM57-6770-U75U-7727.

[95] Anne Driemel and Sariel Har-Peled. ‘Jaywalking Your Dog: Computing the Fréchet

Distance with Shortcuts’. In: SIAM Journal on Computing 42.5 (2018), pp. 1830–1866.

issn: 0097-5397. doi: 10.1137/120865112.

[96] Anne Driemel, Sariel Har-Peled, and Carola Wenk. ‘Approximating the Fréchet

Distance for Realistic Curves in Near Linear Time’. In: Discrete & Computational
Geometry 48.1 (2012), pp. 94–127. issn: 0179-5376. doi: 10.1007/s00454-012-9402-

z.

[97] Anne Driemel, Herman Haverkort, Maarten Löffler, and Rodrigo I. Silveira. ‘Flow

Computations on Imprecise Terrains’. In: Journal of Computational Geometry 4.1

(2013), pp. 38–78. issn: 1920-180X. doi: 10.20382/jocg.v4i1a3.

[98] Anne Driemel, Amer Krivošĳa, and Christian Sohler. ‘Clustering Time Series under

the Fréchet Distance’. In: Proceedings of the 27th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA 2016). Ed. by Robert Krauthgamer. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2016, pp. 766–785. isbn:

978-1-61197-433-1. doi: 10.1137/1.9781611974331.ch55.

[99] Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals. ‘Trajectory

Visibility’. In: Proceedings of the 17th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2020). Ed. by Susanne Albers. Leibniz International

Proceedings in Informatics 162. Wadern, Germany: Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2020, 23. isbn: 978-3-95977-150-4. doi: 10.4230/LIPIcs.

SWAT.2020.23.

[100] Thomas Eiter and Heikki Olavi Mannila. Computing Discrete Fréchet Distance.
Tech. rep. CD-TR 94/64. Technische Universität Wien, 1994. url: http://www.

kr . tuwien . ac . at / staff / eiter / et - archive / cdtr9464 . pdf (visited on

12/06/2023).

[101] Hossam El Gindy and David Avis. ‘A Linear Algorithm for Computing the

Visibility Polygon from a Point’. In: Journal of Algorithms 2.2 (1981), pp. 186–197.

issn: 0196-6774. doi: 10.1016/0196-6774(81)90019-5.

[102] Hossam El Gindy and David Avis. ‘A Linear Algorithm for Computing the

Visibility Polygon from a Point’. In: Journal of Algorithms 2.2 (1981), pp. 186–197.

issn: 0196-6774. doi: 10.1016/0196-6774(81)90019-5.

https://doi.org/10.1145/3150919.3150924
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1137/120865112
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.20382/jocg.v4i1a3
https://doi.org/10.1137/1.9781611974331.ch55
https://doi.org/10.4230/LIPIcs.SWAT.2020.23
https://doi.org/10.4230/LIPIcs.SWAT.2020.23
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf
https://doi.org/10.1016/0196-6774(81)90019-5
https://doi.org/10.1016/0196-6774(81)90019-5

Bibliography 241

[103] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. ‘A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with Noise’. In:

Proceedings of the 2nd International Conference on Knowledge Discovery and Data
Mining (KDD 1996). Ed. by Usama Fayyad, Evangelos Simoudis, and Jiawei Han.

Menlo Park, CA, USA: AAAI Press, 1996, pp. 226–231. isbn: 978-1-57735-004-0.

url: https://ww.aaai.org/Papers/KDD/1996/KDD96- 037.pdf (visited on

15/06/2023).

[104] William S. Evans, Ivor van der Hoog, David G. Kirkpatrick, and Maarten Löffler.

Towards the Minimization of Global Measures of Congestion Potential for Moving Points.
Presented at EuroCG 2022, Perugia, Italy. 2022. url: https://eurocg2022.unipg.

it/booklet/EuroCG2022-Booklet.pdf (visited on 18/06/2023).

[105] William S. Evans, David Kirkpatrick, Maarten Löffler, and Frank Staals. ‘Compet-

itive Query Strategies for Minimising the Ply of the Potential Locations of Moving

Points’. In: Proceedings of the 29th Annual Symposium on Computational Geometry
(SoCG 2013). Ed. by Guilherme D. da Fonseca, Thomas Lewiner, Luis Peñaranda,

Timothy M. Chan, Rolf Klein, and Alexander Kröller. New York, NY, USA: Associ-

ation for Computing Machinery, 2013, pp. 155–164. isbn: 978-1-4503-2031-3. doi:

10.1145/2462356.2462395.

[106] William S. Evans, David G. Kirkpatrick, Maarten Löffler, and Frank Staals. ‘Min-

imizing Co-location Potential of Moving Entities’. In: SIAM Journal on Computing
45.5 (2016), pp. 1870–1893. issn: 0097-5397. doi: 10.1137/15M1031217.

[107] Chenglin Fan, Jun Luo, and Binhai Zhu. ‘Tight Approximation Bounds for Con-

nectivity with a Color-Spanning Set’. In: Proceedings of the 24th International
Symposium on Algorithms and Computation (ISAAC 2013). Ed. by Leizhen Cai, Siu-

Wing Cheng, and Tak-Wah Lam. Lecture Notes in Computer Science 8283. Berlin,

Germany: Springer, 2013, pp. 590–600. isbn: 978-3-642-45029-7. doi: 10.1007/978-

3-642-45030-3_55.

[108] Chenglin Fan and Benjamin Raichel. ‘Computing the Fréchet Gap Distance’. In:

Discrete & Computational Geometry 65 (2020), pp. 1244–1274. issn: 0179-5376. doi:

10.1007/s00454-020-00224-w.

[109] Chenglin Fan and Binhai Zhu. Complexity and Algorithms for the Discrete Fréchet
Distance Upper Bound with Imprecise Input. 2018. arXiv: 1509.02576v2 [cs.CG].

[110] Omrit Filtser and Matthew J. Katz. ‘Algorithms for the Discrete Fréchet Distance

Under Translation’. In: Proceedings of the 16th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2018). Ed. by David Eppstein. Leibniz International

Proceedings in Informatics 101. Wadern, Germany: Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2018, 20. isbn: 978-3-95977-068-2. doi: 10.4230/LIPIcs.

SWAT.2018.20.

[111] Omrit Filtser and Matthew J. Katz. The Discrete Fréchet Gap. 2015. arXiv: 1506.

04861v1 [cs.CG].

[112] Martin Fink, John E. Hershberger, Nirman Kumar, and Subhash Suri. ‘Hyperplane

Separability and Convexity of Probabilistic Point Sets’. In: Journal of Computational
Geometry 8.2 (2017), pp. 32–57. issn: 1920-180X. doi: 10.20382/jocg.v8i2a3.

https://ww.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf
https://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf
https://doi.org/10.1145/2462356.2462395
https://doi.org/10.1137/15M1031217
https://doi.org/10.1007/978-3-642-45030-3_55
https://doi.org/10.1007/978-3-642-45030-3_55
https://doi.org/10.1007/s00454-020-00224-w
https://arxiv.org/abs/1509.02576v2
https://doi.org/10.4230/LIPIcs.SWAT.2018.20
https://doi.org/10.4230/LIPIcs.SWAT.2018.20
https://arxiv.org/abs/1506.04861v1
https://arxiv.org/abs/1506.04861v1
https://doi.org/10.20382/jocg.v8i2a3

Bibliography 242

[113] Marco Fiore, Panagiota Katsikouli, Elli Zavou, Mathieu Cunche, Françoise Fessant,

Dominique Le Hello, Ulrich Matchi Aïvodji, Baptiste Olivier, Tony Quertier,

and Razvan Stanica. ‘Privacy in Trajectory Micro-Data Publishing: A Survey’.

In: Transactions on Data Privacy 13.2 (2020), pp. 91–149. issn: 1888-5063. url:

http://www.tdp.cat/issues16/abs.a363a19.php (visited on 09/06/2023).

[114] M. Maurice Fréchet. ‘Sur quelques points du calcul fonctionnel’. French. In:

Rendiconti del Circolo Matematico di Palermo 22 (1906), pp. 1–72.

[115] Giovanni Fusco, Matteo Caglioni, Karine Emsellem, Myriam Merad, Diego Moreno,

and Christine Voiron-Canicio. ‘Questions of Uncertainty in Geography’. In: En-
vironment and Planning A: Economy and Space 49.10 (2017), pp. 2261–2280. issn:

0308-518X. doi: 10.1177/0308518X17718838.

[116] Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge, UK: Cambridge

University Press, 2007. isbn: 978-0-521-87574-5. doi: 10.1017/CBO9780511543340.

[117] Michael Godau. ‘A Natural Metric for Curves: Computing the Distance for

Polygonal Chains and Approximation Algorithms’. In: Proceedings of the 8th
Annual Symposium on Theoretical Aspects of Computer Science (STACS 1991). Ed. by

Christian Choffrut and Matthias Jantzen. Lecture Notes in Computer Science

480. Berlin, Germany: Springer, 1991, pp. 127–136. isbn: 978-3-540-47002-1. doi:

10.1007/BFb0020793.

[118] Teofilo F. Gonzalez. ‘Clustering to Minimize the Maximum Intercluster Distance’.

In: Theoretical Computer Science 38 (1985), pp. 293–306. issn: 0304-3975. doi: 10.

1016/0304-3975(85)90224-5.

[119] Michael F. Goodchild. ‘How Well Do We Really Know the World?: Uncertainty

in GIScience’. In: Journal of Spatial Information Science 20 (2020), pp. 97–102. issn:

1948-660X. doi: 10.5311/JOSIS.2019.20.664.

[120] Chris Gray, Frank Kammer, Maarten Löffler, and Rodrigo I. Silveira. ‘Removing

Local Extrema from Imprecise Terrains’. In: Computational Geometry: Theory &
Applications 45.7 (2012), pp. 334–349. issn: 0925-7721. doi: 10.1016/j.comgeo.

2012.02.002.

[121] Chris Gray, Maarten Löffler, and Rodrigo I. Silveira. ‘Smoothing Imprecise 1.5D

Terrains’. In: International Journal of Computational Geometry & Applications 20.4

(2010), pp. 381–414. issn: 0218-1959. doi: 10.1142/S0218195910003359.

[122] Paul D. Groves. ‘Shadow Matching: A New GNSS Positioning Technique for Urban

Canyons’. In: Journal of Navigation 64.3 (2011), pp. 417–430. issn: 0373-4633. doi:

10.1017/S0373463311000087.

[123] Joachim Gudmundsson, Jyrki Katajainen, Damian Merrick, Cahya Ong, and

Thomas Wolle. ‘Compressing Spatio-Temporal Trajectories’. In: Computational
Geometry: Theory & Applications 42.9 (2009), pp. 825–841. issn: 0925-7721. doi:

10.1016/j.comgeo.2009.02.002.

[124] Joachim Gudmundsson, Marc J. van Kreveld, and Bettina Speckmann. ‘Efficient

Detection of Patterns in 2D Trajectories of Moving Points’. In: GeoInformatica 11.2

(2007), pp. 195–215. issn: 1384-6175. doi: 10.1007/s10707-006-0002-z.

http://www.tdp.cat/issues16/abs.a363a19.php
https://doi.org/10.1177/0308518X17718838
https://doi.org/10.1017/CBO9780511543340
https://doi.org/10.1007/BFb0020793
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.5311/JOSIS.2019.20.664
https://doi.org/10.1016/j.comgeo.2012.02.002
https://doi.org/10.1016/j.comgeo.2012.02.002
https://doi.org/10.1142/S0218195910003359
https://doi.org/10.1017/S0373463311000087
https://doi.org/10.1016/j.comgeo.2009.02.002
https://doi.org/10.1007/s10707-006-0002-z

Bibliography 243

[125] Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk.

‘Fast Fréchet Distance between Curves with Long Edges’. In: International Journal
of Computational Geometry & Applications 29.2 (2019), pp. 161–187. issn: 0218-1959.

doi: 10.1142/S0218195919500043.

[126] Joachim Gudmundsson and Pat Morin. ‘Planar Visibility: Testing and Counting’.

In: Proceedings of the 26th Annual Symposium on Computational Geometry (SoCG
2010). Ed. by David G. Kirkpatrick and Joseph S. B. Mitchell. New York, NY, USA:

Association for Computing Machinery, 2010, pp. 77–86. isbn: 978-1-4503-0016-2.

doi: 10.1145/1810959.1810973.

[127] Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. ‘Map Matching

Queries on Realistic Input Graphs Under the Fréchet Distance’. In: Proceedings
of the 34th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2023).
Ed. by Nikhil Bansal and Viswanath Nagarajan. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 2023, pp. 1464–1492. isbn: 978-1-61197-755-4.

doi: 10.1137/1.9781611977554.ch53.

[128] Joachim Gudmundsson and Michiel Smid. ‘Fast Algorithms for Approximate

Fréchet Matching Queries in Geometric Trees’. In: Computational Geometry: Theory
& Applications 48.6 (2015), pp. 479–494. issn: 0925-7721. doi: 10.1016/j.comgeo.

2015.02.003.

[129] Joachim Gudmundsson and Thomas Wolle. ‘Football Analysis Using Spatio-

Temporal Tools’. In: Computers, Environment and Urban Systems 47 (2014), pp. 16–27.

issn: 0198-9715. doi: 10.1016/j.compenvurbsys.2013.09.004.

[130] Leonidas J. Guibas and John Hershberger. ‘Optimal Shortest Path Queries in a

Simple Polygon’. In: Journal of Computer and System Sciences 39.2 (1989), pp. 126–152.

issn: 0022-0000. doi: 10.1016/0022-0000(89)90041-X.

[131] Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert

E. Tarjan. ‘Linear-Time Algorithms for Visibility and Shortest Path Problems

inside Triangulated Simple Polygons’. In: Algorithmica 2 (1987), pp. 209–233. issn:

0178-4617. doi: 10.1007/BF01840360.

[132] Leonidas J. Guibas, John E. Hershberger, Joseph S. B. Mitchell, and Jack S. Snoeyink.

‘Approximating Polygons and Subdivisions with Minimum-Link Paths’. In: Inter-
national Journal of Computational Geometry & Applications 3.4 (1993), pp. 383–415.

issn: 0218-1959. doi: 10.1142/S0218195993000257.

[133] Yingqi Guo, Cheuk-Yui Yeung, Geoff C. H. Chan, Qingsong Chang, Hector W. H.

Tsang, and Paul S. F. Yip. ‘Mobility Based on GPS Trajectory Data and Interviews:

A Pilot Study to Understand the Differences between Lower- and Higher-Income

Older Adults in Hong Kong’. In: International Journal of Environmental Research and
Public Health 19.9, 5536 (2022). issn: 1660-4601. doi: 10.3390/ijerph19095536.

[134] Prosenjit Gupta, Ravi Janardan, Yokesh Kumar, and Michiel Smid. ‘Data Struc-

tures for Range-Aggregate Extent Queries’. In: Computational Geometry: Theory
& Applications 47.2 (Part C 2014), pp. 329–347. issn: 0925-7721. doi: 10.1016/j.

comgeo.2009.08.001.

https://doi.org/10.1142/S0218195919500043
https://doi.org/10.1145/1810959.1810973
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1016/j.comgeo.2015.02.003
https://doi.org/10.1016/j.comgeo.2015.02.003
https://doi.org/10.1016/j.compenvurbsys.2013.09.004
https://doi.org/10.1016/0022-0000(89)90041-X
https://doi.org/10.1007/BF01840360
https://doi.org/10.1142/S0218195993000257
https://doi.org/10.3390/ijerph19095536
https://doi.org/10.1016/j.comgeo.2009.08.001
https://doi.org/10.1016/j.comgeo.2009.08.001

Bibliography 244

[135] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. ‘Further Results on

Generalized Intersection Searching Problems: Counting, Reporting, and Dynam-

ization’. In: Journal of Algorithms 19.2 (1995), pp. 282–317. issn: 0196-6774. doi:

10.1006/jagm.1995.1038.

[136] Theodor Gutschlag and Sabine Storandt. ‘On the Generalized Fréchet Distance

and Its Applications’. In: Proceedings of the 30th International Conference on Advances
in Geographic Information Systems (SIGSPATIAL 2022). Ed. by Matthias Renz and

Mohamed Sarwat. New York, NY, USA: Association for Computing Machinery,

2022, 35. isbn: 978-1-4503-9529-8. doi: 10.1145/3557915.3560970.

[137] Sariel Har-Peled and Benjamin Raichel. ‘The Fréchet Distance Revisited and

Extended’. In: ACM Transactions on Algorithms 10.1, 3 (2014). issn: 1549-6325. doi:

10.1145/2532646.

[138] Mahdi Hashemi and Hassan A. Karimi. ‘A Critical Review of Real-Time Map-

Matching Algorithms: Current Issues and Future Directions’. In: Computers,
Environment and Urban Systems 48 (2014), pp. 153–165. issn: 0198-9715. doi: 10.

1016/j.compenvurbsys.2014.07.009.

[139] Felix Hausdorff. Grundzüge der Mengenlehre. German. Leipzig, Germany: Von Veit

& Comp., 1914.

[140] John Hershberger. ‘A New Data Structure for Shortest Path Queries in a Simple

Polygon’. In: Information Processing Letters 38.5 (1991), pp. 231–235. issn: 0020-0190.

doi: 10.1016/0020-0190(91)90064-O.

[141] John Hershberger and Subhash Suri. ‘A Pedestrian Approach to Ray Shooting’. In:

Journal of Algorithms 18.3 (1995), pp. 403–431. issn: 0196-6774. doi: 10.1006/jagm.

1995.1017.

[142] Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann.

‘Preprocessing Ambiguous Imprecise Points’. In: Proceedings of the 35th International
Symposium on Computational Geometry (SoCG 2019). Ed. by Gill Barequet and Yusu

Wang. Leibniz International Proceedings in Informatics 129. Wadern, Germany:

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 42. isbn: 978-3-95977-

104-7. doi: 10.4230/LIPIcs.SoCG.2019.42.

[143] Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann.

‘Preprocessing Imprecise Points for the Pareto Front’. In: Proceedings of the 33rd
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2022). Ed. by Joseph

Naor and Niv Buchbinder. Philadelphia, PA, USA: Society for Industrial and

Applied Mathematics, 2022, pp. 3144–3167. isbn: 978-1-61197-707-3. doi: 10.1137/

1.9781611977073.122.

[144] Mara Hvistendahl. ‘Foreigners Run Afoul of China’s Tightening Secrecy Rules’.

In: Science 339.6118 (2013), pp. 384–385. issn: 0036-8075. doi: 10.1126/science.

339.6118.384.

[145] Hiroshi Imai and Masao Iri. ‘Computational-Geometric Methods for Polygonal

Approximations of a Curve’. In: Computer Vision, Graphics, and Image Processing
36.1 (1986), pp. 31–41. issn: 0734-189X. doi: 10.1016/S0734-189X(86)80027-5.

https://doi.org/10.1006/jagm.1995.1038
https://doi.org/10.1145/3557915.3560970
https://doi.org/10.1145/2532646
https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://doi.org/10.1016/0020-0190(91)90064-O
https://doi.org/10.1006/jagm.1995.1017
https://doi.org/10.1006/jagm.1995.1017
https://doi.org/10.4230/LIPIcs.SoCG.2019.42
https://doi.org/10.1137/1.9781611977073.122
https://doi.org/10.1137/1.9781611977073.122
https://doi.org/10.1126/science.339.6118.384
https://doi.org/10.1126/science.339.6118.384
https://doi.org/10.1016/S0734-189X(86)80027-5

Bibliography 245

[146] Patrick Jaillet. ‘Probabilistic Traveling Salesman Problems’. PhD thesis. Mas-

sachusetts Institute of Technology, 1985. url: https://www.mit.edu/~jaillet/

general/jaillet-phd-mit-orc-85.pdf (visited on 18/06/2023).

[147] Minghui Jiang, Ying Xu, and Binhai Zhu. ‘Protein Structure: Structure Alignment

With Discrete Fréchet Distance’. In: Journal of Bioinformatics and Computational
Biology 6.1 (2008), pp. 51–64. issn: 0219-7200. doi: 10.1142/s0219720008003278.

[148] Barry Joe and Richard B. Simpson. ‘Corrections to Lee’s Visibility Polygon Al-

gorithm’. In: BIT Numerical Mathematics 27 (1987), pp. 458–473. issn: 0006-3835.

doi: 10.1007/BF01937271.

[149] Allan Jørgensen, Jeff M. Phillips, and Maarten Löffler. ‘Geometric Computations on

Indecisive Points’. In: Proceedings of the 12th International Symposium on Algorithms
and Data Structures (WADS 2011). Ed. by Frank Dehne, John Iacono, and Jörg-

Rüdiger Sack. Lecture Notes in Computer Science 6844. Berlin, Germany: Springer,

2011, pp. 536–547. isbn: 978-3-642-22299-3. doi: 10.1007/978-3-642-22300-6_45.

[150] Vahideh Keikha, Sepideh Aghamolaei, Ali Mohades, and Mohammad Ghodsi.

‘Clustering Geometrically-Modeled Points in the Aggregated Uncertainty Model’.

In: Fundamenta Informaticæ 184.3 (2021), pp. 205–231. issn: 0169-2968. doi: 10.3233/

FI-2021-2097.

[151] Eamonn Keogh and Chotirat Ann Ratanamahatana. ‘Exact Indexing of Dynamic

Time Warping’. In: Knowledge and Information Systems 7.3 (2005), pp. 358–386. issn:

0219-1377. doi: 10.1007/s10115-004-0154-9.

[152] Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and

Carola Wenk. ‘Global Curve Simplification’. In: Proceedings of the 27th Annual
European Symposium on Algorithms (ESA 2019). Ed. by Michael A. Bender, Ola

Svensson, and Grzegorz Herman. Leibniz International Proceedings in Informatics

144. Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019,

67. isbn: 978-3-95977-124-5. doi: 10.4230/LIPIcs.ESA.2019.67.

[153] David G. Kirkpatrick. ‘Optimal Search in Planar Subdivisions’. In: SIAM Journal
on Computing 12.1 (1983), pp. 28–35. issn: 0097-5397. doi: 10.1137/0212002.

[154] Christian Knauer, Maarten Löffler, Marc Scherfenberg, and Thomas Wolle. ‘The

Directed Hausdorff Distance between Imprecise Point Sets’. In: Theoretical Computer
Science 412.32 (2011), pp. 4173–4186. issn: 0304-3975. doi: 10.1016/j.tcs.2011.

01.039.

[155] Koninklĳk Nederlands Meteorologisch Instituut. Precipitation Radar Archive. 2023.

url: https://www.knmi.nl/nederland- nu/klimatologie/geografische-

overzichten/radar (visited on 10/07/2023).

[156] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. ‘SpotFi: Deci-

meter Level Localization Using WiFi’. In: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (SIGCOMM 2015). Ed. by Steve

Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye. New York, NY, USA: Asso-

ciation for Computing Machinery, 2015, pp. 269–282. isbn: 978-1-4503-3542-3. doi:

10.1145/2785956.2787487.

https://www.mit.edu/~jaillet/general/jaillet-phd-mit-orc-85.pdf
https://www.mit.edu/~jaillet/general/jaillet-phd-mit-orc-85.pdf
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.1007/BF01937271
https://doi.org/10.1007/978-3-642-22300-6_45
https://doi.org/10.3233/FI-2021-2097
https://doi.org/10.3233/FI-2021-2097
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.4230/LIPIcs.ESA.2019.67
https://doi.org/10.1137/0212002
https://doi.org/10.1016/j.tcs.2011.01.039
https://doi.org/10.1016/j.tcs.2011.01.039
https://www.knmi.nl/nederland-nu/klimatologie/geografische-overzichten/radar
https://www.knmi.nl/nederland-nu/klimatologie/geografische-overzichten/radar
https://doi.org/10.1145/2785956.2787487

Bibliography 246

[157] Bart Kranstauber, Roland Kays, Scott D. LaPoint, Martin Wikelski, and Kamran

Safi. ‘A Dynamic Brownian Bridge Movement Model to Estimate Utilization

Distributions for Heterogeneous Animal Movement’. In: Journal of Animal Ecology
81.4 (2012), pp. 738–746. issn: 0021-8790. doi: 10.1111/j.1365-2656.2012.01955.

x.

[158] Marc J. van Kreveld and Maarten Löffler. ‘Approximating Largest Convex Hulls

for Imprecise Points’. In: Journal of Discrete Algorithms 6.4 (2008), pp. 583–594. issn:

1570-8667. doi: 10.1016/j.jda.2008.04.002.

[159] Marc J. van Kreveld, Maarten Löffler, and Joseph S. B. Mitchell. ‘Preprocessing

Imprecise Points and Splitting Triangulations’. In: SIAM Journal on Computing 39.7

(2010), pp. 2990–3000. issn: 0097-5397. doi: 10.1137/090753620.

[160] Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. ‘On Optimal Polyline

Simplification Using the Hausdorff and Fréchet Distance’. In: Proceedings of the
34th International Symposium on Computational Geometry (SoCG 2018). Ed. by Bettina

Speckmann and Csaba D. Tóth. Leibniz International Proceedings in Informatics

99. Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018,

56. isbn: 978-3-95977-066-8. doi: 10.4230/LIPIcs.SoCG.2018.56.

[161] John Krumm. ‘A Survey of Computational Location Privacy’. In: Personal and
Ubiquitous Computing 13.6 (2009), pp. 391–399. issn: 1617-4909. doi: 10.1007/

s00779-008-0212-5.

[162] John Krumm. ‘Maximum Entropy Bridgelets for Trajectory Completion’. In:

Proceedings of the 30th International Conference on Advances in Geographic Information
Systems (SIGSPATIAL 2022). Ed. by Matthias Renz and Mohamed Sarwat. New York,

NY, USA: Association for Computing Machinery, 2022, 79. isbn: 978-1-4503-9529-8.

doi: 10.1145/3557915.3561015.

[163] Joseph B. Kruskal and Mark Liberman. ‘The Symmetric Time-Warping Problem:

From Continuous to Discrete’. In: Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Ed. by David Sankoff and Joseph B.

Kruskal. Reading, MA, USA: Addison–Wesley, 1983, pp. 125–161. isbn: 978-0-201-

07809-1.

[164] Matej Kubicka, Arben Cela, Hugues Mounier, and Silviu-Iulian Niculescu.

‘Comparative Study and Application-Oriented Classification of Vehicular Map-

Matching Methods’. In: IEEE Intelligent Transportation Systems Magazine 10.2 (2018),

pp. 150–166. issn: 1939-1390. doi: 10.1109/MITS.2018.2806630.

[165] Bart Kuĳpers, Bart Moelans, Walied Othman, and Alejandro A. Vaisman.

‘Uncertainty-Based Map Matching: The Space-Time Prism and 𝑘-Shortest Path

Algorithm’. In: ISPRS International Journal of Geo-Information 5.11, 204 (2016). issn:

2220-9964. doi: 10.3390/ijgi5110204.

[166] Heikki Laitinen, Jaakko Lähteenmäki, and Tero Nordström. ‘Database Correlation

Method for GSM Location’. In: Proceedings of the 53rd IEEE VTS Vehicular Technology
Conference (VTC Spring). Vol. 4. Piscataway, NJ, USA: Institute of Electrical and

Electronics Engineers, 2001, pp. 2504–2508. isbn: 978-0-7803-6728-9. doi: 10.1109/

VETECS.2001.944052.

https://doi.org/10.1111/j.1365-2656.2012.01955.x
https://doi.org/10.1111/j.1365-2656.2012.01955.x
https://doi.org/10.1016/j.jda.2008.04.002
https://doi.org/10.1137/090753620
https://doi.org/10.4230/LIPIcs.SoCG.2018.56
https://doi.org/10.1007/s00779-008-0212-5
https://doi.org/10.1007/s00779-008-0212-5
https://doi.org/10.1145/3557915.3561015
https://doi.org/10.1109/MITS.2018.2806630
https://doi.org/10.3390/ijgi5110204
https://doi.org/10.1109/VETECS.2001.944052
https://doi.org/10.1109/VETECS.2001.944052

Bibliography 247

[167] Hung Le and Cuong Than. ‘Greedy Spanners in Euclidean Spaces Admit Sublinear

Separators’. In: Proceedings of the 33rd Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA 2022). Ed. by Joseph Naor and Niv Buchbinder. Philadelphia,

PA, USA: Society for Industrial and Applied Mathematics, 2022, pp. 3287–3310.

isbn: 978-1-61197-707-3. doi: 10.1137/1.9781611977073.130.

[168] Der-Tsai Lee. ‘Visibility of a Simple Polygon’. In: Computer Vision, Graphics, and
Image Processing 22.2 (1983), pp. 207–221. issn: 0734-189X. doi: 10.1016/0734-

189X(83)90065-8.

[169] Jian Li and Haitao Wang. ‘Range Queries on Uncertain Data’. In: Theoretical
Computer Science 609 (2016), pp. 32–48. issn: 0304-3975. doi: 10.1016/j.tcs.2015.

09.005.

[170] Richard J. Lipton and Robert Endre Tarjan. ‘A Separator Theorem for Planar

Graphs’. In: SIAM Journal on Applied Mathematics 36.2 (1979), pp. 177–189. issn:

0036-1399. doi: 10.1137/0136016.

[171] Maarten Löffler. ‘Data Imprecision in Computational Geometry’. PhD thesis.

Universiteit Utrecht, 2009. isbn: 978-90-8891-121-7. url: https://dspace.library.

uu.nl/bitstream/handle/1874/36022/loffler.pdf (visited on 15/06/2023).

[172] Maarten Löffler. ‘Existence and Computation of Tours through Imprecise Points’.

In: International Journal of Computational Geometry & Applications 21.1 (2011), pp. 1–

24. issn: 0218-1959. doi: 10.1142/S0218195911003524.

[173] Maarten Löffler and Marc J. van Kreveld. ‘Largest and Smallest Tours and Convex

Hulls for Imprecise Points’. In: Algorithm Theory – SWAT 2006. Ed. by Lars Arge

and Rusins Freivalds. Lecture Notes in Computer Science 4059. Berlin, Germany:

Springer, 2006, pp. 375–387. isbn: 978-3-540-35753-7. doi: 10.1007/11785293_35.

[174] Maarten Löffler and Marc J. van Kreveld. ‘Largest Bounding Box, Smallest Diameter,

and Related Problems on Imprecise Points’. In: Computational Geometry: Theory
& Applications 43.4 (2010), pp. 419–433. issn: 0925-7721. doi: 10.1016/j.comgeo.

2009.03.007.

[175] Maarten Löffler and Wolfgang Mulzer. ‘Unions of Onions: Preprocessing Imprecise

Points for Fast Onion Decomposition’. In: Journal of Computational Geometry 5.1

(2014), pp. 1–13. issn: 1920-180X. doi: 10.20382/jocg.v5i1a1.

[176] Maarten Löffler and Jeff M. Phillips. ‘Shape Fitting on Point Sets with Probability

Distributions’. In: Algorithms – ESA 2009. Ed. by Amos Fiat and Peter Sanders.

Lecture Notes in Computer Science 5757. Berlin, Germany: Springer, 2009, pp. 313–

324. isbn: 978-3-642-04128-0. doi: 10.1007/978-3-642-04128-0_29.

[177] Maarten Löffler and Jack Scott Snoeyink. ‘Delaunay Triangulations of Imprecise

Points in Linear Time after Preprocessing’. In: Computational Geometry: Theory &
Applications 43.3 (2010), pp. 234–242. issn: 0925-7721. doi: 10.1016/j.comgeo.

2008.12.007.

[178] Paul A. Longley, Michael F. Goodchild, David J. Maguire, and David W. Rhind.

Geographic Information Systems and Science. 4th ed. Hoboken, NJ, USA: John Wiley

& Sons, 2015. isbn: 978-1-119-12845-8.

https://doi.org/10.1137/1.9781611977073.130
https://doi.org/10.1016/0734-189X(83)90065-8
https://doi.org/10.1016/0734-189X(83)90065-8
https://doi.org/10.1016/j.tcs.2015.09.005
https://doi.org/10.1016/j.tcs.2015.09.005
https://doi.org/10.1137/0136016
https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf
https://doi.org/10.1142/S0218195911003524
https://doi.org/10.1007/11785293_35
https://doi.org/10.1016/j.comgeo.2009.03.007
https://doi.org/10.1016/j.comgeo.2009.03.007
https://doi.org/10.20382/jocg.v5i1a1
https://doi.org/10.1007/978-3-642-04128-0_29
https://doi.org/10.1016/j.comgeo.2008.12.007
https://doi.org/10.1016/j.comgeo.2008.12.007

Bibliography 248

[179] Anil Maheshwari, Jörg-Rüdiger Sack, Kaveh Shahbaz, and Hamid Zarrabi-Zadeh.

‘Fréchet Distance with Speed Limits’. In: Computational Geometry: Theory & Applic-
ations 44.2 (2011), pp. 110–120. issn: 0925-7721. doi: 10.1016/j.comgeo.2010.09.

008.

[180] Rupak Majumdar and Vinayak S. Prabhu. ‘Computing the Skorokhod Distance

between Polygonal Traces’. In: Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control (HSCC 2015). Ed. by Antoine Girard

and Sriram Sankaranarayanan. New York, NY, USA: Association for Computing

Machinery, 2015, pp. 199–208. isbn: 978-1-4503-3433-4. doi: 10.1145/2728606.

2728618.

[181] Avraham Melkman and Joseph O’Rourke. ‘On Polygonal Chain Approximation’.

In: Machine Intelligence and Pattern Recognition. Vol. 6: Computational Morphology:
A Computational Geometric Approach to the Analysis Of Form. Ed. by Godfried T.

Toussaint. Amsterdam, the Netherlands: Elsevier, 1988, pp. 87–95. isbn: 978-0-444-

70467-2. doi: 10.1016/B978-0-444-70467-2.50012-6.

[182] Àlex Miranda-Pascual, Patricia Guerra-Balboa, Javier Parra-Arnau, Jordi Forné,

and Thorsten Strufe. ‘SoK: Differentially Private Publication of Trajectory Data’.

In: Proceedings on Privacy Enhancing Technologies 2023.2 (2023), pp. 496–516. issn:

2299-0984. doi: 10.56553/popets-2023-0065.

[183] Paul Newson and John Krumm. ‘Hidden Markov Map Matching through Noise

and Sparseness’. In: Proceedings of the 17th International Conference on Advances in
Geographic Information Systems (SIGSPATIAL 2009). Ed. by Divyakant Agrawal,

Walid G. Aref, Chang-Tien Lu, Mohamed F. Mokbel, Peter Scheuermann, Cyrus

Shahabi, and Ouri Wolfson. New York, NY, USA: Association for Computing

Machinery, 2009, pp. 336–343. isbn: 978-1-60558-649-6. doi: 10.1145/1653771.

1653818.

[184] Stig Nordbeck. ‘Computing Distances in Road Networks’. In: Papers in Regional
Science 12.1 (1964), pp. 207–220. issn: 1435-5957. doi: 10.1111/j.1435-5597.1964.

tb01266.x.

[185] NordNordWest. Spreading of Homo Sapiens. 2023. url: https : / / commons .

wikimedia.org/wiki/File:Spreading_homo_sapiens_la.svg (visited on

10/07/2023).

[186] Joseph O’Rourke. Art Gallery Theorems and Algorithms. International Series of

Monographs on Computer Science 3. Oxford, UK: Oxford University Press, 1987.

isbn: 978-0-19-503965-8. url: http://www.science.smith.edu/~jorourke/

books/ArtGalleryTheorems/art.html (visited on 08/07/2023).

[187] Joseph O’Rourke. ‘Visibility’. In: Handbook of Discrete and Computational Geometry.

Ed. by Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth. 3rd ed. Discrete

Mathematics and Its Applications. Boca Raton, FL, USA: CRC Press, 2017, pp. 875–

896. isbn: 978-1-4987-1139-5. doi: 10.1201/9781315119601.

[188] OpenStreetMap. Map Data. 2023. url: https://openstreetmap.org (visited on

03/03/2023).

https://doi.org/10.1016/j.comgeo.2010.09.008
https://doi.org/10.1016/j.comgeo.2010.09.008
https://doi.org/10.1145/2728606.2728618
https://doi.org/10.1145/2728606.2728618
https://doi.org/10.1016/B978-0-444-70467-2.50012-6
https://doi.org/10.56553/popets-2023-0065
https://doi.org/10.1145/1653771.1653818
https://doi.org/10.1145/1653771.1653818
https://doi.org/10.1111/j.1435-5597.1964.tb01266.x
https://doi.org/10.1111/j.1435-5597.1964.tb01266.x
https://commons.wikimedia.org/wiki/File:Spreading_homo_sapiens_la.svg
https://commons.wikimedia.org/wiki/File:Spreading_homo_sapiens_la.svg
http://www.science.smith.edu/~jorourke/books/ArtGalleryTheorems/art.html
http://www.science.smith.edu/~jorourke/books/ArtGalleryTheorems/art.html
https://doi.org/10.1201/9781315119601
https://openstreetmap.org

Bibliography 249

[189] Mark H. Overmars and Emo Welzl. ‘New Methods for Computing Visibility

Graphs’. In: Proceedings of the 4th Annual Symposium on Computational Geometry
(SoCG 1988). Ed. by Herbert Edelsbrunner. New York, NY, USA: Association for

Computing Machinery, 1988, pp. 164–171. isbn: 978-0-89791-270-9. doi: 10.1145/

73393.73410.

[190] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. ‘Probabilistic Skylines on

Uncertain Data’. In: Proceedings of the 33rd International Conference on Very Large
Data Bases (VLDB 2007). Ed. by Christoph Koch et al. Los Angeles, CA, USA: VLDB

Endowment, 2007, pp. 15–26. isbn: 978-1-59593-649-3. url: https://dl.acm.org/

doi/10.5555/1325851.1325858 (visited on 15/06/2023).

[191] Dieter Pfoser and Christian S. Jensen. ‘Capturing the Uncertainty of Moving-

Object Representations’. In: Proceedings of the 6th International Symposium on Spatial
Databases (SSD 1999). Ed. by Ralf Hartmut Güting, Dimitris Papadias, and Fred

Lochovsky. Lecture Notes in Computer Science 1651. Berlin, Germany: Springer,

1999, pp. 111–131. isbn: 978-3-540-66247-1. doi: 10.1007/3-540-48482-5_9.

[192] Urs Ramer. ‘An Iterative Procedure for the Polygonal Approximation of Plane

Curves’. In: Computer Graphics and Image Processing 1.3 (1972), pp. 244–256. issn:

0146-664X. doi: 10.1016/S0146-664X(72)80017-0.

[193] Lucas Rodríguez, Javier Palanca, Elena del Val, and Miguel Rebollo. ‘Analyzing

Urban Mobility Paths Based on Users’ Activity in Social Networks’. In: Future
Generation Computer Systems 102 (2020), pp. 333–346. issn: 0167-739X. doi: 10.1016/

j.future.2019.07.072.

[194] Hiroaki Sakoe and Seibi Chiba. ‘Dynamic Programming Algorithm Optimization

for Spoken Word Recognition’. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 26.1 (1978), pp. 43–49. issn: 0096-3518. doi: 10.1109/TASSP.1978.

1163055.

[195] David Salesin, Jorge Stolfi, and Leonidas J. Guibas. ‘Epsilon Geometry: Building

Robust Algorithms from Imprecise Computations’. In: Proceedings of the 5th Annual
Symposium on Computational Geometry (SCG 1989). Ed. by Kurt Mehlhorn. New

York, NY, USA: Association for Computing Machinery, 1989, pp. 208–217. isbn:

978-0-89791-318-8. doi: 10.1145/73833.73857.

[196] Rock Santerre. ‘Impact of GPS Satellite Sky Distribution’. In: Manuscripta Geodætica
16 (1991), pp. 28–53. HDL: 20.500.11794/12354.

[197] Jaume Sanz Subirana, José Miguel Juan Zornoza, and Manuel Hernández-Pajares.

GNSS Data Processing. Vol. 1: Fundamentals and Algorithms. ESA Training Manuals

TM-23/1. Noordwĳk, the Netherlands: ESA Communications, 2013. isbn: 978-92-

9221-886-7. url: https://www.esa.int/About_Us/ESA_Publications/ESA_TM-

23_GNSS_DATA_PROCESSING (visited on 09/06/2023).

[198] Neil Sarnak and Robert E. Tarjan. ‘Planar Point Location Using Persistent Search

Trees’. In: Communications of the ACM 29.7 (1986), pp. 669–679. issn: 0001-0782. doi:

10.1145/6138.6151.

[199] Otfried Schwarzkopf and Jules Vleugels. ‘Range Searching in Low-Density Envir-

onments’. In: Information Processing Letters 60.3 (1996), pp. 121–127. issn: 0020-0190.

doi: 10.1016/S0020-0190(96)00154-8.

https://doi.org/10.1145/73393.73410
https://doi.org/10.1145/73393.73410
https://dl.acm.org/doi/10.5555/1325851.1325858
https://dl.acm.org/doi/10.5555/1325851.1325858
https://doi.org/10.1007/3-540-48482-5_9
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/j.future.2019.07.072
https://doi.org/10.1016/j.future.2019.07.072
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1145/73833.73857
http://hdl.handle.net/20.500.11794/12354
https://www.esa.int/About_Us/ESA_Publications/ESA_TM-23_GNSS_DATA_PROCESSING
https://www.esa.int/About_Us/ESA_Publications/ESA_TM-23_GNSS_DATA_PROCESSING
https://doi.org/10.1145/6138.6151
https://doi.org/10.1016/S0020-0190(96)00154-8

Bibliography 250

[200] Jeff Sember and William S. Evans. Guaranteed Voronoi Diagrams of Uncertain Sites.
Presented at CCCG 2008, Montreal, QC, Canada. 2008. url: http://cccg.ca/

proceedings/2008/paper50full.pdf (visited on 09/05/2023).

[201] Martin P. Seybold. ‘Robust Map Matching for Heterogeneous Data via Dominance

Decompositions’. In: Proceedings of the 2017 SIAM International Conference on Data
Mining (SDM 2017). Ed. by Nitesh Chawla and Wei Wang. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2017, pp. 813–821. isbn:

978-1-61197-497-3. doi: 10.1137/1.9781611974973.91.

[202] Aravinda Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. ‘Querying

the Uncertain Position of Moving Objects’. In: Temporal Databases: Research and
Practice. Ed. by Opher Etzion, Sushil Jajodia, and Suryanarayana Sripada. Lecture

Notes in Computer Science 1399. Berlin, Germany: Springer, 1998, pp. 310–337.

isbn: 978-3-540-64519-1. doi: 10.1007/BFb0053708.

[203] Tim Sodergren, Jessica Hair, Jeff M. Phillips, and Bei Wang. Visualizing Sensor
Network Coverage with Location Uncertainty. 2017. arXiv: 1710.06925v1 [cs.HC].

[204] A. Frank van der Stappen. ‘Motion Planning Amidst Fat Obstacles’. PhD thesis. Uni-

versiteit Utrecht, 1994. isbn: 978-90-393-0654-3. url: https://webspace.science.

uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf (visited on 07/07/2023).

[205] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. ‘A Survey

of Trajectory Distance Measures and Performance Evaluation’. In: The VLDB
Journal 29 (2020), pp. 3–32. issn: 1066-8888. doi: 10.1007/s00778-019-00574-9.

[206] Subhash Suri and Joseph O’Rourke. ‘Worst-Case Optimal Algorithms for Construct-

ing Visibility Polygons with Holes’. In: Proceedings of the 2nd Annual Symposium on
Computational Geometry (SoCG 1986). Ed. by Alok Aggarwal. New York, NY, USA:

Association for Computing Machinery, 1986, pp. 14–23. isbn: 978-0-89791-194-8.

doi: 10.1145/10515.10517.

[207] Subhash Suri and Kevin Verbeek. ‘On the Most Likely Voronoi Diagram and

Nearest Neighbor Searching’. In: International Journal of Computational Geo-
metry & Applications 26.3–4 (2016), pp. 151–166. issn: 0218-1959. doi: 10.1142/

S0218195916600025.

[208] Subhash Suri, Kevin Verbeek, and Hakan Yıldız. ‘On the Most Likely Convex Hull

of Uncertain Points’. In: Algorithms – ESA 2013. Ed. by Hans L. Bodlaender and

Giuseppe F. Italiano. Lecture Notes in Computer Science 8125. Berlin, Germany:

Springer, 2013, pp. 791–802. isbn: 978-3-642-40449-8. doi: 10.1007/978-3-642-

40450-4_67.

[209] Yaguang Tao, Alan Both, Rodrigo I. Silveira, Kevin Buchin, Stef Sĳben, Ross S.

Purves, Patrick Laube, Dongliang Peng, Kevin Toohey, and Matt Duckham. ‘A

Comparative Analysis of Trajectory Similarity Measures’. In: GIScience & Remote
Sensing 58.5 (2021), pp. 643–669. issn: 1548-1603. doi: 10.1080/15481603.2021.

1908927.

[210] The CGAL Project. Computational Geometry Algorithms Library. 2023. url: https:

//www.cgal.org (visited on 10/07/2023).

http://cccg.ca/proceedings/2008/paper50full.pdf
http://cccg.ca/proceedings/2008/paper50full.pdf
https://doi.org/10.1137/1.9781611974973.91
https://doi.org/10.1007/BFb0053708
https://arxiv.org/abs/1710.06925v1
https://webspace.science.uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf
https://webspace.science.uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.1145/10515.10517
https://doi.org/10.1142/S0218195916600025
https://doi.org/10.1142/S0218195916600025
https://doi.org/10.1007/978-3-642-40450-4_67
https://doi.org/10.1007/978-3-642-40450-4_67
https://doi.org/10.1080/15481603.2021.1908927
https://doi.org/10.1080/15481603.2021.1908927
https://www.cgal.org
https://www.cgal.org

Bibliography 251

[211] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. ‘Elastic Translation

Invariant Matching of Trajectories’. In: Machine Learning 58 (2005), pp. 301–334.

issn: 0885-6125. doi: 10.1007/s10994-005-5830-9.

[212] Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. ‘Map Matching: Com-

parison of Approaches Using Sparse and Noisy Data’. In: Proceedings of the 21st
International Conference on Advances in Geographic Information Systems (SIGSPATIAL
2013). Ed. by Craig Knoblock, Peer Kröger, John Krumm, Markus Schneider, and

Peter Widmayer. New York, NY, USA: Association for Computing Machinery, 2013,

pp. 444–447. isbn: 978-1-4503-2521-9. doi: 10.1145/2525314.2525456.

[213] Zhenzhou Xu, Ge Cui, Ming Zhong, and Xin Wang. ‘Anomalous Urban Mobility

Pattern Detection Based on GPS Trajectories and POI Data’. In: ISPRS Interna-
tional Journal of Geo-Information 8.7, 308 (2019). issn: 2220-9964. doi: 10.3390/

ijgi8070308.

[214] Lin Yan, Yusu Wang, Elizabeth Munch, Ellen Gasparovic, and Bei Wang. ‘A

Structural Average of Labeled Merge Trees for Uncertainty Visualization’. In: IEEE
Transactions on Visualization and Computer Graphics 26.1 (2020), pp. 832–842. issn:

1077-2626. doi: 10.1109/TVCG.2019.2934242.

[215] Man Lung Yiu, Nikos Mamoulis, Xiangyuan Dai, Yufei Tao, and Michail Vaitis.

‘Efficient Evaluation of Probabilistic Advanced Spatial Queries on Existentially

Uncertain Data’. In: IEEE Transactions on Knowledge and Data Engineering 21.1 (2009),

pp. 108–122. issn: 1041-4347. doi: 10.1109/TKDE.2008.135.

[216] Jianbin Zheng, Xiaolei Gao, Enqi Zhan, and Zhangcan Huang. ‘Algorithm of

On-Line Handwriting Signature Verification Based on Discrete Fréchet Distance’.

In: Proceedings of the 3rd International Symposium on Intelligence Computation and
Applications (ISICA 2008). Ed. by Lishan Kang, Zhihua Cai, Xuesong Yan, and

Yong Liu. Lecture Notes in Computer Science 5370. Berlin, Germany: Springer,

2008, pp. 461–469. isbn: 978-3-540-92136-3. doi: 10.1007/978-3-540-92137-0_51.

[217] Yu Zheng and Xiaofang Zhou, eds. Computing with Spatial Trajectories. Berlin,

Germany: Springer, 2011. isbn: 978-1-4614-1628-9. doi: 10.1007/978-1-4614-

1629-6.

https://doi.org/10.1007/s10994-005-5830-9
https://doi.org/10.1145/2525314.2525456
https://doi.org/10.3390/ijgi8070308
https://doi.org/10.3390/ijgi8070308
https://doi.org/10.1109/TVCG.2019.2934242
https://doi.org/10.1109/TKDE.2008.135
https://doi.org/10.1007/978-3-540-92137-0_51
https://doi.org/10.1007/978-1-4614-1629-6
https://doi.org/10.1007/978-1-4614-1629-6

Summary

Algorithms for Imprecise Trajectories

Movement data is ubiquitous, and measurements made with even

inexpensive trackers can provide invaluable insight into behaviours of

pedestrians or drivers, but also wildlife and any other moving subjects.

Analysing movement data is thus of great societal importance. However,

measurements made by most trackers have an inherent imprecision that

may affect the results of analyses. Sparse measurements are another

major source of uncertainty, since we do not explicitly know the subject’s

location between measurements. In this thesis, we study the algorithmic

foundations of handling movement data under uncertainty. The goal is

to design efficient algorithms with provable guarantees on their running

time and correctness that transparently incorporate movement data

uncertainty. The focus of our work lies on trajectories with a specific

type of uncertainty: measurement imprecision.

In particular, we study similarity of imprecise trajectories under an

established distance metric called the Fréchet distance. Computing

similarity is a fundamental problem, applied as a building block in

many analysis tasks. We consider different variants of the problem,

depending on the desired way of modelling imprecision. We also show

results for the common variants of the Fréchet distance, namely, the

discrete Fréchet distance and the weak (discrete) Fréchet distance. These

variants capture slightly different notions of similarity than the Fréchet

distance. We study the problem for measured locations in one and

two dimensions. In all of these settings, we either indicate that the

problem is likely computationally difficult by showing NP-hardness; or

we provide efficient algorithms, generally using dynamic programming

and greedy approaches.

252

Summary 253

We also study the problem of simplifying an imprecise trajectory. For

precise trajectories, typically, we select a subsequence of measurements

so that the selection describes the full trajectory well in terms of some

similarity measure. In our work, the goal is to select a subsequence of

the imprecise locations so that for any true trajectory allowed by the

uncertainty model, the selection describes a valid simplification of the

true trajectory. We consider several ways to model imprecision and

show how to use both the Fréchet and the Hausdorff distance within

the method. In the settings we consider, we provide efficient algorithms

for the problem.

Taking a different view of imprecision, we study map matching,

where a measured trajectory is imprecise, but can be assumed to corres-

pond to a path on, say, a road network. In this setting, we show how

to preprocess a realistic road network so that given an arbitrary query

trajectory, we can efficiently find an approximate path on the network

that is closest to the query in terms of the Fréchet distance.

Finally, we consider the problem of visibility between sets of points or

line segments inside a polygon, showing how to preprocess the polygon

so that we can efficiently count how many fixed entities can be seen from

a query object. We consider several extensions, including to entities

modelled as polygons of constant complexity, and we show how to use

our data structure to efficiently count pairwise visibility between two

sets of entities. While not directly applicable for imprecise trajectories,

this work is a step towards studying visibility under imprecision.

Curriculum Vitae

Aleksandr Popov was born on 3 October 1995 in Saint Petersburg, Russia.

He completed his secondary education at Saint-Petersburg Gymnasium

Alma Mater, Russia in 2012. He then followed courses in Information

Security at National Research University ITMO in Saint Petersburg,

Russia until 2014. He studied Computer Science and Engineering at

Eindhoven University of Technology, obtaining his bachelor’s degree

(cum laude) in 2017 and his master’s degree (cum laude) in 2019. He

continued there as a PhD student; the main results of his research during

that time are presented in this thesis.

254

Algorithms for
Imprecise Trajectories

Aleksandr Popov

Algorithm
s for Im

precise Trajectories
Aleksandr Popov

You are cordially
invited to the public
defence of my thesis

Algorithms for
Imprecise

Trajectories

on Thursday,
12th October 2023

at 16:00 in
Atlas 0.710 at

Eindhoven University
of Technology

Aleksandr Popov

	Contents
	Acknowledgements
	Introduction
	Uncertainty
	Trajectory Analysis and Processing
	Trajectory Analysis Under Uncertainty
	Contributions

	Preliminaries
	Curves
	Uncertainty
	Fréchet Distance
	Uncertain Curves and Distances

	Similarity of Uncertain Curves in 2D
	Hardness Results
	Algorithms for Lower Bound Fréchet Distance
	Algorithms for Upper Bound and Expected Fréchet Distance
	Conclusions

	Similarity of Uncertain Curves in 1D
	Lower Bound Fréchet Distance: General Approach
	Lower Bound Fréchet Distance: One Dimension
	Upper Bound Fréchet Distance
	Weak Fréchet Distance
	Conclusions

	Uncertain Curve Simplification
	Overview of the Approach
	Shortcut Testing: Intermediate Points
	Shortcut Testing: All Points
	Combining Steps
	Conclusions

	Map-Matching Queries under Fréchet Distance on Low-Density Spanners
	Straight Path Queries
	Map-Matching Segment Queries
	General Map-Matching Queries
	Conclusions

	Segment Visibility Counting Queries in Polygons
	Preliminaries
	Point Queries
	Segment Queries
	Segment Query for a Set of Segments
	Extensions, Discussion, and Future Work

	Conclusions
	Discussion of Results
	Future Work

	Bibliography
	Summary
	Curriculum Vitae

