| St. Petersbu rq

Book of Abstracts

37th European Workshop
on Computational Geometry

April 7-9, 2021 in St. Petersburg, Russia

Preface

Originally, the 37th European Workshop on Computational Geometry (EuroCG 2021) was
scheduled to be held on April 7-9, 2021 at Saint Petersburg State University, Russia. EuroCG
is an annual workshop that combines a strong scientific tradition with a friendly and informal
atmosphere. Traditionally, the workshop is a forum where researchers can meet, discuss
their work, present their results, and establish scientific collaborations, in order to promote
research in the field of Computational Geometry, within Europe and beyond.

Due to the spread of the COVID-19, and due to the persistence of the pandemic and
travel restrictions, in December 2020 we took the decision to organize EuroCG 2021 as a
completely online event. To preserve the tradition of an informal gathering and to foster
spontaneous communication among the participants, we have selected Gather Town (https:
//gather.town) as a virtual conference venue. The space designed specifically for EuroCG
2021 contained two rooms for the two parallel sessions; the lecture hall for the introductory
meeting, business meeting and invited talks; and the main lobby, where additionally to
the socialisation, the participants could observe the posters announcing the main results of
the accepted papers and to continue discussions of the research during the coffee breaks.
Additionally we had set up several Discord channels for reporting technical problems and
for the discussion of the issues raised during to the business event. All talks were recorded
and made available to the registered participants in a private YouTube channel. The overall
online event went smoothly with only two talks being rescheduled due to technical problems.
Overall EuroCG 2021 had 262 registered participants, which is a double of the usual number.

We received 88 submissions, which underwent a limited refereeing process by the program
committee in order to ensure that acceptance policy is met. Finally 72 submissions were
selected for presentation at the workshop. The selected papers were split into 18 sessions
which were spread over three days of the workshop. Each paper was supported by a poster
that appeared at a poster stand in the main lobby for 20 minutes following the session in
which it was presented.

To encourage students to present their papers and to honour the outstanding presen-
tations, we announced a Best Student Presentation Award. The winners were decided by
voting among the workshop participants. In total, 77 votes were cast. The best presenta-
tion award was given to Soren Nickel (15 votes) for presenting the paper “Recognition of
Unit Disk Graphs for Caterpillars, Embedded Trees, and Outerplanar Graphs” authored by
Sujoy Bhore, Soren Nickel and Martin Nollenburg. The second place was given to Leonie
Ryvkin (13 votes) for presenting the paper “On the Realizability of Free Space Diagrams”
authored by Maike Buchin, Leonie Ryvkin and Carola Wenk. The third place was given
to Eva-Maria Hainzl (12 votes) for presenting the paper: “Geometric Dominating Sets — A
Minimum Version of the No-Three-In-Line Problem”; authored by Oswin Aichholzer, David
Eppstein and Eva-Maria Hainzl. Congratulations to the young scientists for their successful
efforts to clearly convey to the audience their scientific results!

In addition to the 72 contributed talks, this book contains abstracts of the invited lectures
and two tutorials. The invited speakers were Anna Lubiw, Jdnos Pach, Gaiane Panina. They
were watched online by between 118 and 186 people. The tutorials were given by Serguei
Barannikov and Manfred Scheucher and took place on Friday, as the last events of the
workshop.

During the business meeting, Emilio Di Giacomo and Fabrizio Montecchiani presented
Perugia, where EuroCG 2022 will take place during March 14-16. There was a single bid for
organizing EuroCG 2022 by Rodrigo Silveira, who together with Clemens Huemer, Carlos
Seara, and David Orden will organize EuroCG 2022 in Barcelona.

ii

EuroCG’'21

We gratefully thank all authors, speakers, invited speakers, program committee, external
reviewers, session chairs, local organizing team and participants for their contribution to
the success of this event. We gratefully thank Leonhard Euler International Mathematical
Institute in Saint Petersburg (EIMI), St. Petersburg Department of Steklov Mathematical
Institute of Russian Academy of Sciences (PDMI RAS), and St. Petersburg State University
(SPbU) for making this event possible and for helping us to make the participation in
EuroCG 2021 free of charge for all the participants. The workshop is financially supported
by a grant from the Government of the Russian Federation, agreements 075-15-2019-1619
and 075-15-2019-1620 and by a grant from Simons Foundation.

EuroCG does not have formally published proceedings; therefore, we expect most of the
results outlined here to be also submitted to peer-reviewed conferences and/or journals.
This book of abstracts, available through the EuroCG 2021 web site, should be regarded as
a collection of preprints.

We are hoping to see you in person in Perugia in April next year!

Saint Petersburg, April 20 Elena Arseneva
Tamara Mchedlidze
(EuroCG 2021 co-chairs)

Local Organisation Committee

Elena Arseneva (co-chair) Boris Zolotov
Tamara Mchedlidze (co-chair) Asya Gilmanova
Funded by:
% (L)
Leonfard Euler
nternational Nathematical Tnstifule St ,Peteeru rg
in Saint Felersburg X Universi ty

St. Petersburg Department
of Steklov Mathematical Institute
of Russian Academy of Sciences

il

Program Committee

Elena Arseneva (co-chair)
Gill Barequet

Maike Buchin

Pilar Cano

Erin Chambers
Jean-Lou De Carufel
Ruy Fabila-Monroy
Michael Hoffmann
Matthew Katz
Deok-Soo Kim

Linda Kleist

Grigorios Koumoutsos
Tamara Mchedlidze (co-chair)
Piotr Micek

Debajyoti Mondal
Wolfgang Mulzer
Martin Nollenburg
Evanthia Papadopoulou
Irene Parada

Hugo Parlier

Valentin Polishchuk
André Schulz

Hang Si

Rodrigo Silveira

Marc Van Kreveld
Birgit Vogtenhuber
Carola Wenk

André van Renssen

St. Petersburg University (SPbU)
Technion — Israel Institute of Technology
Ruhr Universitdt Bochum

Universite libre de Bruxelles

Saint Louis University

University of Ottawa

Departamento de Matematicas, Cinvestav
ETH Zurich

Ben-Gurion University

Hanyang University

TU Braunschweig

Universite libre de Bruxelles

Utrecht University

Jagiellonian University

University of Saskatchewan

Freie Universitit Berlin

Vienna University of Technology
University of Lugano (USI)

TU Eindhoven

University of Luxembourg

Linkoping University

FernUniversitiat in Hagen

Weierstrass Institute for Applied Analysis and Stochastics
Universitat Politecnica de Catalunya
Utrecht University

Graz University of Technology

Tulane University

The University of Sydney

iv

EuroCG’'21

Table of Contents

Keeping your Distance: Algorithms and Hardness (Invited Talk) i, [Al
Anna Lubiw

Crossing Lemmas for Multigraphs (Invited Talk)o Bl
Jdnos Pach

An universality theorem for stressable graphs in the plane (Invited Talk)............... ...t
Gaiane Panina

Canonical Forms = Persistence Diagrams (Tutorial)........ ..o, D
Serguei Barannikov

Using SAT Solvers in Combinatorics, Combinatorial Geometry, and Graph Drawing (Tutorial) [E
Manfred Scheucher

Many Order Types on Integer Grids of Polynomial Size o ... m
Manfred Scheucher

Tight bounds on the expected number of holes in random point sets
Martin Balko, Manfred Scheucher and Pavel Valtr

Obstructing Classification via Projectiono, B

Pantea Haghighatkhah, Wouter Meulemans, Bettina Speckmann, Jérome Urhausen and Kevin
Verbeek

Route Reconstruction from Traffic Flow via Representative Trajectories 21
Bram Custers, Wouter Meulemans, Bettina Speckmann and Kevin Verbeek

Route-preserving Road Network Generalization
Mees van de Kerkhof, Marc Van Kreveld, Irina Kostitsyna, Maarten Liffler and Tim Ophelders

Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better 6]

Paz Carmi and Idan Tomer

Lions and contamination, triangular grids, and Cheeger constants @
Henry Adams, Leah Gibson and Jack Pfaffinger

A Geometric Approach to Inelastic CollapSeuiiniii e e e 8
Bernard Chazelle, Kritkorn Karntikoon and Yufei Zheng

Max-Min 3-dispersion on a Convex Polygon O

Yasuaki Kobayashi, Shin-Ichi Nakano, Kei Uchizawa, Takeaki Uno, Yutaro Yamaguchi and
Katsuhisa Yamanaka

The maximal number of 3-term arithmetic progressions in finite sets in different geometries (Il
Itai Benjamini and Shoni Gilboa

Notes On PIVOL PAITIIES - . ..t n ettt ettt e et et et e e et e e e 11
Barbara Giunti

Improved Bounds for Half-Guarding Monotone Polygons o it 12
Hannah Miller Hillberg, Erik Krohn and Alex Pahlow

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance I3

Tvor van der Hoog, Mees van de Kerkhof, Marc Van Kreveld, Maarten Léffler, Frank Staals,
Jérome Urhausen and Jordi L. Vermeulen

A Dynamic Data Structure for k-Nearest Neighbors Queriesoiiiiiiiiiiiiinin . 14
Sarita de Berg and Frank Staals

Tukey Depth HISEOGTAIISttt et e
Daniel Bertschinger, Jonas Passweg and Patrick Schnider

Enclosing Depth and other Depth Measuresoouiiiiii e [16]
Patrick Schnider

Geometric Dominating Sets - A Minimum Version of the No-Three-In-Line Problem I
Oswin Aichholzer, David Eppstein and Eva-Maria Hainzl

Polyline Bundle Simplification on Treesouoiniinii e I
Yannick Bosch, Peter Schéfer and Sabine Storandt

Folding Polyiamonds into Octahedra i i I
Fva Vanessa Bolle and Linda Kleist

Computing Optimal Virtual Camera Trajectoriesot 20
Kerem Geva, Matthew Katz and Eli Packer

Polygon-Universal Graphis e 211
Tim Ophelders, Ignaz Rutter, Bettina Speckmann and Kevin Verbeek

Rectilinear Steiner Trees in Narrow Strips e
Henk Alkema and Mark de Berg

A density-based metric learning approach to geometric inference L 23
Ximena Fernandez, Fugenio Borghini, Pablo Groisman and Gabriel Mindlin

Bicolored Path Embedding Problems in Protein Folding Models, 24]
Tianfeng Feng, Ryuhei Uehara and Giovanni Viglietta

On Voronoi diagrams of 1.5D terrains with multiple viewpoints,
Vahideh Keikha and Maria Saumell

Upward Planar Drawings with Three Slopes i e 20)
Jonathan Klawitter and Johannes Zink

Decomposing Polygons into Fat Componentso i
Maike Buchin and Leonie Selbach

StreamTable: An Area Proportional Visualization for Tables with Flowing Streams 28]
Jared Espenant and Debajyoti Mondal

An example of a randomized order-dependent time analysis in incremental construction 29
Evanthia Papadopoulou and Kolja Junginger

A Tail Estimate with Exponential Decay for the Randomized Incremental Construction of Search
I 150 U1 < PP 30

Joachim Gudmundsson and Martin P. Seybold
Shortest Paths in Portalgons 31
Maarten Léffler, Rodrigo Silveira and Frank Staals

Coordinating Programmable Matter via Shortest Path Trees it 32]
Irina Kostitsyna, Tom Peters and Bettina Speckmann

LONE PlANE TTEES . ..ottt ettt ettt e e e e B3
Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer and Josef Tkadlec

Terrain prickliness: theoretical grounds for low complexity viewsheds 34
Ankush Acharyya, Ramesh Jallu, Maarten Liffler, Gert Meijer, Maria Saumell, Rodrigo
Silveira, Frank Staals and Hans Raj Tiwary

Tight Degree Bounds for Path-Greedy 5.19-Spanner on Convex Point Sets
William Evans and Lucca Siaudzionis

Crossing Numbers of Beyond-Planar Graphs Revisited i .. 36]
Nathan van Beusekom, Irene Parada and Bettina Speckmann

vi

Reducing Moser’s Square Packing Problem to a Bounded Number of Squares 37
Meike Neuwohner

On 4-Crossing-Families in Point Sets and an Asymptotic Upper Bound 38]
Oswin Aichholzer, Jan Kyncl, Manfred Scheucher and Birgit Vogtenhuber

Collapses of higher order Delaunay complexesiiiiiiiiiiii e, 39
Mickaél Buchet, Bianca B. Dornelas and Michael Kerber

Nearest-Neighbor Decompositions of Drawingscooiiiiiii ... 510]
Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Léffler, Wolfgang Mulzer and Daniel Perz

Hardness of Recognition and 3-Coloring of L-graphs ..., 551
Petr Chmel and Vit Jelinek

Coloring Circle Arrangements: New 4-Chromatic Planar Graphs [42]
Man Kwun Chiu, Stefan Felsner, Manfred Scheucher, Felix Schrioder, Raphael Steiner and
Birgit Vogtenhuber

Minimum-Error Triangulation is NP-hard i e 43
Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Petra Mutzel and
Heiko Réglin

On the Queue-Number of Partial Orderso oot 44
Stefan Felsner, Torsten Ueckerdt and Kaja Wille

Uncertainty-Region Lower Bounds for the Preprocessing Model of Uncertainty 45
Tvor van der Hoog, Irina Kostitsyna, Maarten Léffler and Bettina Speckmann

Approximating Independent Set and Dominating Set on VPG graphs [406]
Esther Galby and Andrea Munaro

Covering a Curve with Subtrajectories @
Hugo Akitaya, Frederik Briining, Erin Chambers and Anne Driemel

Radial Level Planarity with Fixed Embedding it 4]
Guido Briickner and Ignaz Rutter

Row-based Rectangle Contact Representations of Triangular Grid Graphs 58]
Martin Nollenburg, Anais Villedieu and Jules Wulms

Recognition of Unit Disk Graphs for Caterpillars, Trees, and Outerplanar Graphs B0
Sujoy Bhore, Soeren Nickel and Martin Néllenburg

On the Realizability of Free Space Diagramsco.oiiiiiiiiiii i, 531
Maike Buchin, Leonie Ryvkin and Carola Wenk

Accelerating Amoebots via Reconfigurable Circuits,
Michael Feldmann, Andreas Padalkin, Christian Scheideler and Shlomi Dolev

Coloring Drawings Of Graphis e e B3l

Christoph Hertrich, Feliz Schréder and Raphael Steiner

Local Complexity of POLyGONS e B4
Fabian Klute, Meghana M. Reddy and Tillmann Miltzow

Minimum Link Fencingooo i e 5%
Sujoy Bhore, Fabian Klute, Maarten Léffler, Soeren Nickel, Martin Néllenburg and Anais
Villedieu

Characterizing Universal Reconfigurability of Modular Pivoting Robots 0]
Hugo Akitaya, Erik D. Demaine, Andrei Goncezi, Dylan Hendrickson, Adam Hesterberg, Matias
Korman, Oliver Korten, Jayson Lynch, Irene Parada and Vera Sacristin

vii

Rectangular Spiral Galaxies are Still Hard
Erik D. Demaine, Maarten Léffler and Christiane Schmidt

Deletion only Dynamic Connectivity for Disk Graphs,
Haim Kaplan, Katharina Klost, Kristin Knorr, Wolfgang Mulzer and Liam Roditty

Maximum-Width Rainbow-Bisecting Empty Annuluso i i
Sandip Banerjee, Arpita Baral and Priya Ranjan Sinha Mahapatra

Axis-Aligned Square Contact Representations i
Andrew Nathenson

The Voronoi Diagram of Rotating Rays with applications to Floodlight lllumination
Carlos Alegria, Ioannis Mantas, Fvanthia Papadopoulou, Marko Savi¢, Hendrik
Schrezenmaier, Martin Suderland and Carlos Seara

The Fréchet Distance for Plane Graphs i e
Pan Fang and Carola Wenk

Sampling Hyperplanes and Revealing Disks i
Haim Kaplan, Alexander Kauer, Wolfgang Mulzer and Liam Roditty

On Minimum-Complexity Graph Simplification i i,
Omrit Filtser, Majid Mirzanezhad and Carola Wenk

On the Geometric Red-Blue Hitting Set Problem i
Raghunath Reddy Madireddy and Supantha Pandit

Intersecting Disks using Two Congruent Diskso i
Byeonguk Kang, Jongmin Choi and Hee-Kap Ahn

Online Ply Maintenancettt e e e
Vikrant Ashvinkumar, Patrick Fades, Maarten Liffler and Seeun William Umboh

Hypergraph Represention via Axis-Aligned Point-Subspace Cover,
Oksana Firman and Joachim Spoerhase

Minimizing the Maximum Interference in Dual Power Sensor Networks
Aviad Baron

Outerstring graphs of girth at least five are3-colorable i,
Sandip Das, Joydeep Mukherjee and Uma Kant Sahoo

Disjoint Box Covering in a Rectilinear Polygon i
Sujoy Bhore, Guangping Li, Martin Néllenburg and Jules Wulms

Uncertain Curve Simplification
Kevin Buchin, Maarten Liffler, Aleksandr Popov and Marcel Roeloffzen

viii

04

02

06|

Keeping your Distance: Algorithms and Hardness
(Invited Talk)

Anna Lubiw!

1 David R. Cheriton School of Computer Science, University of Waterloo

Abstract

Suppose each of us is given a region of the plane and must choose a position in that region,
and our sad goal is to be as far from each other as possible. This is known as the distant
representatives problem, and is related to packing problems. I will describe approximation
algorithms and hardness results for the problem, including some new results on distant
representatives when the regions are axis-aligned rectangles and line segments.

Biography

Anna Lubiw is a professor at the University of Waterloo in Canada, working in computational
geometry and graph algorithms. She has co-chaired SoCG, Graph Drawing, and WADS, and
is on the editorial boards of the Journal of Computational Geometry and the Journal of
Graph Algorithms and Applications. She received her PhD in 1986 from the University of
Toronto.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

Crossing Lemmas for Multigraphs (Invited Talk)

Janos Pach?

1 Rényi Institute, Budapest and MIPT, Moscow

Abstract

According to the crossing lemma of Ajtai, Chvéital, Newborn, Szemerédi and Leighton (1981),
the crossing number of any graph with n vertices and m > 4n edges is at least ¢ - ’S—; This
result, which is tight up to the constant factor, has been successfully applied to a variety
of problems in discrete and computational geometry, additive number theory, algebra, and
elsewhere. In some applications, it is the bottleneck that one needs a lower bound on the
crossing number of a multigraph rather than a graph. The aim of this talk is to review a
number of recent attempts on how to deal with this challenge.

Biography

Janos Pach is Research Adviser at Rényi Institute, Budapest and Head of the Laboratory of
Combinatorial and Geometric Structures at MIPT, Moscow. His main fields of interest are
discrete and computational geometry, convexity, and combinatorics. He wrote more than
300 research papers. His books, “Research Problems in Discrete Geometry” (with Brass
and Moser) and “Combinatorial Geometry” (with Agarwal) were translated into Japanese,
Russian, and Chinese. He is co-editor-in-chief of Discrete & Computational Geometry and
serves on the editorial boards of ten other professional journals. He was elected ACM Fellow
(2011), member of Academia Europeae (2014), and AMS Fellow (2015). He was invited
speaker at the International Congress of Mathematicians in Seoul (2014), and is Plenary
Speaker at the European Congress of Mathematics in Portoroz (2021).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

An universality theorem for stressable graphs in the
plane (Invited Talk)

Gaiane Paninal

1 St. Petersburg Department of V. A. Steklov Institute of Mathematics RAS, St.
Petersburg University

Abstract

Universality theorems (in the sense of N. Mnév) claim that the realization space of a
combinatorial object (a point configuration, a hyperplane arrangement, a convex polytope,
etc.) can be arbitrarily complicated. We prove a universality theorem for a graph in the
plane with a prescribed oriented matroid of stresses, that is the collection of signs of all
possible equilibrium stresses of the graph. This research is motivated by the Grassmanian
stratification (Gelfand, Goresky, MacPherson, Serganova) by thin Schubert cells, and by
a recent series of papers on stratifications of configuration spaces of tensegrities (Doray,
Karpenkov, Schepers, Servatius).

Biography

Gaiane Panina graduated from Leningrad State University in 1984, completed her PhD
at St. Petersburg Department of V.A. Steklov Mathematical Institute. Her habilitation
thesis (2007) is entitled “Virtual polytopes”. Chronologically, her research interests are:
convexity, polytopes, virtual polytopes, combinatorial rigidity, configuration spaces, Morse
theory, discrete Morse theory, combinatorial models of moduli spaces, combinatorial geometry,
universality. At present she runs special courses at the Mathematics and Computer Science
faculty of St. Petersburg State University.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

Canonical Forms = Persistence Diagrams
(Tutorial)

Serguei Barannikov!

1 Skoltech, Paris Diderot University

Abstract

The tutorial is devoted to the following theorem: any filtered complex over a field k
can be brought by a linear transformation preserving the filtration to canonical form, a
canonically defined direct sum of indecomposable filtered complexes of two types: one-
dimensional complexes with trivial differential d(e;,) = 0 and two-dimensional complexes
with trivial homology O(es;) = er,. The proof of this theorem was first published in the
speaker’s 1994 paper “Framed Morse complex and its invariants”, AMS, Advances in Soviet
Mathematics, volume 21, pages 93-115 (1994). This classification theorem is usually referred
to in applied mathematics as the Persistent Homology Main (or Structure, or Principal)
Theorem. The proof is elementary and uses only the basics of a standard linear algebra
engineering course. The algorithms of more than 10 different software platforms, that exist
actually for computation of persistence diagrams, have at their cores the described in the
mentioned 1994 paper algorithm bringing filtered complexes to the canonical form.

Biography

Serguei Barannikov received his PhD in Mathematics from the University of California,
Berkeley (1999). After completion of his PhD Serguei Barannikov has worked for ten years
at Ecole Normale Supérieure in Paris. Serguei Barannikov is a leading research scientist at
Skolkovo Institute of Science and Technology, and also works as a researcher in mathematics
at Paris Diderot University.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

Using SAT Solvers in Combinatorics, Combinatorial
Geometry, and Graph Drawing (Tutorial)

Manfred Scheucher?!

1 Skoltech, Paris Diderot University

Abstract

In this tutorial, we discuss how modern SAT solvers can be used to tackle mathematical
problems from various areas, in particular, Combinatorics, Combinatorial Geometry, and
Graph Drawing. To give the audience a better understanding, which problems can be tackled
in this fashion, we will discuss some problems where we succeeded with our SAT attacks.

The focus will not be on the discussed problems themselves, but on the techniques that
we had to use to finally come to a solution and the underlying ideas. For example, while the
naive SAT formulation might already lead to an answer for some questions, it might also be
way to big for nowadays computers and one has to come up with an equivalent formulation
or deal with necessary/sufficient conditions instead. Also further ideas might be required so
that the SAT instances finally become solvable in reasonable time (e.g. additional constraints
for statements which hold “without loss of generality”). In particular, for our SAT attack
on universal point sets for planar graphs we had to combine four sophisticated tools which
have proven to be powerful on their own in the past: complete enumeration of order types,
complete enumeration of (planar) graphs, SAT solvers, and IP solvers.

We can certainly not adress all details in this tutorial, but we look forward to showing
the audience how to adress (their) problems in Combinatorics, Combinatorial Geometry, and
Graph Drawing via SAT models and solvers.

Literature:

1. K. Daubel, S. Jager, T. Miitze, and M. Scheucher. On orthogonal symmetric chain
decompositions. In Electronic Journal of Combinatorics 26(3), 2019. [aryiv:1810.09847]
2. T. Miitze and M. Scheucher. On L-shaped Point Set Embeddings of Trees: First Non-

embeddable Examples. In Journal of Graph Algorithms and Applications 24(3), 2020.

[arxiv:1807.11043]

3. M. Scheucher. On Disjoint Holes in Point Sets. In Computational Geometry: Theory
and Applications 91, 2020. [aryiv:1807.10848]

4. M. Scheucher. A SAT attack on higher dimensional Erdds—Szekeres numbers. In prepara-
tion, 2021+.

5. M. Scheucher, H. Schrezenmaier, and R. Steiner. A Note On Universal Point Sets

for Planar Graphs. In Journal of Graph Algorithms and Applications 24(3), 2020.

[arxiv:1811.06482]

Biography

Manfred Scheucher did his Master’s at Graz University of Technology, Austria, supervised by
Prof. Oswin Aichholzer, and his PhD at Technische Universitit Berlin, Germany, supervised
with Prof. Stefan Felsner.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

Many Order Types on Integer Grids of
Polynomial Size*

Manfred Scheucher!-?

1 Institut fiir Mathematik,
Technische Universitidt Berlin, Germany,
{scheucher}@math.tu-berlin.de

2 Fakultéit fiir Mathematik und Informatik,
FernUniversitiat in Hagen, Germany

—— Abstract

Two labeled point configurations {p1,...,pn} and {q1,...,gn} are of the same order type if, for
every i, j, k, the triples (ps:, p;j, px) and (gi, gj, qx) have the same orientation. In the 1980’s, Goodman,
Pollack and Sturmfels showed that (i) the number of order types on n points is of order grtoln)
(ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain
order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Diaz-Béiez,

3nto(n) order types can

Fabila-Monroy, Hidalgo-Toscano, Leafios, Montejano showed that at least n
be realized on an integer grid of polynomial size. In this article, we improve their result by showing
that at least n*™1°(™ order types can be realized on an integer grid of polynomial size, which is

essentially best possible.

1 Introduction

A set of n labeled points {p1,...,p,} in the plane with p; = (x;,y;) induces a chirotope,
that is, a mapping x: [n]®> — {+,0, —} which assigns an orientation x(a, b, c) to each triple
of points (pg, Py, pe) With

1 1 1
x(a,b,c) =sgndet | z, = .
Ya Yo Ye

Geometrically this means x(a, b,) is positive (negative) if the point p.. lies to the left (right)
of the directed line m through p, directed towards p,. Figure 1 gives an illustration.
We say that two point sets are equivalent if they induce the same chirotope and call the
equivalence classes order types. An order type in which three or more points lie on a common
line is called degenerate.

Goodman and Pollack [14] (cf. [19, Section 6.2]) showed the number of order types on n
points is of order exp(4nlogn 4+ O(n)) = n***t°(™ . While the lower bound follows from a
simple recursive construction of non-degenerate order types, the proof of the upper bound
uses the Milnor-Thom theorem [20, 23] (cf. [22, 25]) - a powerful tool from real algebraic
geometry. The precise number of non-degenerate order types has been determined for up to
11 points by Aichholzer, Aurenhammer, and Krasser [1, 2] (cf. [18]). For their investigations,
they used computer-assistance to enumerate all “abstract” order types and heuristics to
either find a point set representation or to decide non-realizability. Similar approaches have

* The author acknowledges support by the internal research funding “Post-Doc-Funding” from Technische
Universitat Berlin.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

1:2 Many Order Types on Integer Grids of Polynomial Size

Pe

A
Pa

—

Pde

Figure 1 A chirotope with x(a,b,c) = + and x(a,b,d) = —.

been taken by Fukuda, Miyata, and Moriyama [13] (cf. [12]) to investigate order types with
degeneracies for up to 8 points. It is interesting to note that deciding realizability is an
ETR-hard problem [21] and, since there are exp(©(n?)) abstract order types (cf. [8] and
[11]), most of them are non-realizable. For more details, we refer the interested reader to
the handbook article by Felsner and Goodman [10].

Griinbaum and Perles [16, pp. 93-94] (cf. [4, pp. 355]) showed that there exist degenerate
order types that are only realizable with irrational coordinates. Since we are mainly inter-
ested in order type representations with integer coordinates in this article, we will restrict
our attention in the following to the non-degenerate setting.

Goodman, Pollack, and Sturmfels [15] showed that all non-degenerate order types can
be realized with double-exponential integer coordinates and that certain order types in-
deed require double-exponential integer coordinates. Moreover, from their construction
one can also conclude that n**t°(™ order types on n points require integer coordinates
of almost double-exponential size as outlined: For a slowly growing function f : N — R
with f(n) — oo as m — oo and m = [n/f(n)] < n, we can combine each of the
(n— m)4(”_m)+°("_m) = 7 to(n) order types of n — m points with the m-point construc-
tion from [15], which requires integer coordinates of size exp(exp(£2(m))). Another infinite
family that requires integer coordinates of super-polynomial size are the so-called Horton
sets [3] (cf. [17]), which play a central role in the study of Erd8s—Szekeres—type problems.

In 2018, Caraballo et al. [5] (cf. [6]) showed that at least n®"+°(") non-degenerate order
types can be realized on an integer grid of size ©(n?®) x ©(n?®). In this article, we follow
a similar approach as in [5] and improve their result by showing that n* o) order types
can be realized on a grid of size ©(n*) x ©(n?).

» Theorem 1. The number of non-degenerate order types which can be realized on an integer
grid of size (3n*) x (3n*) is of order n*"to()

An important consequence of Theorem 1 is that a significant proportion of all n-point order
types can be stored as point sets with ©(logn) bits per point. While the exponent in our
nA"to() bound is essentially best possible up to a lower-order error term, the question for
the smallest constant ¢ remains open for which n*"*+°(™ order types can be realized on a
grid of size ©(n°) x O(n°).

Related Work

Besides the deterministic setting, also integer grid representations of "random" order types
have been intensively studied in the last years. Fabila-Monroy and Huemer [9] and Devillers
et al. [7] (cf. [24]) independently showed that, when a set {pi,...,pn} of real-valued points
with p; = (z;, ;) are chosen uniformly and independently from the square [0, n3+€] x [0, n37¢],
then the set {p],...,p),} with rounded (integer-valued) coordinates p; = ([z;], [y:]) is of the
same order type as the original set with high probability.

M. Scheucher 1:3

2 Proof of Theorem 1

Let n be a sufficiently large positive integer. It follows from Bertrand’s postulate that we
can find a prime number p satisfying m <p< m. As an auxiliary point set, we let

Qp =A{(z,y) € {1,...,p}*: y=2> mod p}.

The point set), contains p points from the p x p integer grid, and each two points have
distinct z-coordinates. Moreover, @), is non-degenerate because, by the Vandermonde de-
terminant, we have

1 1 1
det{ a b c|=0-a)c—a)(c—b)#0 mod p,
a? b

and hence x(a,b,c) # 0 for any pairwise distinct a,b,¢ € {1,...,p}. In the following, we
denote by R(Q,) = {(y,2): (z,y) € Qp} the reflection of @, with respect to the line z = y.

Let a = 2n and m = « - (2n? + n3). For sufficiently large n, we have 2n? + n3 < 2n3
and m + 2p < 3n*. Our goal is to construct 4"+°(") different n-point order types on the
integer grid

G={-p,....m+p} x{-p,...,m+p}
We start with placing four scaled and translated copies of @, which we denote by D, U, L, R,
as follows:

To obtain D, we scale @, in z-direction by a factor an|logn| and translate by (an?, —p).

All points from D have z-coordinates between an? and 2an? and y-coordinates between

—p and 0;

To obtain U, we scale @, in z-direction by a factor an|logn| and translate by (an?,m).

All points from U have z-coordinates between an? and 2an? and y-coordinates between

m and m + p;

To obtain L, we scale R(Q,) in y-direction by a factor an|logn]| and translate by

2

(—p, an?). All points from L have y-coordinates between an? and 2an? and z-coordinates
between —p and 0;
To obtain R, we scale R(Q,) in y-direction by a factor an|logn]| and translate by
(m,an?). All points from R have y-coordinates between an? and 2an? and z-coordinates
between m and m + p.
Each pair of points (I,7) € Lx R spans an almost-horizontal line-segment with absolute slope
less than % Similarly, each pair of points from D x U spans an almost-vertical line-segment
with absolute reciprocal slope less than % As depicted in Figure 2, these line-segments
bound (p? — p)? almost-square regions. Later, we will distribute the remaining n — 4p points
among these almost-square regions in all possible way to obtain many different order types.

For every pair of distinct points dy,ds from D, the z-distance between them is at least
an|logn| and their y-distance is less than p. Hence, the absolute value of the slope of the

line dyds is less than Moreover, since d; and dy have non-positive y-coordinates

and all points of G are at z-distance at most m from d; and ds, the line dids can only
pass through points of G with y-coordinate less than % < an?. (Recall that m =
a-(2n? +n3) < 2an® and p < @) We conclude that every point from U U L U R or
from the almost-square regions lies strictly above the line d;dy. Similar arguments apply to
lines spanned by pairs of points from U, L, and R, respectively. Note that, in particular,
our construction has the property that for any point ¢ from an almost-square region, the

point set DUU U LU RU {q} is non-degenerate.

EuroCG’'21

1:4 Many Order Types on Integer Grids of Polynomial Size

NN

o

DR
A

()TI'i

(HI,2

R

an|logn|
- >4 > 4+ >

(}712 (HL2 (UL'S

Figure 2 An illustration of the construction. The four copies D,U, L, R of @), are highlighted
gray and the (p2 — p)2 almost-square regions are highlighted green.

Almost-square regions

Consider an almost-square region A with top-left vertex a, bottom-left vertex b, top-right
vertex ¢, and bottom-right vertex d, as depicted in Figure 3. By our construction, the two
almost-horizontal line-segments ¢1, ¢ bounding A meet in a common end-point [€ L. Let
r1,72 € R denote the other end-points of ¢; and ¢35, respectively, which have y-distance
an|logn].

The point [has xz-coordinate between —p and 0, and the z-coordinates of the two points
r1 and 7y are between m and m + p. Since we have chosen m = - (2n? 4+ n?) and assumed
n to be sufficiently large, the az-distance between the points [and r; (for i = 1,2) is between
an® and 2an®. The point a lies on ¢1, b lies on ¢5, and the z-coordinates of both, a and b,
are between an? and 2an?. Hence, we can bound the y-distance § between a and b by

1 an? a2n?
Eatlognj = anl|logn] - o <é < an|logn] - e 2a|logn].

Moreover, since a and b lie on an almost-vertical line (i.e., absolute reciprocal slope less than

2a|logn |
n

%), the z-distance between a and b is less than . An analogous argument applies to

the pairs (a, ¢), (b,d), and (¢, d), and hence we can conclude that the almost-square region A

M. Scheucher 1:5

an|logn|

« 7[2 an (e} I’l,:

Figure 3 An almost-square region.

contains at least
4a|logn |
n

(3alosn) -) = L alogny?

points from the integer grid G, provided that n is sufficiently large.

Placing the remaining points

We have already placed p points in each of the four sets D, U, L, R. For each of the remaining
n — 4p points, we can iteratively choose one of the (p? — p)? almost-square regions and place
it, unless our point set becomes degenerate. To deal with these degeneracy-issue, we denote
an almost-square region A alive if there is at least one point from A which we can add to
our current point configuration while preserving non-degeneracy. Otherwise we call A dead.

Having k points placed (4p < k < n —1), these k points determine (g) lines which might
kill points from our integer grid and some almost-square regions become dead. That is, if we
add another point that lies on one of these (g) lines to our point configuration, we clearly
have a degenerate order type.

To obtain a lower bound on the number of alive almost-square regions, note that all
almost-square regions lie in an (an?) x (an?) square and that each of the (g) lines kills
at most an? grid points from almost-square regions. Moreover, since each almost-square
region contains at least 1 (o|log n])? grid points, we conclude that the number of alive
almost-square regions is at least

- () (aﬁngnp > (LlognJ)4

for sufficiently large n, since m <p< @ and o = 2n.

EuroCG’'21

1:6 Many Order Types on Integer Grids of Polynomial Size

If we now place each of the remaining n — 4p points in an almost-square region which is
alive (one by one), we have at least

1 4\ n—4p
(- — pin-O(n*GE")
17 \ |logn]

possibilities for doing so. Each of these possibilities clearly gives us a different order type

because, when we move a point ¢ from one almost-square region into another, this point ¢
moves over a line spanned by a pair (I,7) € Lx R or (d,u) € D x U, and this affects x (I, r, q)
or x(d,u, q), respectively. This completes the proof of Theorem 1.

—— References

1 O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for small point
sets with applications. Order, 19(3):265-281, 2002.

2 O. Aichholzer and H. Krasser. Abstract order type extension and new results on the
rectilinear crossing number. Computational Geometry: Theory and Applications, 36(1):2—
15, 2006.

3 L. Barba, F. Duque, R. Fabila-Monroy, and C. Hidalgo-Toscano. Drawing the Horton set
in an integer grid of minimum size. Computational Geometry, 63:10-19, 2017.

4 A. Bjorner, M. Las Vergnas, N. White, B. Sturmfels, and G. M. Ziegler. Oriented Matroids,
volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2 edition, 1999.

5 L. E. Caraballo, J.-M. Diaz-Banez, R. Fabila-Monroy, C. Hidalgo-Toscano, J. Leanos,
and A. Montejano. On the number of order types in integer grids of small size, 2018.
arXiv:1811.02455.

6 L. E. Caraballo, J.-M. Diaz-Bafnez, R. Fabila-Monroy, C. Hidalgo-Toscano, J. Leanos, and
A. Montejano. On the number of order types in integer grids of small size. Computational
Geometry, 95:101730, 2021.

7 O. Devillers, P. Duchon, M. Glisse, and X. Goaoc. On order types of random point sets,
2018. arXiv:1812.08525.

8 A. Dumitrescu and R. Mandal. New lower bounds for the number of pseudoline arrange-
ments. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA’19, pages 410-425. SIAM, 2019.

9 R. Fabila-Monroy and C. Huemer. Order types of random point sets can be realized with
small integer coordinates, pages 73-76. 2017.

10 S. Felsner and J. E. Goodman. Pseudoline Arrangements. In Toth, O’Rourke, and Good-
man, editors, Handbook of Discrete and Computational Geometry. CRC Press, third edition,
2018.

11 S. Felsner and P. Valtr. Coding and counting arrangements of pseudolines. Discrete &
Computational Geometry, 46(3), 2011.

12 L. Finschi and K. Fukuda. Generation of oriented matroids—a graph theoretical approach.
Discrete & Computational Geometry, 27(1):117-136, 2002.

13 K. Fukuda, H. Miyata, and S. Moriyama. Complete enumeration of small realizable oriented
matroids. Discrete & Computational Geometry, 49(2):359-381, 2013.

14 J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM Journal on Computing,
12(3):484-507, 1983.

15 J. E. Goodman, R. Pollack, and B. Sturmfels. Coordinate representation of order types
requires exponential storage. In Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing (STOC ’89), pages 405-410. Association for Computing Machinery,
1989.

M
16
17
18
19
20

21

22

23

24

25

. Scheucher 1:7

B. Griinbaum. Convex Polytopes. Springer, 2003.

J. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26:482—-484,
1983.

D. E. Knuth. Azioms and Hulls, volume 606 of LNCS. Springer, 1992.

J. Matousek. Lectures on Discrete Geometry. Springer, 2002.

J. Milnor. On the Betti numbers of real varieties. Proceedings of the AMS, 15:275-280,
1964.

N. E. Mnév. The universality theorems on the classification problem of configuration
varieties and convex polytopes varieties. In O. Y. Viro and A. M. Vershik, editors, Topology
and Geometry — Rohlin Seminar, volume 1346 of LNM, pages 527-543. Springer, 1988.

I. G. Petrovskii and O. A. Oleinik. On the topology of real algebraic surfaces. Izvestiya
Akad. Nauk SSSR. Ser. Mat., 13:389-402, 1949. In Russian.

R. Thom. Sur L’Homologie des Variétés Algébriques Réelles, pages 255-265. Princeton
University Press, 1965.

I. van der Hoog, T. Miltzow, and M. van Schaik. Smoothed analysis of order types, 2019.
arXiv:1907.04645.

H. Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the
AMS, 133:167-178, 1968.

EuroCG’'21

Tight bounds on the expected number of holes in
random point sets”

Martin Balko!, Manfred Scheucher?3, and Pavel Valtr!

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Czech Republic
{balko}@kam.mff.cuni.cz
2 Institut fiir Mathematik,
Technische Universitiat Berlin, Germany
{scheucher}@math.tu-berlin.de
3 Fakultat fir Mathematik und Informatik,
FernUniversitiat in Hagen, Germany

—— Abstract

For integers d > 2 and k > d + 1, a k-hole in a set S of points in general position in R? is a k-tuple
of points from S in convex position such that the interior of their convex hull does not contain any
point from S. For a convex body K C R? of unit d-dimensional volume, we study the expected
number Eka (n) of k-holes in a set of n points drawn uniformly and independently at random
from K.

We prove an asymptotically tight lower bound on Eka (n) by showing that, for all fixed
integers d > 2 and k > d + 1, the number EH[(n) is at least Q(n?). For some small holes, we
even determine the leading constant lim, . n*EH fk(n) exactly. We improve the currently best
known lower bound on lim, e n~*EH 4, (n) by Reitzner and Temesvari (2019) and we show that
our new bound is tight for d < 3. In the plane, we show that the constant lim, . niZEka (n)
is independent of K for every fixed k > 3 and we compute it exactly for k = 4, improving earlier
estimates by Fabila-Monroy, Huemer, and Mitsche (2015) and by the authors (2020).

1 Introduction

For a positive integer d, let S be a set of points from R¢ in general position. That is, no
d + 1 points from S lie on a k-dimensional affine subspace of R?. Throughout the paper we
only consider point sets that are finite and in general position.

A point set P is in convez position if no point from P is contained in the convex hull of
the remaining points from P. A k-hole H in S is a set of k points from .S in convex position
such that the convex hull conv(H) of H does not contain any point of S in its interior.

The study of k-holes in point sets was initiated by Erdés [7], who asked whether, for each
k € N, every sufficiently large point set in the plane contains a k-hole. This was known to be

* M. Balko was supported by the grant no. 18-19158S of the Czech Science Foundation (GACR), by
the Center for Foundations of Modern Computer Science (Charles University project UNCE/SCI/004),
and by the PRIMUS/17/SCI/3 project of Charles University. This article is part of a project that
has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 810115). M. Scheucher was partially
supported by DFG Grant FE 340/12-1 and by the internal research funding “Post-Doc-Funding” from
Technische Universitdt Berlin. We also gratefully acknowledge support from the internal research
program IFFP 20162020 by the FernUniversidt in Hagen. P. Valtr was supported by the grant no. 18-
19158S of the Czech Science Foundation (GACR) and by the PRIMUS/17/SCI/3 project of Charles
University. We thank Sophia and Jonathan Rau for helping with the computation in the proof of
Theorem 2.4.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

2:2 Tight bounds on the expected number of holes in random point sets

true for k < 5, but, in the 1980s, Horton [11] constructed arbitrarily large point sets without
7-holes. The question about the existence of 6-holes was a longstanding open problem until
2007, when Gerken [10] and Nicolas [15] showed that every sufficiently large set of points in
the plane contains a 6-hole.

The existence of k-holes was considered also in higher dimensions. Valtr [20] showed
that, for k < 2d + 1, every sufficiently large set of points in R? contains a k-hole. He
also constructed arbitrarily large sets of points in R? that do not contain any k-hole with
k> 24=1(P(d—1)+1), where P(d— 1) denotes the product of the first d— 1 prime numbers.
Very recently Bukh, Chao, and Holzman [6] improved this construction.

Estimating the number of k-holes in point sets in R¢ attracted a lot of attention; see [1].
In particular, it is well-known that the minimum number of (d + 1)-holes (also called empty
simplices) in sets of n points in R? is of order O(n?). This is tight, as every set of n points
in R? contains at least (";1) (d + 1)-holes [3, 12].

The tight upper bound O(n?) can be obtained by considering random point sets drawn
from a convex body. More formally, a convex body in R? is a compact convex subset of R?
with a nonempty interior. We use A\g to denote the d-dimensional Lebesgue measure on R?
and Ky to denote the set of all convex bodies in R? of volume A\y(K) = 1. For an integer
k > d+1 and a convex body K € Ky, let Eka(n) be the expected number of k-holes in a
set S of n points chosen uniformly and independently at random from K. Note that S is in
general position with probability 1.

Bérédny and Fiiredi [3] proved the upper bound EHJ,,,(n) < (2d)2%" . (%) for every
K € Kq4. Valtr [21] improved this bound in the plane by showing EHZ5(n) < 4(3) for any
K € Kj. Very recently, Reitzner and Temesvari [16, Theorem 1.4] showed that this bound
on EHde (n) is asymptotically tight for every K € KCy. This follows from their more general
bounds lim,, s n_2EH§3(n) =2 and

) p)it s
< lim n EHE, (n) < = (1)
dl "y ,d+ (d+ 1) l{gilﬁ(dfl)(djq)

for d > 2, where kg = W%F(g + 1)~ is the volume of the d-dimensional Euclidean unit
ball. Moreover, the upper bound in (1) holds with equality in the case d = 2, and if K is a
d-dimensional ellipsoid with d > 3. Note that, by (1), there are absolute positive constants
c1, co such that

d=% < lim n EH 4 (n) < d ¢

n— 00

for every d > 2 and K € Ky.

Considering general k-holes in random point sets in R?, the authors [2] recently proved
that EHj(k(n) < O(n?) for all fixed integers d > 2 and k > d + 1 and every K € K4. More
precisely, we showed

k kmd=l nn—1)---(n—k+2
pfn <27 (20 (0) e ©)

In this paper, we also study the expected number EH fk (n) of k-holes in random sets
of n points in K. In particular, we derive a lower bound that asymptotically matches the
upper bound (2) for all fixed values of k. Moreover, for some small holes, we even determine
the leading constants lim,,_,.o n *EFH fk(n)

M. Balko, M. Scheucher, and P. Valtr 2:3

2 Our Results

Our main result is that for all fixed integers d > 2 and k > d + 1 the number Eka (n) is in
Q(n?), which matches the upper bound (2) by the authors [2] up to the leading constant.

» Theorem 2.1. For all integers d > 2 and k > d + 1, there are constants C = C(d, k) > 0
and ng = no(d, k) such that, for every integer n > ng and every conver body K C R? of unit
volume, we have EH (n) > C - n.

In particular, we see that random point sets typically contain many k-holes no matter
how large k is, as long as it is fixed. This contrasts with the fact that, for every d > 2, there
is a number ¢ = ¢(d) and arbitrarily large sets of points in R? without any ¢-holes [11, 20].

Theorem 2.1 together with (2) shows that Eka (n) = O(n) for all fixed integers d and
k and every K € K%, which determines the asymptotic growth rate of EH fk (n). We thus
focus on determining the leading constants lim,, ;oo n *EH fk (n).

For a convex body K C R? (of a not necessarily unit volume), we use pff to denote
the probability that the convex hull of d + 2 points chosen uniformly and independently at
random from K is a d-simplex. That is, the probability that one of the d + 2 points falls in
the convex hull of the remaining d + 1 points. The problem of computing pX is known as
the d-dimensional Sylvester’s convex hull problem for K and it has been studied extensively.
Let pg = maxg pf , where the maximum is taken over all covnex bodies K C R¢. We note
that the maximum is achieved, since it is well-known that every affine-invariant continuous
functional on the space of convex bodies attains a maximum.

First, we prove the following lower bound on the expected number EH fd 4+1(n) of empty
simplices in random sets of n points in K, which improves the lower bound from (1) by
Reitzner and Temesvari [16] by a factor of d/pg—1.

» Theorem 2.2. For every integer d > 2 and every convex body K C R? of unit volume, we
have 5
: —d 7K
> .
nh—>ngo " EHd’d+1(n) - (d — 1)!pd71
Using the trivial fact py = 1 with the inequality EH3%(n) < 2(1 + o(1))n? proved by
Valtr [21], we see that the leading constant in our estimate is asymptotically tight in the
planar case. An old result of Blaschke [4, 5] implies that Theorem 2.2 is also asymptotically
tight for simplices in R3.

» Corollary 2.3. For every convex body K C R? of unit volume, we have

1272
T ~3.38.

3 < lim n_SEH?ﬁ(n) <
n—00 ’
Moreover, the left inequality is tight if K is a tetrahedron and the right inequality is tight if
K is an ellipsoid.

Note that, in contrast to the planar case, the leading constant in EH?ﬁ(n) depends on
the body K.

By Theorem 2.2, better upper bounds on py_1 give stronger lower bounds on EH(fd_s_1 (n).
The problem of estimating py is equivalent to the problem of estimating the expected d-
dimensional volume EVdK of the convex hull of d + 1 points drawn from a convex body
K C R? uniformly and independently at random, since pi = % for every K € Kg;

see [14, 18]. In the plane, Blaschke [4, 5] showed that EVZX is maximized if K is a triangle,

EuroCG’'21

2:4 Tight bounds on the expected number of holes in random point sets

which we use to derive the lower bound in Corollary 2.3. For d > 3, it is one of the major
problems in convex geometry to decide whether EVdK is maximized if K is a simplex [19].

Besides empty simplices, we also consider larger k-holes. The expected number E H. 2{(4(71)
of 4-holes in random planar sets of n points was considered by Fabila-Monroy, Huemer, and
Mitsche [9], who showed EHS,(n) < 18mD?n? + o(n?) for any K € K3, where D = D(K) is
the diameter of K. Since we have D > 2/,/r, by the Isodiametric inequality [8], the leading
constant in their bound is at least 72 for any K € Ky. This result was strengthened by the
authors [2] to EHz,(n) < 12n? + o(n?) for every K € K,. Here we determine the leading
constant in EH3%(n) exactly.

» Theorem 2.4. For every convex body K C R? of unit area, we have

. _9 K 272
lim n *EH,'(n) =10 — — = 3.420.
n—00 ’ 3
Our computer experiments support this result. We sampled random sets of n points
from a square and from a disk and the average number of 4-holes was around 3.42n? for n =
25000 in our experiments. The source code of our program is available on the supplemental
website [17].
For larger k-holes in the plane, we do not determine the value lim, nszHi{k(n)
exactly, but we can show that it does not depend on the convex body K. We recall that
this is not true in larger dimensions already for empty simplices.

» Theorem 2.5. For every integer k > 3, there is a constant C = C(k) such that, for every
conver body K C R? of unit area, we have
nlgrolo n_2EH2{(k(n) =C.

The proof of our main result, Theorem 2.1, is quite technical. So is the proof of Theo-
rem 2.2, which is based on the Blaschke-Petkantschin formula (see Theorem 7.2.7 in [19])
and the well-known Lebesgue’s dominated convergence theorem. Therefore we decided to
devote Section 3 to an illustration of the proofs of Theorems 2.4 and 2.5. We only sketch
the idea of the proof for 3-holes, because the proof for k-holes becomes more technical as k
grows, but the main underlying idea remains the same. The full proofs of our results can
be found in the appendices.

2.1 Open problems

As we remarked earlier, any nontrivial upper bound on the probability py_; translates into
a stronger lower bound on lim,, n‘EH fd _H(n). However, we are not aware of any such
estimate on pg—1. Kingman [13] showed

d+1 d+1
()
ba = ((d+1)2> ’
9d
(d+1)2
2

which is of order d~©(9). We conjecture that the upper bound on pff is of this order for any
convex body from Cg4.

» Conjecture 2.6. There is a constant ¢ > 0 such that, for every d > 2, we have pg < d=°C.

M. Balko, M. Scheucher, and P. Valtr 2:5

We also believe that our lower bound from Theorem 2.2 is tight for simplices in arbitrarily
large dimension d, not only for d < 3.

» Conjecture 2.7. For every d > 2, if K is a d-dimensional simplex of unit volume, then
limy, oo n_dEHfdJrl(n) = (d—l)ﬁ'
As remarked earlier, it is widely believed that pX is maximized if K is a simplex. If this
is true, then it follows from the proof of Theorem 2.2 that Conjecture 2.7 is true as well.
It might also be interesting to determine lim,, o, n~2EH. QKk (n) exactly for as many values
k > 4 as possible. Recall that, by Theorem 2.5, the number lim,_, n_QEHQI’(k(n) is the
same for all convex bodies K € 5.

3 Sketch of the proof for empty simplices in planar point sets

We sketch the proof that the expected number of 3-holes in a set S of n points selected
uniformly and independently at random from a convex body K C R? of unit volume is
2n? + o(n?). For two points p; and p; from S, we count the expected number of 3-holes in
S where p; and p; determine the longest edge.

Without loss of generality we can assume that p; = (0,0) and p; = (£,0) for some
¢ > 0, as otherwise we apply a suitable isometry to S. Let R be the set of points from
K N ([0,4 x [—2,2]) that are at distance at most ¢ from p; and also from p;. Note that
the set R is convex. The third point p; of the 3-hole satisfies z(p;) < z(px) < z(p;), as
otherwise p;p; is not the longest edge of the 3-hole. If |y(px)| > %, then the convex hull of
the 3-hole has area larger than 1, which is impossible. Consequently, py lies in R. For a real
f%, %], let I, be the line segment formed by points r € R with y(r) = y. Note
that |I,| < ¢ for every y and that |Iy| = ¢; see Figure 1.

number y € |

Figure 1 Sketch of the proof.

Since there are n — 2 candidates for p; among S\ {p;,p;}, we can express the expected
number of 3-holes in S where p; and p; determine the longest edge as

2/¢ 2/¢ |y| o n—3
(n—2)- / |1, - Pr[p;p;jpr is empty in S]dy = (n —2) - / |1,] - (1 — 2) dy.
—2/¢ —2/¢

EuroCG’'21

2:6

Tight bounds on the expected number of holes in random point sets

We now substitute Y = yn and obtain

—9 [t AN
n / Ty] <1_||) av.
n —2n/¢ 2n

By the Lebesgue dominated convergence theorem, we get for n — oo

2-/ \Iol-e—Y'f/QdY=2./ (e Y2y = 4.
0 0

Since there are (%) pairs {p;, p;} in S, the expected number of 3-holes in S is 4(1+0(1))-(3) =
2n? + o(n?) for n going to infinity.

—— References

1

10

11

12

13

14

15

2

O. Aichholzer, M. Balko, T. Hackl, J. Kynél, I. Parada, M. Scheucher, P. Valtr, and
B. Vogtenhuber. A superlinear lower bound on the number of 5-holes. Journal of Combi-
natorial Theory. Series A, 173:105236, 2020.

M. Balko, M. Scheucher, and P. Valtr. Holes and Islands in Random Point Sets. In 36th
International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 14:1-14:16. Schloss Dagstuhl,
2020.

I. Bardny and Z. Fiiredi. Empty simplices in Euclidean space. Canadian Mathematical
Bulletin, 30(4):436—445, 1987.

W. Blaschke. Losung des 'Vierpunktproblems’ von Sylvester aus der Theorie der ge-
ometrischen Wahrscheinlichkeiten. Berichte diber die Verhandlungen der Sdchsischen
Akademie der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse, 69:436—453,
1917.

W. Blaschke. Vorlesungen tber Differentialgeometrie und geometrische Grundlagen von
Einsteins Relativitdtstheorie II. Die Grundlehren der mathematischen Wissenschaften.
Springer, 1923.

B. Bukh, T. Chao, and R. Holzman. On convex holes in d-dimensional point sets. http:
//arXiv.org/abs/2007.08972, 2020.

P. Erdds. Some more problems on elementary geometry. Australian Mathematical Society
Gazette, 5:52-54, 1978.

L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks
in Mathematics. CRC Press, revised edition, 2015.

R. Fabila-Monroy, C. Huemer, and D. Mitsche. Empty non-convex and convex four-gons
in random point sets. Studia Scientiarum Mathematicarum Hungarica, 52(1):52-64, 2015.
T. Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete € Computational
Geometry, 39(1):239-272, 2008.

J. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26:482-484,
1983.

M. Katchalski and A. Meir. On empty triangles determined by points in the plane. Acta
Mathematica Hungarica, 51(3-4):323-328, 1988.

J. F. C. Kingman. Random secants of a convex body. J. Appl. Probability, 6:660-672, 1969.
V. Klee. Research Problems: What is the Expected Volume of a Simplex Whose Vertices
are Chosen at Random from a Given Convex Body? American Mathematical Monthly,
76(3):286—288, 1969.

M. C. Nicolas. The Empty Hexagon Theorem. Discrete €& Computational Geometry,
38(2):389-397, 2007.

M

16

17

18

19

20

21

. Balko, M. Scheucher, and P. Valtr 2:7

M. Reitzner and D. Temesvari. Stars of empty simplices. http://arxiv.org/abs/1808.
08734, 2019.

M. Scheucher. Supplemental program for computer experiments. http://page.math.
tu-berlin.de/~scheuch/suppl/holes_in_random_sets/test_planar_holes.py.

R. Schneider. Random approximation of convex sets. Journal of Microscopy, 151(3):211—
227, 1988.

R. Schneider and W. Weil. Stochastic and integral geometry. Probability and its Applica-
tions. Springer, 2008.

P. Valtr. Sets in R? with no large empty convex subsets. Discrete Mathematics, 108(1):115-
124, 1992.

P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Scien-
tiarum Mathematicarum Hungarica, pages 155-163, 1995.

EuroCG’'21

Obstructing Classification via Projection

Pantea Haghighatkhah!, Wouter Meulemans?!,
Bettina Speckmann!, Jér6me Urhausen?, and Kevin Verbeek!

1 TU Eindhoven, The Netherlands
[p.haghighatkhah|w.meulemans|b.speckmann|k.a.b.verbeek] @tue.nl
2 Utrecht University, The Netherlands
j.e.urhausenQuu.nl

1 Introduction

Machine learning and data mining techniques are effective tools to classify large amounts of
data. But they tend to preserve any inherent bias in the data, for example, with regards
to gender or race. The identification and removal of bias receives significant attention and
various approaches have been described in the machine learning literature using, for example,
statistical methods [3], preprocessing [2, 4], or additional (possibly adversarial) models [6].
Abbasi et al. [1] recently introduced a geometric notion of stereotyping which postulates that
bias is in some form encoded in the geometric or topological features of the learned model
and that manipulating this geometry can remove the bias. In this paper we follow the same
premise and study a possible geometric approach for bias removal.

We model the data as points in R? which are labeled with binary-valued properties, and
assume that it is “easy” to classify the data according to each property. Our goal is to obstruct
the classification according to one property by a suitable projection to a lower-dimensional
Euclidean space, while classification according to all other properties remains easy.

Formal problem statement Our input is a set of n points P = {pi,...,p,} in general
position in R%. For convenience, we identify the points with their corresponding vector. For all
points in P we are given k binary-valued properties, represented as functions a;: P — {—1,1}
for 1 <i < k. We denote the subset of points p € P with a;(p) =1 as Pi, and the subset of
points p € P with a;(p) = —1 as P for 1 <i < k. For a point p € P, we refer to the tuple
(ai(p),...,axr(p)) as the label of p. Note that there are 2F different possible labels.

We assume that it is “easy” to classify the points in P according to the properties by
using the point coordinates. Our goal is to compute a projection P’ of P to lower dimensions
such that the first property a; becomes hard to classify in P’, and the other properties
as,...,a; remain easy to classify in P’. We denote by P_ = P! and P, = Pi the point
sets in which the special property a; is set to —1 and +1, respectively. Similarly, we use
P’ and P for the point sets P_ and Py after projection. Usually we consider a projection
along a single unit vector w (||w|| = 1), mapping points in R? to points in R4, For p; € P,
we denote its projection as p, = p; — (p; - w)w (here (p; - w) is the dot product). Note that
this projection simply restricts p} to a hyperplane in R?, rather than mapping it to R4~ 1.
Sometimes we will consider projections along multiple vectors wy,...,w,. In that case we
assume that {w;}7_, form an orthonormal system, such that we can write the projection as
Py =1p; — Z;Zl(pi -w;)w;. Again, we assume that p] still lies in R?, but is restricted to the
(d — r)-dimensional flat that is orthogonal to wy, ..., w, and passes through the origin.

We consider different models to define what is easy or hard to classify, based on some
form of “separability” between two point sets. We say that a property a; is separated in a
point set P to indicate that P’ and Py are separated (see Figure 1 for an example in R?).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

3:2 Obstructing Classification via Projection

Figure 1 Left: data points with two linearly-separable properties: shape and color. Middle: a
projection which keeps shape separated, but not color. Right: a projection with the opposite effect.

Contributions and organization In Section 2 we consider linear separability as the classifi-
cation model. We first show that, if even one possible label is missing from P, then there
may be no projection that eliminates the linear separability of a; whilst keeping the linear
separability of the other properties. On the other hand, if all possible labels are present
in the point set, then we show that it is always possible to achieve this goal. In Section 3
we introduce (b, ¢)-separability, which is a generalization of linear separability. Although a
single projection is no longer sufficient to avoid (b, ¢)-separability of a; after projection, we
show that the number of projections needed to achieve this is linked to the Helly number
of the respective separability predicate. We then establish bounds on the Helly numbers of
(b, ¢)-separability for specific values of b and c.

2 Linear separability

One of the machine learning techniques that use linear separability for classification are
support vector machines (SVMs). SVMs compute the (optimal) hyperplane that separates
two classes in the training data (if linearly separable), and use that hyperplane for further
classifications. Linear separability is therefore a good first model to consider for classification.

For a point set P and property a;: P — {—1, 1}, we say that a; is easy to classify on P
if P? and Pj_ are (strictly) linearly separable; we say that a; is hard to classify otherwise.
Two point sets P and Q (P,Q C R?) are linearly separable if there exists a hyperplane H
separating P from (). The point sets are strictly linearly separable if we can additionally
require that none of the points lie on H. Equivalently, the point sets P and @ are linearly
separable if there exists a unit vector v € R? and constant ¢ € R such that (v - p) < ¢ for all
p € Pand (v-q) > cfor all ¢ € Q (v is the normal vector of the hyperplane H). We say
that P and @ are linearly separable along v. If the inequalities can be strict, then the point
sets are strictly linearly separable.

Let CH(P) denote the convex hull of a point set P. By definition, we have that x € CH (P)
if and only if there exist coefficients A; > 0 such that z = Y. ; A\;p; and >_~ ; A; = 1. The
following lemma is illustrated in Figure 2.

» Lemma 1. Let P and Q be two point sets. If we project both P and @ along a unit vector
w to obtain P’ and Q', then P’ and Q' are not strictly linearly separable iff there exists a
line £ parallel to w that intersects both CH(P) and CH(Q). If ¢ intersects the interior of
CH(P) or CH(Q), then P’ and Q' are not linearly separable.

Assume now that the properties a1, ..., ay are strictly linearly separable in P. Can we
project P along a unit vector w so that aso,...,ax are still strictly linearly separable in
P’ but ay is not? We consider two variants: (1) separation preserving and (2) separability

P. Haghighatkhah, W. Meulemans, B. Speckmann, J. Urhausen, and K. Verbeek

Figure 2 Line ¢ intersects both CH(P) and CH(Q); after projection the convex hulls intersect.

preserving projections. The former preserves a fixed set of separating hyperplanes Ho, ..., Hy
for properties as, ..., ax, the latter preserves only separability of as, ..., ax.

Lemma 2 proves that there exist point sets using only 2¥ — 1 possible labels for which
every separability preserving projection also keeps a; strictly linearly separable after projec-
tion. The idea is to use the properties as,...,a; to sufficiently restrict the direction of a
separability preserving projection to make it impossible for this projection to eliminate the
linear separability of a;. A simple example for d = k = 2 is shown in Figure 3.

Figure 3 To keep a2 (shape) linearly separable after projection, the projection vector w should
be nearly vertical, but then a; (color) will also remain linearly separable.

» Lemma 2. For all k > 1 and d > k, there exist point sets P in R? with properties
ai,...,a, using 2% — 1 labels such that any separability preserving projection along a unit
vector w also keeps ay strictly linearly separable after projection.

We now assume that all 2¢ labels are used in P. Note that this assumption directly
implies that d > k: take any set of k separating hyperplanes Hy, ..., Hy for the k properties
and consider the arrangement formed by the hyperplanes in R%. Clearly, all points in the
same cell of the arrangement must have the same label. However, it is well-known that it is
not possible to create 2¥ cells in R? with only & hyperplanes if d < k. This has also interesting
implications for the case when d = k: if we apply a separation preserving projection to P,
then a; cannot be linearly separable in P’, since P’ is embedded in RF~1,

We show that, if d > k, then there always exists a separation preserving projection that
eliminates the strict linear separability of a;. Our proof uses a natural variant of both
Carathéodory’s and Radon’s theorem; see also Figure 4.

3:3

EuroCG’'21

3:4 Obstructing Classification via Projection

Figure 4 Lemma 3 in 2D: only 4 points are needed to construct two intersecting convex hulls.

» Lemma 3. Let P and Q be two points sets in R? such that CH(P)NCH (Q) # 0. Then there
exist subsets P* C P and Q* C Q such that CH(P*) N CH(Q*) # 0 and |P*| +|Q*| = d + 2.

» Theorem 4. If P is a point set in R? with k (d > k) properties ay, ..., ay using all 2% labels,
then there exists a separation preserving projection along a unit vector w that eliminates the
strict linear separability of a.

Proof. We provide an explicit construction of the vector w. Let Hs, ..., Hy be any separating
hyperplanes for each of the properties as,...,a; in P, respectively. Let v; be the normal
of hyperplane H; for 2 < i < k, and let A C R? be the (k — 1)-dimensional linear subspace
spanned by vy, ..., vg. Furthermore, let H* = ﬂf:2 H; be the (d — k + 1)-dimensional flat
that is the intersection of the separating hyperplanes. Note that a projection along a vector
w is separation preserving if and only if w is parallel to H*. Let T'(p) be the point obtained
by performing an orthogonal projection of a point p € P onto A. For ease of argument, we
also directly apply an affine transformation that maps H* (which intersects A in one point)
to the origin, and maps vs, ..., vy to the standard basis vectors of R¥~1.

Now define Q_ = {T'(p) |p € P_} and Q4+ = {T(p) | p € P+}. By construction, since all
labels are used by P, both Q_ and @ must have a point in each orthant of R¥~!. If a point
set @ has a point in each orthant, then CH(Q) must contain the origin; because if it does
not, then there exists a vector v such that (v-¢) > 0 for all ¢ € . But there must exist a
point ¢* € @ whose sign for each coordinate is opposite from that of v (or zero), which means
that (v-¢*) <0, a contradiction. Thus, both CH(Q_) and CH(Q) contain the origin, and
CH(Q-)NCH(Q4+) # 0. We now apply Lemma 3 to Q_ and Q4 to obtain Q* and Q7.
consisting of k 4+ 1 points in total. Let P* C P be the corresponding set of original points
that map to Q* U Q7. We can now construct w as follows. Pick a point p* € P*, and let I}
be the unique (k — 1)-dimensional flat that contains the remaining points in P*. Let F» be
the flat obtained by translating H* to contain p*. Since Fj is (k — 1)-dimensional and Fj is
(d — k + 1)-dimensional, F; N F, consists of a single point r € R?. The desired projection
vector is now simply w = r — p* (normalized if necessary).

We finally show that the constructed vector w has the correct properties. First of all, w
is parallel to H* by construction, and hence the projection along w is separation preserving.
Second, since r € F; and p* is projected to coincide with r, all points in P* will lie on
the same (k — 1)-dimensional flat F| after projection. Also, since w is orthogonal to A,
there exists an affine map from Q* U Q% to P* (after projection). Thus, we obtain that
CH(P.)NCH(P,) # 0; in particular, the convex hulls must intersect on F]. This implies
that aq is not strictly linearly separable after projection. <

3 Generalized separability

In this section we consider a generalization of linear separability for classification. One
approach to achieve more complicated classification boundaries is to use clustering: the label

P. Haghighatkhah, W. Meulemans, B. Speckmann, J. Urhausen, and K. Verbeek

of a point is determined by the label of the “nearest” cluster. If we use more than one cluster
per class, then the resulting classification is more expressive than classification by linear
separation. This approach is also strongly related to nearest neighbor classification, another
common machine learning technique. Our generalized definition of separability is inspired by
such clustering-based classifications, with convex sets modeling the clusters.

Let P and Q be two point sets in R?. We say that P and Q are (b, c)-separable if there
exist b convex sets Si,...,S, and ¢ convex sets 11, ..., T, such that for every point p € P
we have that p € S = |J; S, for every point ¢ € Q we have that ¢ € T = Uj T}, and that
SNT = ((see Figure 5). We can assume that b < c. Linear separability and (1, 1)-separability
are equivalent.

Figure 5 Left: two points sets P (red) and @ (blue) that are (1, 2)-separable, but not linearly
separable. Right: two point sets that are (2,2)-separable, but not (1, z)-separable for any value of x.

Given a point set P along with k properties a1, ..., ay, the goal is now to compute a

separation preserving projection to a point set P’ such that a; is not (b, ¢)-separable in P’.

We again assume that all k properties are strictly linearly separable in P. To achieve this
goal, we may need to project along multiple vectors w1, ..., w,.

We first generalize Theorem 4 to a generic separability predicate F(P, Q) for point sets
P,Q C R%! A separability predicate is well-behaved if it satisfies the following conditions:

1. If F(P,Q) does not hold, then F(P’, Q") does not hold, where P’ and Q' are obtained by
projecting P and @ along a single unit vector, respectively.

2. I PP CPand Q CQ,then F(P,Q) implies F(P',Q’).

3. If Ais an affine map, then F(P, Q) holds if and only if F(A(P),.A(Q)) holds.

Now assume that F' has the Helly-type property [5]: if F(P, Q) does not hold, then there
exist small (bounded by a constant) subsets P* C P and Q* C @ such that F(P*,Q*) also
does not hold. The worst-case size of |P*| + |Q*| often depends on the number of dimensions
d of P and @, and is referred to as the Helly number mp(d) of F. We can extend Theorem 4
to well-behaved separability predicates with the Helly-type property. The proof is analogous
to the proof of Theorem 4, except that we now need to project mp(k — 1) points to the same
(k — 1)-flat, and hence need mg(k — 1) — k projections.

» Theorem 5. Let P be a point set in R with k (d > k) properties ai,...,a and let F be a
well-behaved separation predicate in R:. Either we can use at most min(mp(k—1)—k,d—k+1)
separation preserving projections to eliminate F(P_, Py), or this cannot be achieved with
any number of separation preserving projections.

Given Theorem 5, we now focus on the Helly numbers of (b, ¢)-separability for specific b
and ¢. Unfortunately, not every form of (b, ¢)-separability has the Helly-type property.

1 We assume that F' is defined independently from the dimensionality of P and @ (like (b, ¢)-separability).

We do however require that P and @) are embedded in the same space.

3:5

EuroCG’'21

3:6 Obstructing Classification via Projection

» Lemma 6. In d > 2 dimensions, (1,2)-separability does not have the Helly-type property.

Next, we consider (1, co)-separability. This means that one of the point sets, say P, must
be covered with one convex set, but we can use arbitrarily many convex sets to cover Q.
Equivalently, P and @ are (1, 00)-separable if CH(P)NQ =0 or PNCH(Q) = (.

» Lemma 7. In d > 1 dimensions, (1,00)-separability has Helly number 2d + 2.

4 Conclusion

We studied the use of projections for obstructing classification of high-dimensional Euclidean
point data. Our results show that, if not all possible labels are present in the data, then it may
not be possible to eliminate the linear separability of one property while preserving it for the
other properties. This is not surprising if a property that we aim to keep is strongly correlated
with the property we aim to hide. Nonetheless, one should be aware of this effect when
employing projections for this purpose in practice. When going beyond linear separability,
we see that the number of projections required to hide a property increases significantly
in theory, and we expect a similar effect when using neural networks for classification in
practice. In other words, projecting a dataset once (or few times) may not be sufficient to
hide a property from a smart classifier. Projection, as a linear transformation, can however
be effective in eliminating certain linear relations in the data.

—— References

1 Mohsen Abbasi, Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
Fairness in representation: quantifying stereotyping as a representational harm. In Proc.
SIAM International Conference on Data Mining, pages 801-809, 2019. doi:10.1137/1.
9781611975673 .90.

2 Alexander Amini, Ava P. Soleimany, Wilko Schwarting, Sangeeta N. Bhatia, and Daniela
Rus. Uncovering and mitigating algorithmic bias through learned latent structure. In Proc.
AAAI/ACM Conference on Al, Ethics, and Society, pages 289-295, 2019. doi:10.1145/
3306618.3314243.

3 Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
In Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems, pages 3315-3323, 2016.

4 Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification with-
out discrimination. Knowledge and Information Systems, 33:1-33, 2011. doi:10.1007/
s10115-011-0463-8.

5 Rephael Wenger. Helly-type theorems and geometric transversals. In Jacob E. Goodman
and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, second
edition, pages 73-96. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315. ch4.

6 Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with
adversarial learning. In Proc. AAAI/ACM Conference on Al, Ethics, and Society, pages
335-340, 2018. doi:10.1145/3278721.3278779.

Route Reconstruction from Traffic Flow via
Representative Trajectories

Bram Custers!, Wouter Meulemans!, Bettina Speckmann?!, and
Kevin Verbeek?!

1 TU Eindhoven, the Netherlands
[b.a.custers|w.meulemans|b.speckmann|k.a.b.verbeek]@tue.nl

Related Version https://arxiv.org/abs/2012.05019

1 Introduction

Understanding human mobility patterns is an important aspect of traffic analysis and urban
planning. Trajectory data provide detailed views on specific routes, but typically do not
capture all traffic. On the other hand, loop detectors built into the road network capture all
traffic at specific locations, but provide no information on the individual routes. Given a set
of loop-detector data as well as a (small) set of representative trajectories, we investigate how
one can effectively combine these two to create a more complete picture of the underlying
mobility patterns. Specifically, we want to reconstruct a realistic set of routes from the
loop-detector data, using the given trajectories as representatives of typical behavior.

We model the loop-detector data as a network flow field that needs to be covered by
the reconstructed routes and we capture the realism of the routes via the strong Fréchet
distance to the representative trajectories. The full version discussed our modeling decisions
in detail; we summarize the resulting definitions, notation, and formal problem statement in
Section 2. Several forms of the algorithmic problem are NP-hard. Hence we explore heuristic
approaches which decompose the flow well, while following the representative trajectories
to varying degrees. In Section 3, we propose an iterative Fréchet Routes (FR) heuristic
which generates candidate routes which have bounded Fréchet distance to the representative
trajectories. We also describe a variant of multi-commodity min-cost flow (MCMCF) which
is only loosely coupled to the trajectories.

In Section 4 we experimentally evaluate our approaches in comparison to a global min-
cost flow (GMCF), which is essentially agnostic to the representative trajectories. To make
meaningful claims in terms of quality, we derive a ground truth by map-matching real-world
trajectories and by generating synthetic routes in a real-world network. We find that GMCF
explains the flow best, but produces a large number of often nonsensical routes (significantly
more than the ground truth). MCMCF produces a large number of mostly realistic routes
which explain the flow reasonably well. In contrast, FR produces much smaller sets of
realistic routes which still explain the flow well, at the cost of a higher running time.

Related work Our problem is closely related to flow decomposition [1]. Given a set of paths
that decompose the flow, it is NP-hard to determine the correct integral coefficients for each
path [10]. Minimizing the number of paths in a decomposition is also NP-hard [14], and thus
various approximation algorithms have been developed [6].

Reconstructing a route (in a network) given a GPS trajectory is referred to as map-
matching [2, 7, 8, 12, 15], see also the survey by Quddus et al. [13]. Of specific relevance
to our work is the result by Alt et al. [2] which solves map-matching under the Fréchet
distance (see Section 3). For simple routes, map-matching is NP-hard for various distance
measures [4, 11], though on a grid routes with bounded distance can be found efficiently [4].

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

4:2 Route Reconstruction from Traffic Flow via Representative Trajectories

2 Preliminaries

Our input has three components: (1) a road network, given as a graph G = (V, F) with n
vertices and m edges, embedded in R?; (2) a set of representative trajectories T, each encoded
by a sequence (p1,...,p,) of measurements, with p; = (z;,;) € R?; and (3) loop-detector
data. We model the loop-detector data as a flow field: a function ¢ : E — R>q that assigns
a traffic volume to each edge in the road network G.

Our goal is to reconstruct a realistic set of routes from the loop-detector data, using the
trajectories as representatives of typical behavior. A route P = (eq,...,ex) is a sequence of
edges that encode the traversed path in the road network G. We say that a route is simple
if it visits every vertex in G at most once. For ease of notation, we introduce the function
M (P, e) that indicates how often the edge e € E is traversed in the route P.

We define a reconstruction P of the flow field ¢ as a pair P = (P, c) with a base set of
routes P (the basis) and fractional coefficients ¢: P — R>q. A reconstruction (P, c) defines
a flow (fip,cy, Sp,Tp) as fip.c)(€) = > pep M(P,e)c(P) for all e € E, where Sp and Tp are
the sets of start and end vertices of the routes in P, respectively. We quantify how well the
reconstruction represents the flow field via the flow deviation A(P,c,®), which we define as
A(P,c,9) =X cp(dle) — fp.e)(e))?. We say that a route is realistic, if the minimal Fréchet
distance [3] to a trajectory T € T is at most some parameter e. We call a reconstruction
realistic if all its routes are realistic.

Formal problem statement Given a road network G = (V| E), the representative trajec-
tories 7, the flow field ¢ induced by the loop-detector data, and realism parameter € > 0,
compute a realistic reconstruction (P, ¢) such that the flow deviation A(P, ¢, ¢) is minimized.

3 Route reconstruction algorithms

We describe two families of heuristics: Fréchet Routes (FR) which generate only realistic routes
(Section 3.1) and variants of min-cost flow which relax the realism constraint (Section 3.2).

3.1 Fréchet Routes

To compute a reconstruction, we decouple finding a base set P and coefficients c. We do so
iteratively, each time refining P and then computing the corresponding c. In each iteration,
we perform three steps: (1) we generate candidate routes for each representative in 7 and
add these to P; (2) we compute the optimal ¢ for the current base set, which can be done
efficiently [5, 9]; (3) we prune P by eliminating duplicates and routes with coefficient zero.

The main question is how to generate candidate routes. To ensure realism, we modify
the map-matching algorithm by Alt et al. [2] to generate a candidate for a trajectory T € T;
see the full version for a short summary. This algorithm computes a path in a network G
that is within Fréchet distance € of T'. Here we interpret T' as a piece-wise linear function. A
point T'(7) is reachable at a vertex v of G, if there is a path in G ending at v, such that the
Fréchet distance between this path and the subtrajectory up to T'(7) is at most €. In the
algorithm, the reachable points are represented as reachable intervals at each vertex: parts
of the trajectory that have such a path ending at the vertex with Fréchet distance at most ¢.

To achieve diversity and find routes that are likely to reduce the flow deviation, we
present two extensions to this technique below. Both are steered by the residual flow field
¢r: E — R, defined as ¢,.(e) = ¢(e) — > pep M(P,e)c(P) for all edges e € E. Specifically,
we want to find candidate routes that currently have high residual flow.

B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 4:3

Edge-inclusion Fréchet Routes (EFR) We modify the map-matching algorithm to find a
route that must include a specific edge e = (u,v) with high residual flow. To do so, we
first construct a route from the start of T to u, finding all reachable intervals at u. Once
these are found, we project these via e to reachable intervals at v and start a new search
to construct a route from v to the end of T. We do this for up to k& edges with the highest
positive residual flow that are fully within the Minkowski sum of T" with a disk of radius e,
for some parameter k > 1.

EFR stops its search in the free-space manifold as soon as the begin/endpoint of the
reconstructed route lies within ¢ distance of the start/end of T'. This might ignore flow on
edges in the e-vicinity of the start and end of T. Hence, we greedily add suitable edges to
the ends of the route, taking care not to introduce cycles and not to decrease the average
amount of residual flow per edge in the route.

Weighted Fréchet Routes (WFR) Contrasting EFR, we now aim to find a route with high
total residual flow (weight). To this end, we refine each reachable interval into subintervals,
based on a lower bound of the total weight by which it can be reached. This lower bound
is simply the weight of the interval at u plus the residual flow of (u,v) when following the
left-right pointers of an edge (u,v) € E. Due to monotonicity, the subintervals increase
in weight along the interval; the algorithm possibly prunes or shortens intervals found
previously, if their lower bound was weaker. Cycles in the road network G can lead to cycles
of dependency between the reachable intervals. To break such cyclic dependencies in deriving
the candidate route, we construct a high-weight route explicitly via back-tracking, using each
refinement at most once. Note that the resulting route may still contain cycles.

Hybrid (WEFR) We take the union of candidate routes generated by EFR and WFR.

3.2 Min-cost flow

We now describe two approaches that relax the realism constraint. For both, we solve a variant
of the min-cost flow problem for ¢ and then decompose the result into a reconstruction.

Multi-commodity min-cost flow (MCMCF) For each representative trajectory T we con-
struct a subgraph G(T') of G consisting of all vertices and edges within distance ¢ of T
Vertices that are within distance € from the start or end of T' can act as sources or sinks of a
flow in G(T). Each representative trajectory hence induces a single (min-cost) flow problem.
Using the graphs G(T') for all T € T, we construct a multi-commodity min-cost flow problem
on G, where each trajectory T has an associated commodity which is restricted to G(T"). We
can solve the resulting MCMCF using standard software packages (see Section 4).

Global min-cost flow (GMCF) We retain only the sources and sinks of MCMCF and
otherwise impose no restriction on the flow. This results in a min-cost flow problem over the
entire road network G, which is essentially agnostic to the representative trajectories.

Heuristic path reconstruction Both approaches yield an edge flow (per commodity or
overall). Our goal is to approximate these flows via a reconstruction that may use non-simple
paths. For this, we first decompose the flow into path flows and cycle flows [1]. For every
cycle flow, we add it to a path flow with which it shares a vertex; if such a path flow does
not exist, we discard it. The resulting paths form the reconstruction.

EuroCG’'21

4:4 Route Reconstruction from Traffic Flow via Representative Trajectories

4 Experimental Evaluation

We implemented all algorithms in C++ using Boost and MoveTK (https://movetk.win.tue.nl).
For flow problems and determining coefficients ¢, we use IBM ILOG CPLEX 12.9. We ran
all experiments single-threaded on an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz.

Data Our road network G are the roads surrounding The Hague (the Netherlands) extracted
from OpenStreetMap! with n = 60277 nodes and m = 100654 edges; see Figure 1. We
derive ground-truth sets of routes P* on G based on two complete sets of trajectories T*.
HS: 7T* = P* consists of 5000 shortest paths between random locations in G; variation is
created by randomly perturbing every edge length with a value in the interval [0,+], for
some parameter v > 0, separately for each shortest-path computation; we use v = 500m.
HR: 7 is a set of 11445 real-world trajectories in the The Hague area, provided by HERE
Technologies. We map-match 7* to G to obtain P*. To avoid bias, we map-match
using [16] instead of [2], as the latter is the basis for our Fréchet Routes.
We derive the flow field ¢ for G from P*. The representative trajectories 7 are a random
sample of 5% of T*. For each dataset we create seven such samples.

Measures We quantify the performance via the five measures below (lower is better).

flow deviation flow induced by the reconstruction vs. input flow field: A(P, ¢, ¢).
realism weighted average distance from reconstruction to ground truth:

> peplc(P)minrer- dp(P,T))/ 3 pep c(P).
coverage average distance from ground truth to reconstruction: avgp.cp. minpep dp(P*, P).
complexity number of reconstructed routes (size of the basis): |P|.
running time wall-clock time in minutes.

! Data © OpenStreetMap contributors; retrieved from https://planet.osm.org/ in 2020.

HS ¢

HR ¢

/ 1350

Figure 1 Road network of The Hague, |V| = 60277, |E| = 100654 and its input flow fields.

B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 4:5

Results We compare WEFR, MCMCF, and GMCF. Figure 2 visualizes the flow deviation
as well as the ten reconstructed routes with the highest coefficient ¢. Though the overall
deviation of GMCF (1.8 x 107) is lower than that of MCMCF (3.7 x 107) and WEFR
(3.8 107), WEFR shows a spread of flow deviation over the network and often overrepresents
¢, whereas GMCF and MCMCF have concentrated deviation along the major traffic axis
and often underrepresent. We note that the most contributing routes for WEFR look like
actual routes, whereas the other methods give fairly unintuitive routes: they typically are
either very short (MCMCF) or follow an unrealistic path (GMCF).

We investigate the dependency on the realism threshold e, using values {10m, 20m, 50m,
100m, 150m, 200m, 250m}. For WEFR we use ipmax = 8 and k = 2 (see full version for details).

Residual flow field 10 highest-c routes

WEFR
™
\

LY-i /
QO p
=
O A
=
Y
/ >
A PN
F \ 7~ 5 <™
= vy
/ /
) \ A
\ //

A

—1350 0 1350

Figure 2 Residual flow field at the end of the algorithm (left) and the 10 highest-coefficient
reconstructed routes (right) for one of the samples of HR for each technique with £ = 100m.

EuroCG’'21

4:6 Route Reconstruction from Traffic Flow via Representative Trajectories

2000 2500

1500 \k 2000
1000

500

1500

1000

Coverage (m)
Realism (m)

500

0 0

I I
0 100 200

€ (m)
50000 1.0

40000 //
30000 y
20000 / 0.4

10000 7 0.2

(U]] 0.0
0 100 200

0.8

0.6

Complexity
Deviation

\ 200 /

N

150 /
AN 4

A

Running time (min)

" =

0

] I 0 I I
100 200 0 100 200

w7 €@ e (m)
—— WEFR
—— MCMCF
—— GMCF
VAN

\

100 200

€ (m) € (m)
6000 2000 400
\ z /
= — 1500 £ 300
E 4000 £ \ g /
@ g
& £ 1000 3 200
b5 T’; \\ o0
& 2000 3 £
) 500 £ 100
——— =
0 1 I I 0 r I I 0 = I
0 100 200 0 100 200 0 100 200
. € (m) <108 € (m) € (m)
60000
—— WEFR
_ 4 —— MCMCF
2 40000 = I
g g, GMCF
= =
£)
S 20000 s

oz o~

0 T T 0

I
0 100 200
e (m)

100 200
€ (m)

7 Figure 3 Results for our methods on HS (top) and HR (bottom) for varying e.

B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 4:7

We average the results over the seven samples per HS and HR. Since the complexity of
MCMCF and GMCEF is considerably larger than that of WEFR, we analyze realism and
coverage for the 2500 routes with highest coefficient (which is more than the complexity of
WEFR). See Figure 3: generally the same patterns arise. Notably, realism improves with &
for GMCF, although it remains much worse than for WEFR and MCMCF. We attribute this
to the flexibility offered by having more starting vertices in G available. MCMCF and WEFR,
behave similarly in coverage, realism and deviation. However, MCMCF has significantly
higher complexity, whereas WEFR, has higher running time for large €. This suggests that
realism is somewhat inherent in the flow information, demonstrating that the data sources
are complementary. Finally, the pattern in coverage for GMCF and for WEFR and MCMCF
seems to be opposite for the two datasets. We attribute this to the need for map-matching
in HR which causes deviations between the flow field and the representative trajectories.

Representatives Our experiments show that increasing the distance threshold improves
coverage and deviation, but reduces realism and efficiency. To mitigate these effects, we could
preprocess using clustering and proceed with a set of central trajectories only, as very similar
representatives do not offer much additional flexibility to the reconstruction. Furthermore,
we could use the information from such clustering methods, or from map-matching accuracy,

to vary the threshold e per representative, to relate realism to the uncertainty in the data.

We leave to future work to investigate how such techniques affect efficiency and quality.

Reconstruction Though MCMCF does not guarantee a bound on the Fréchet distance, it
performs similarly to WEFR in realism, albeit with a very large basis. We could postprocess
paths to allow only those that are realistic or attempt to incorporate realism into the path
reconstruction phase of MCMCF, thereby reducing the complexity. Still, routes with a
small Fréchet distance to the representatives can back-track for short distances, resulting in
non-intuitive results. In future work we plan to consider stricter models for realism which

still allow us to avoid the computational hardness associated with the simplicity requirement.

—— References

1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Pearson Education, 1993.

2 Helmut Alt, Alon Efrat, Giinter Rote, and Carola Wenk. Matching planar maps. Journal
of Algorithms, 49(2):262-283, 2003. doi:10.1016/S0196-6774(03)00085-3

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry & Applications, 5(1):75-91, 1995.

doi:10.1142/50218195995000064.

4 Quirijn W. Bouts, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Willem Sonke,
and Kevin Verbeek. Mapping polygons to the grid with small Hausdorff and Fréchet
distance. In Proc. 2/th European Symposium on Algorithms, volume 57 of LIPIcs, pages
22:1-22:16, 2016. doi:10.4230/LIPIcs.ESA.2016.22.

5 Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least squares algorithm.

Journal of Chemometrics, 11(5):393-401, 1997. doi:10.1002/(SICI)1099-128X(199709/
10)11:5<393: :AID-CEM483>3.0.C0;2-L.

6 Tzvika Hartman, Avinatan Hassidim, Haim Kaplan, Danny Raz, and Michal Segalov. How
to split a flow? In Proc. IEEE International Conference on Computer Communications,
pages 828-836, 2012. doi:10.1109/INFCOM.2012.6195830.

EuroCG’'21

4:8

10

11

12

13

14

15

16

Route Reconstruction from Traffic Flow via Representative Trajectories

Jan-Henrik Haunert and Benedikt Budig. An algorithm for map matching given incomplete
road data. In Proc. 20th International Conference on Advances in Geographic Information
Systems, pages 510-513, 2012. doi:10.1145/2424321.2424402.

George R. Jagadeesh and Thambipillai Srikanthan. Online map-matching of noisy and
sparse location data with hidden Markov and route choice models. IEFE Transactions
on Intelligent Transportation Systems, 18(9):2423-2434, 2017. doi:10.1109/TITS.2017.
2647967.

Dongmin Kim, Suvrit Sra, and Inderjit S Dhillon. Tackling box-constrained optimiza-
tion via a new projected quasi-Newton approach. SIAM Journal on Scientific Computing,
32(6):3548-3563, 2010. doi:10.1137/08073812X.

Kyle Kloster, Philipp Kuinke, Michael P. O’Brien, Felix Reidl, Fernando Sanchez Villaamil,
Blair D. Sullivan, and Andrew van der Poel. A practical FPT algorithm for flow decom-
position and transcript assembly. In Proc. 20th Workshop on Algorithm Engineering and
FEzperiments, pages 75-86, 2018. doi:10.1137/1.9781611975055.7.

Maarten Loffler and Wouter Meulemans. Discretized approaches to schematization. In
Proc. 29th Canadian Conference on Computational Geometry, 2017.

Paul Newson and John Krumm. Hidden Markov map matching through noise and sparse-
ness. In Proc. 17th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pages 336-343, 2009. doi:10.1145/1653771.1653818.
Mohammed A. Quddus, Washington Y. Ochieng, and Robert B. Noland. Current map-
matching algorithms for transport applications: State-of-the art and future research di-
rections. Transportation Research Part C: Emerging Technologies, 15(5):312-328, 2007.
doi:10.1016/j.trc.2007.05.002.

Benedicte Vatinlen, Fabrice Chauvet, Philippe Chrétienne, and Philippe Mahey. Simple
bounds and greedy algorithms for decomposing a flow into a minimal set of paths. Furopean
Journal of Operational Research, 185(3):1390-1401, 2008. doi:10.1016/j.ejor.2006.05.
043.

Carola Wenk, Randall Salas, and Dieter Pfoser. Addressing the need for map-matching
speed: Localizing global curve-matching algorithms. In Proc. 18th International Conference
on Scientific and Statistical Database Management, pages 379-388, 2006. doi:10.1109/
SSDBM.2006.11.

Can Yang and Gyozo Gidofalvi. Fast map matching, an algorithm integrating hidden
Markov model with precomputation. International Journal of Geographical Information
Science, 32(3):547-570, 2018. doi:10.1080/13658816.2017.1400548.

Route-preserving Road Network Generalization

Mees van de Kerkhof?!, Irina Kostitsyna?, Marc van Kreveld?!,
Maarten Loffler!, and Tim Ophelders?

1 Utrecht University

{m.a.vandekerkhof, m.j.vankreveld, m.loffler}Quu.nl
2 Eindhoven University of Technology

{i.kostitsyna, t.a.e.ophelders}@tue.nl

—— Abstract

We investigate an approach for road network generalization, where the input is a road network and

a collection of routes on these roads. The aim is to select a subset of the road network in which
many routes of the collection are fully preserved. We investigate the complexity of this problem and
show that it is NP-hard even when heavily restricted.

1 Introduction

Road network generalization is the process of reducing a road network in size by selecting
only the most relevant roads. Data-driven methods rely on other data than just the road
network. Car trajectories form the most obvious such other data source. Since route planning
and traffic analysis often use a road map as an interface, the visualization and analysis of
road networks are linked. If we want to support both use-cases simultaneously, we can use
route-preserving road network generalization (RPRNG), which we formulate as follows:

Given a road network, represented by an embedded graph G, a set R of routes on
this network, and a length budget B, compute a subgraph of G whose summed edge
length is at most B and which contains the maximum number of routes of R in full.

This formulation has advantages over generalization that is not route-preserving: the
subgraph that is obtained will represent as many driven routes as possible, with a preference
for routes that are driven more often. The formulation is simple and intuitive, and the budget
can be adjusted depending on the degree of generalization that is desired.

We want to emphasize the subtle difference between maximizing the total number of
routes that are fully contained, and maximizing the total road usage of the roads chosen
in the generalized network. In the latter problem, we can convert the routes into counts
on the edges of the graph G, and otherwise forget about these routes. We believe that
our version of preserving full routes gives rise to fewer artifacts. Figure 1 illustrates the
difference and potential for artifacts. Maximum road usage leads to three “dead ends” in the
generalized network that are not at destinations, and not a single route is fully preserved.
Route-preserving generalization does not have dead ends, and two full routes are preserved.

1.1 Related work

There has already been a lot of research on what makes a good road network generalization.
Among the criteria used for generalization, many are cartography-focused, in the sense that
the generalized road network should “look good”. These criteria include avoiding small faces
between the roads, avoiding coalescence, and controlling density [2, 4, 8, 9, 11, 20, 23, 24].
Other methods give preference to sequences of roads that are smooth continuations of each

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

5:2 Route-preserving Road Network Generalization

>~—

Figure 1 Left, a road network with six routes drawn. Vertices of the network that are the
endpoint of a route are shown as disks. Middle, generalization according to maximum road usage
with a budget of 11: all roads covered twice or more are chosen. Right, two equivalent outcomes of
route-preserving generalization with a budget of 10: there are two ways to contain two routes with a
budget of 10. A budget of 11 does not help to contain more routes.

other (strokes) [1, 10, 18, 16]. A global criterion that is often used is connectivity of the
generalized network [3, 12], which is one of several structural graph-based criteria [6, 7, 21].

The most important criterion for continuous generalization is avoiding sudden changes,
and avoiding that when zooming in one direction, a road segment disappears and then
reappears [3, 15]. This type of behavior is to be avoided for all continuous generalization
operations. One of the existing methods to road network generalization is coined “selective
omission”, where road segments, extended by good continuation to strokes, are scored based
on geometric, topological, and attribute factors [2, 24]. Selecting roads based on how many
routes are preserved can be used as another way for performing selective omission. Thus, a
heuristical solver for the RPRNG problem can be adapted to support continuous zooming.

One of the first road network generalization methods can be called a precursor to data-
driven generalization. Thomson and Richardson [17] let a subset of the vertices of a road
network be sources and destinations, and they compute shortest paths between each pair.
This gives artificial road usage, and they select the most used roads based on this computation.
Similarly, road usage can be estimated based on an agent-based simulation [14]. While data-
driven geography [13] has been around for longer, data-driven road network generalization
has—to the best of our knowledge—mnot been studied until very recently. Fekete et al. [5]
focus on finding the optimal placement for k& points on a road network to maximize the
length of real-data subtrajectories captured between each pair of points, which could also be
applied for road network generalization. Yu et al. [22] refine road network generalization by
selecting strokes in the network and incorporating traffic flows mined from trajectory data.

Besides the few other data-driven road network generalization papers, many methods use
a scoring of roads, and clearly the road score can be based on actual road usage, which would
be data driven (in both meanings of the word “driven”). Note that our route-preserving
approach uses data in a different way: it is driven-route driven.

From the theoretical perspective, our research problem involves a weighted graph with
paths on that graph. Our problem does not use coordinates of the road network explicitly
(only to determine lengths of road segments), nor the coordinates and times of the trajectories.
Hence, the abstract view of our problem is a graph problem and not a network problem.
Since graph problems typically do not come with a set of paths on that graph, there are no
closely related graph problems. However, there are some connections which allow us to prove
NP-hardness of route-preserving road network generalization.

M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Loffler, T. Ophelders 5:3

T4
T3 | i
T2 I 1
1 I i
[[] [] [] [] [] ®
U1 V2 U3 V4 Us Vg U7

Figure 2 Example of the RPRNG problem on a path graph with seven vertices and four routes.

An optimal solution to cover two routes is a path between vs and vz, which covers routes r2 and rs.

2 Theoretical results

In this section we show that the RPRNG problem is NP-hard, even for simple, sparsely
covered road networks. We do show the problem can be solved quickly in two special cases:
We present a polynomial-time algorithm for when the road network is a path, and an FPT
algorithm for when it is a tree with each segment of the network covered by at most ¢ routes,
for some fixed constant c.

Let G = (V, E) be the graph representing the road network, with vertices V' and edges
E, and let R be the set of routes in G. For simplicity of presentation, we assume that each
route in R begins and ends at a vertex in V, and that the routes are simple paths (i.e.,
non-self-intersecting). Furthermore, assume that each edge in G is traversed by at least one
route, otherwise we remove such edges in a preprocessing step. Define the ply of an edge
e € E to be the number of routes in R traversing e. Similarly, the ply of a vertex v € V is
the number of routes in R traversing v, not including routes ending at v.

Our theoretical results are summarized in Table 1. For our hardness proofs we reduce to
the decision version of the problem. For space reasons only sketches of the proofs are given.

2.1 When G is a path

We start with a dynamic programming (DP) algorithm for the case when G = (V, E) is a
path. Let V' = {v1,va,...,v,} be n vertices of G embedded on a line from left to right, and
let edges E = {e; = (v;,v;41) | 1 < i < n} (refer to Fig. 2). Let R be a set of m routes on G,
and let R; be the set of routes that each start on or before v; and end after v;. Let F(i, k, S),
where ¢ < n, kK < m, and S C R;, denote the solution for a subproblem in our dynamic
programming formulation on the first ¢ vertices, with at least k routes to be covered, and
such that the routes in S are all covered up to vertex v;. The goal is to minimize the total
length of an output subgraph in F(i, %, .S). A naive DP is given by the following recurrence:

- _ . . _ ! . ! . !
F(i, k,S) _SmRi,fgg'gRi,l[F(l 1, k—|S"\ Ri|, S") + cost(e;—1,5")],

Table 1 Algorithmic and hardness results for graph classes of G and bounds on the ply.

path tree planar graph

ply 1 | poly-time | poly-time poly-time
ply 2 | poly-time | poly-time NP-hard
ply ¢ | poly-time FPT NP-hard
ply co | poly-time | NP-hard NP-hard

EuroCG’'21

5:4 Route-preserving Road Network Generalization

(Y

7
[] []
| | |] U5 [| .UG
/\ \ I D\V4
[J [] | J []
U1
[])
(%) V3
Figure 3 Example of the RPRNG problem on a tree graph with four routes. Vertices of degree
higher than three are split to form a binary tree, weight of edge (v4,vs) is set to 0.

with boundary conditions F(i,k,S) =01if ¢ =0 and k <0, and F(i,k,S) = oo if i = 0 and
k > 0. We define the cost function

0, if S =g,

lle]|, otherwise.

cost(e, S') = {

So the length of an edge e is included in the total cost if and only if it is covered by one
of the selected trajectories. Note that the recursion as written considers exponentially many
subsets S’. The path constraint lets us optimize this as we can compute and consider only
the O(|R|) maximal subsets instead. This means we have a polynomial size DP table and
can solve subproblems in O(|R|) time, giving the following theorem.

» Theorem 2.1. The RPRNG problem can be solved in O(n|R|®) time if G is a path.

2.2 When G is a tree with bounded ply

We now modify our dynamic programming algorithm to solve the RPRNG problem when G
is a tree, and the maximum ply is bounded by some constant ¢. The vertices of degree higher
than three can be split by inserting zero-weight edges to form a binary tree. Choose an
arbitrary root, and order the vertices according to the post-order traversal (refer to Fig. 3).
Let R; be the set of routes which start on or below v; and traverse v; from bottom to top.

Cousider a subproblem F'(i,k,S) on a subtree rooted at the vertex v;, where at least k
routes must be covered, including the set S C R;. In our dynamic program, we will merge
the solutions of the subproblems defined on the subtrees rooted at the children of v;. The
DP recursion is given by the following formula:

F(i,k,S) = SmRe%igng [F(i¢, ke, Se) + cost(es,, Se) + F(ir,ky,Sy) + cost(e;,, Sr)],

SAR, CS,CR,
ko+hkp=k—|S,NS,|

where iy and i, index the left and right child of the vertex v; respectively, and e;, and e;,
denote the edges (v;,,v;) and (v;,.,v;).

The boundary conditions are F(i,k,S) = 0 if v; is a leaf and k < 0, and F(i,k,S) = o0
if v; is a leaf and k > 0. The values k; and k,. in the two subproblems depend on the value
k and the number of routes covered by the solutions of the two subproblems which are
traversing v; from the left subtree into the right subtree (for example, for the vertex vs in
the Fig. 3, the purple route is such route). More specifically, let &’ be the number of routes
inS;NS,, then k=% +k;+ k,.

M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Loffler, T. Ophelders 5:5

Vs vy
\Us

V4 U2

Figure 4 Left: graph G’ from a CLIQUE instance. Right: graph G with five routes corresponding
to the edges of G’. Subgraph of G on vertices {uo, u1,u2,u4} corresponds to the clique {v1,v2,v4}.

Unlike in the previous section, we can no longer consider only maximal subsets S of
the routes traversing v;; we need to consider all possible subsets. The size of the dynamic
programming table becomes n x |R| x 2¢ = O(n|R|), and we spend O(|R|2¢) = O(|R]) time
per subproblem. We conclude with the following theorem.

» Theorem 2.2. The RPRNG problem, when G is a tree, is fized-parameter tractable with
the mazimum ply as the parameter: If the mazximum ply is bounded by some constant c, it
can be solved in O(n|R|?) time.

2.3 When G is a tree with unbounded ply

In this section we show that the RPRNG problem is NP-hard by a reduction from the CLIQUE
problem. Given an instance of the CLIQUE problem on a graph G’ with sought clique of size
k', we construct an instance of the RPRNG problem consisting of a road network graph G, a
set of routes R, an integer budget B, and an integer k£ and show that there is a clique of
size at least kK’ in G’ if and only if there is a subgraph of G of total length at most B which
completely covers at least k routes from R.

We do this by creating a star graph, where there is a leaf vertex for each vertex of the
original graph, connected by an edge to a central vertex. For each edge of the original graph
there is a route on the star graph running between the vertices associated with the endpoints
of the edge; see Figure 4. We set B to k' and k to k’'(k’ — 1)/2. Because a clique of n vertices
has n(n — 1)/2 edges, this means we can only capture k of the routes if and only if G’ has a
clique of size k'.

» Theorem 2.3. The RPRNG problem with the objective to mazimize the number of covered
routes is NP-hard when G is a tree and the mazimum ply is unbounded.

2.4 When G is a planar graph with bounded ply

Finally, we show that the RPRNG problem is NP-hard when G is a planar graph even if the
ply on edges and vertices is bounded by 2. We again reduce from the CLIQUE problem.

Consider an instance of the CLIQUE problem on a graph G’ = (V’, E'), with an integer k.

We construct an instance of the RPRNG problem consisting of a graph G, a set of routes R,
a budget B, and the same integer k, such that G’ has a clique of size k if and only if there
exists a subgraph of G of total weight at most B which covers at least k routes.

To create this instance, we set G to be a [V'| x 2|E’| grid graph, where we assign one
row to each vertex of V/. We assign two adjacent columns of vertices to each edge of E’,

EuroCG’'21

5:6 Route-preserving Road Network Generalization

V1 oa) I I— r—— U1
C
on I I V2
b d

® - - > - s U3

V3 ¢ = = = = S = ° V4

a b c d

Figure 5 Left: graph G’ of a CLIQUE instance. Right: corresponding grid graph G, and four
routes corresponding to the vertices of G’. Edges in a column associated with an edge of G’ have
weight 1, all other edges have weight 0

and set the weight of the |V’| horizontal edges connecting these adjacent columns to 1. All
other edges have weight 0. We create a route for each vertex of V' that lies on the row
associated with its vertex, except for the edges in columns associated with edges where the
associated vertex is the lower-indexed endpoint. For those edges, the route travels vertically
to the row associated with the higher-indexed endpoint and uses that edge instead before
vertically going back to its own row. See Figure 5. We set B = k|E| — k(k — 1)/2. That
this is a correct reduction becomes clear when we consider that if we pick k routes that do
not overlap, we need a budget of k|E|. If two selected routes overlap, the amount of budget
needed decreases by 1. If the savings total k(k — 1)/2, this means we can select k vertices
that share k(k — 1)/2 edges between them in G’, implying they are a clique of size k. It is
easy to see that in the grid graph, no edge or vertex is covered by more than two routes.

» Theorem 2.4. The RPRNG problem with the objective to mazximize the number of covered
routes is NP-hard even if G is a planar graph and the maximum ply is bounded by 2.

3 Conclusion

We have introduced a new, data-driven approach to road network generalization that can be
used when trajectory data is available as well. Theoretical analysis shows that the problem
is NP-hard for almost all variants. This paper presents our theoretical results. To assess
and validate the concept of route-preserving road network generalization, we study heuristic
approaches for solving this problem in [19]. An image of a generalization generated by one
of the heuristics can be seen in Figure 6. Theoretical future work can be done on finding an
algorithm with a proven approximation factor in the cases where the problem is NP-hard.

Acknowledgments. This research was started at the AGA workshop, January 2020, in
Langbroek (NL). M.v.d.K., M.v.K., and M.L. are (partially) supported by the Dutch Re-
search Council on the Commit2Data project “Geometric Algorithms for the Analysis and
Visualization of Heterogeneous Spatio-temporal Data” (no. 628.011.005). M.L. is partially
supported by Dutch Research Council on grant no. 614.001.504. The authors thank HERE
Technologies for providing data.

—— References

1 Stefan A. Benz and Robert Weibel. Road network selection for medium scales using an
extended stroke-mesh combination algorithm. Cartography and Geographic Information
Science, 41(4):323-339, 2014.

2 Jun Chen, Yungang Hu, Zhilin Li, Renliang Zhao, and Ligiu Meng. Selective omission
of road features based on mesh density for automatic map generalization. International
Journal of Geographical Information Science, 23(8):1013-1032, 2009.

M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Loffler, T. Ophelders 57

Ly N ‘/@b?’l

> “{tﬁé‘“.’<
- ‘a;;#!éiff':’
= g

e A H]
“’5? 4‘/‘%\
4

A
K4
B2
~w@')‘=‘_‘
5 tv‘f}@ ,
S A N AR
=

Sel
(G S
Y

Figure 6 Top: Road network of the city of Leiden. Bottom: Heuristic generalization restricted
to 30% of the total road length.

3 Markus Chimani, Thomas C. van Dijk, and Jan-Henrik Haunert. How to eat a graph:
Computing selection sequences for the continuous generalization of road networks. In Proc.
22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 243-252, 2014.

4 Cécile Duchéne, Blanca Baella, Cynthia A Brewer, Dirk Burghardt, Barbara P. Buttenfield,
Julien Gaffuri, Dominik Ké&uferle, Francois Lecordix, Emmanuel Maugeais, Ron Nijhuis,
Maria Pla, Marc Post, Nicolas Regnauld, Lawrence V. Stanislawski, Jantien Stoter, Katalin
To6th, Sabine Urbanke, Vincent van Altenaand, and Antje Wiedemann. Generalisation in
practice within national mapping agencies. In D. Burghardt et al., editor, Abstracting
Geographic Information in a Data Rich World, pages 329-391. Springer, 2014.

5 Sandor P. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell,
Ojas Parekh, and Cynthia A. Phillips. Probing a Set of Trajectories to Maximize Captured
Information. In 18th International Symposium on Ezxperimental Algorithms (SEA 2020),
pages 5:1-5:14, 2020.

6 Bin Jiang and Christophe Claramunt. A structural approach to the model generalization
of an urban street network. Geolnformatica, 8(2):157-171, 2004.

7 Bin Jiang and Christophe Claramunt. Topological analysis of urban street networks. En-
vironment and Planning B: Planning and design, 31(1):151-162, 2004.

8 Bin Jiang and Lars Harrie. Selection of streets from a network using self-organizing maps.
Transactions in GIS, 8(3):335-350, 2004.

9 Xingjian Liu, Tinghua Ai, and Yaolin Liu. Road density analysis based on skeleton parti-
tioning for road generalization. Geo-spatial Information Science, 12(2):110-116, 2009.

EuroCG’'21

5:8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Route-preserving Road Network Generalization

Xingjian Liu, F Benjamin Zhan, and Tinghua Ai. Road selection based on Voronoi diagrams
and “strokes” in map generalization. International Journal of Applied Earth Observation
and Geoinformation, 12:5194-S202, 2010.

William Mackaness. Analysis of urban road networks to support cartographic generalization.
Cartography and Geographic Information Systems, 22(4):306-316, 1995.

William A. Mackaness and Kate M. Beard. Use of graph theory to support map general-
ization. Cartography and Geographic Information Systems, 20(4):210-221, 1993.

Harvey J. Miller and Michael F. Goodchild. Data-driven geography. GeoJournal, 80(4):449-
461, 2015.

B Morisset and Anne Ruas. Simulation and agent modelling for road selection in gen-
eralisation. In Proc. ICA 18th International Cartographic Conference, pages 1376-1380,
1997.

Radan Suba, Martijn Meijers, and Peter Van Oosterom. Continuous road network gener-
alization throughout all scales. ISPRS International Journal of Geo-Information, 5(8):145,
2016.

Robert C. Thomson and Rupert Brooks. Exploiting perceptual grouping for map analysis,
understanding and generalization: The case of road and river networks. In International
Workshop on Graphics Recognition, pages 148-157, 2001.

Robert C. Thomson and Dianne E. Richardson. A graph theory approach to road net-
work generalisation. In Proc. 17th International Cartographic Conference, pages 18711880,
1995.

Robert C. Thomson and Dianne E. Richardson. The ‘good continuation’ principle of per-
ceptual organization applied to the generalization of road networks. In Proc. of the 19th
International Cartographic Conference, pages 1215—1223, 1999.

Mees van de Kerkhof, Irina Kostitsyna, Marc van Kreveld, Maarten Loffler, and Tim
Ophelders. Route-preserving road network generalization. In Proceedings of the 28th In-
ternational Conference on Advances in Geographic Information Systems, SIGSPATIAL ’20,
page 381-384, 2020.

Marc van Kreveld and Jarno Peschier. On the automated generalization of road network
maps. In Proc. 3rd International Conference in GeoComputation, 1998.

Roy Weiss and Robert Weibel. Road network selection for small-scale maps using an
improved centrality-based algorithm. Journal of Spatial Information Science, 2014(9):71—
99, 2014.

Wenhao Yu, Yifan Zhang, Tinghua Ai, Qingfeng Guan, Zhanlong Chen, and Haixia Li.
Road network generalization considering traffic flow patterns. International Journal of
Geographical Information Science, 34(1):119-149, 2020.

Qingnian Zhang. Modeling structure and patterns in road network generalization. In ICA
Workshop on Generalisation and Multiple Representation, 2004.

Qi Zhou and Zhilin Li. Evaluation of properties to determine the importance of individual
roads for map generalization. In Advances in Cartography and GIScience, volume 1, pages
459-475. Springer, 2011.

Path-Greedy Spanner in Near-Quadratic Time:
Simpler and Better

1

Paz Carmi! and Idan Tomer?

1 Ben-Gurion University of the Negev
carmip@bgu.ac.il

2 Ben-Gurion University of the Negev
idantom@post.bgu.ac.il

—— Abstract
The Path-Greedy algorithm produces high-quality spanners, having the most desirable properties

of geometric spanners both in theory and in practice. More specifically, it has a natural definition,
small degree, linear number of edges, low weight, and strong t-spanner for every ¢ > 1.

In this paper we revisit the Path-Greedy spanner and present an algorithm that computes the
Path-Greedy spanner in O(n?logn) time. This algorithm is based on Bose et al. O(n?logn)
time algorithm, however, our algorithm is easier to implement, and in practice is potentially more
efficient.

1 Introduction

Geometric spanners are fundamental structures that have attracted a great deal of research
attention in the past few decades. Given a weighted graph G and a real number ¢t > 1, a
t-spanner of G is a spanning sub-graph G* with the property that for every edge (p,q) € G
there exists a path between p and ¢ in GG, whose weight is no more than ¢ times the weight
of the edge (p, q). Thus, shortest-path distances in G* approximate shortest-path distances
in the underlying graph G, and the parameter t represents the approximation ratio. The
smallest ¢ for which G* is a t-spanner of G is known as the spanning ratio of the graph G*.

Spanners have been studied in many different settings, which depend on different aspects,
such as the type of underlying graph G, on the way in which weights are assigned to edges
in G, the specific value of the spanning ratio ¢, and on the function used to measure the
weight of a shortest path. In this paper, we concentrate on the setting where the underlying
graph is the complete geometric graph over set of points P, and a weight of an edge (p, q) is
equal to the distance d(p, ¢) between its endpoints p and ¢, such that (P, d) is a finite metric
space.

Probably one of the most studied geometric spanner is the Path-Greedy spanner in-
troduced by Althofer et al. [3], see Algorithm 1. The Path-Greedy algorithm produces a ¢-
spanning graph with linear number of edges, bounded degree and bounded weight. The main
disadvantage of the Path-Greedy algorithm is its high time complexity, which is O(n3logn).
Therefore, many attempts were made to reduce the construction time and in parallel to
compute more efficiently other types of geometric spanners.

Various experiments showed that the Path-Greedy algorithm produces spanners whose
size, weight, and maximum degree are much lower than the spanners produced by other
approaches. In [7], Das and Narasimhan showed how to construct a spanner that approxi-
mates the Path-Greedy spanner in O(nlog® n/loglogn) time. This spanner is known in the
literature as the approzimate-Greedy. In [8], Farshi and Gudmundsson showed that while the
theoretical bounds of the approximate-Greedy spanner is similar to the original Path-Greedy
spanner with respect to the number of edges, the degree, and the weight of the graph, in

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

6:2 Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better

Algorithm 1 Path-Greedy(P,t)

Input: A set P of points in the plane and a constant ¢t > 1
Output: A t-spanner G = (P, E) for P
: L < the (g) pairs of distinct points sorted in non-decreasing order of their distances
B+
: for all (p,q) € L do
7w + length of the shortest path in G between p and ¢
if 7> t-d(p,q) then
E <+~ EU{(p.q)}
end if
end for
return G = (P, E)

© P NP g AWy

practice the approximate-Greedy spanner behaves significantly worse with respect to these
properties. In [5], Bose et al. showed an algorithm that computes the Path-Greedy spanner
in O(n?logn) time. Their algorithm maintains a stack for each point to be able to restore
the Dijkstra algorithm computation. In [1, 2, 6], the authors also considered simplifying the
Path-Greedy, and introduced algorithms that are more efficient in practice, e.g., linear in
space.

In [4], Bar-On and Carmi introduced the 0-Greedy t-spanner that has the same theoretical
and practical properties as the Path-Greedy spanner. They showed a simple algorithm that
computes §-Greedy t-spanner in O(n?logn) time.

In this paper we suggest a simplification to Bose et al. [5] algorithm construction. Our
algorithm is easier for understanding and implementation. In addition, to implement our
algorithm we require to maintain simple data structures. Moreover, even though both
algorithms have the same theoretical running time, our algorithm in practice is potentially
more efficient.

2 A Simple Near-Quadratic Greedy Algorithm

In this section, we show how to simplify the algorithm presented by Bose et al. [5], which
computes the Path-Greedy spanner in near-quadratic time. The main difference is that in
our algorithm there is no need to maintain a stack for the Dijkstra re-computation for each
point. Notice that the hardest part to implement in Bose et al. [5] algorithm is the stacks,
that are needed to maintain the required information for performing the undo operations
on the Dijkstra computations.

The high-level description of our algorithm is similar to Algorithm 3.2 introduced by
Bose et al. in [5], as presented in Section 2.1

2.1 Algorithm description

The high-level description of Algorithm 2 is as follows:

(i) For each point in P, initialize an empty Dijkstra’s priority queue, and for each pair (u,v),
set its entry in the weight-matrix with the value wt(u,v) = oo if u # v, and wt(u,v) =0
otherwise.

(ii) Sort the (g) pairs of distinct points in P in non-decreasing order of their distances, and
partition them into buckets, such that bucket ¢ contains the set of pairs F; of distance

between L; and 2L;.

P. Carmi and I. Tomer 6:3

(iii) Process the buckets in the sorted order, and for each bucket i:

for each point in P, run Bounded-Dijkstra (SSSP) up to 2tL;. More precisely, for each
point p € P, run Dijkstra until the key in p’s priority queue is at most 2¢tL;; and

for each pair (u,v) € F; in sorted order, if wt(u,v) > t - d(u,v), then add (u,v) to
E and make local updates in the weight-matrix, such that all entries that correspond
to pairs in E; are equal to the shortest-path distance in the updated graph G (i.e.,
update the weight of all points that are not too “far away” from w or v).

In Algorithm 3.2 [5], after adding the edge (u,v), all the points that are in the vicinity
of at least one of the endpoints uw or v are updated. The update is performed by exe-
cuting Dijkstra-Undo and then Bounded-Dijkstra again, while updating the priority queue
and the weight-matrix for each updated point. The Dijkstra-Undo runs Dijkstra’s algo-
rithm backwards as long as the minimum key in the priority queue PQ, of p is at least
min {(t — 1/2)Li, Li)}. In order to perform the Dijkstra-Undo, the algorithm maintains a
stack 7, for each p € P containing all the operations of the SSSP from p. In our algorithm,
we find the points that lie in the vicinity of u (and similarly of v), by traversing all the
points, such that their distance from w is between 0 to 2tL; — d(u, v), scanning in increasing
distance. For each such point p (i.e., wt(p,u) < 2tL; — d(u,v)), we traverse all the points g,
such that wt(v, q) < 2tL; — [wt(p,u) + d(u,v)]; see Figure 1. Then, for each such ¢, update
wt(p, q) and wt(g,p) in the weight-matrix to the minimum between its current value and
wt(p, u) + d(u,v) + wt(v, q).

v
i

b
!

2L; — d{u, v) |

Figure 1 Updating the points in the vicinity of an added edge (u,v).

In Algorithm 3.2 [5] (Line 20), after processing all the edges of bucket i, and before
proceeding to next bucket, the algorithm performs Dijkstra-Undo to update all keys in the
priority queues of all the points which may be affected by the addition of the edges of bucket
1 to the resulted spanner. In our algorithm, to update these keys in the priority queues, we
run Procedure 3, before proceeding to the next bucket. In this procedure, for every edge
(u,v) in bucket ¢ that was added to the resulted graph, we update the priority queue PQ,
for all the points p € P, such that wt(p,u) < 2tL; or wt(p,v) < 2tL;. That is, we update
the key of u (resp., of v) in the priority queue of p to be the minimum between the current
value and wt(p, u) + d(u,v) (resp., wt(p,v) + d(u,v)). Similarly, we update the key of p in
the priority queue of u and in the priority queue of v.

To summarize, we show that one can use only local information that already exists in
the weight-matrix to update the distances between pairs of points that can be affected
from the addition of a new edge to the spanner. Actually, this modification results in less
computations required per point, since here we update only the relevant points while in [5]
this is not the case.

EuroCG’'21

6:4 Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better

Algorithm 2 Simplified-Path-Greedy (P, t)

Input: A set P of points in the plane and a constant ¢t > 1
Output: the greedy t-spanner G(P, E)
1: for all u,v € P do

2: wt(u,v) <0
3: if u # v then
4: wt(u, v) + 0o
5. end if
6: end for
7 B (Z) pairs of distinct points, sorted in non-decreasing order of their distances
8 i+ 1, Fy 0
9: while E' \(Ui_} Ex) # 0 do
10: L; + distance of shortest pair in E" \(;c_:l() Ey)
11: E; < sorted list of all pairs in E’ \(2_:10 E}) whose distances are in [L;, 2L;)
122 i1 +1
13: end while
14: [+ i—1
15 E <+
16: G < (P, E)
17: for all w € P do
18: PQ, <« priority queue storing all v € P with the key wt(u,v)
19: SW, <« data structure storing all v € P in sorted order by wt(u,v)
20: end for
21: for i<+ 1,...,l do
22: for all u € P do
23: Bounded-Dijkstra(G, u, 2t L;, PQ,,)
24: end for
25: En <+ 0
26: for all (u,v) € E; (in sorted order) do
27 if wt(u,v) > t-d(u,v) then
28: E +— EU{(u,v)}
29: EN%ENU{(U,U)}
30: for all p € SW, s.t wt(p,u) < 2tL; — d(u,v) (in sorted order) do
31: for all ¢ € SW, s.t wt(v,q) < 2tL; — [wt(p,u) + d(u,v)] (in sorted order) do
32: d wt(p,u) + d(u,v) + wi(v, q)
33: wt(p, q) + min (wt(p, q),d)
34: wi(g, p) < wi(p, q)
35: update SW,, and SW,
36: end for
37 end for
38: end if

39: end for

40: Update(Ey)
41: end for

42: return G

P. Carmi and I. Tomer 6:5

Procedure 3 Update(Ey)

Input: A set En of new edges added in each iteration in Algorithm 2
1: for each (u,v) € Ex do
2: for each p € SW, such that wt(p,u) < 2tL; do /* in sorted order */
0« wt(p,u) + d(u,v)
decrease the key of v in PQ, to J (if key > 9)
decrease the key of p in PQ, to § (if key > ¢)
update SW, and SW,,
for each p € SW, such that wit(p,v) < 2tL; do /* in sorted order */
d + wt(p,v) + d(u,v)
decrease the key of u in PQ,, to ¢ (if key > 0)
10: decrease the key of p in PQ,, to ¢ (if key > §)
11: update SW,, and SW,,

2.2 Correctness and running time

The correctness of our algorithm follows directly from the correctness of Algorithm 3.2 [5],
since they both perform the same required updates after adding an edge.

Next, we show that the running time of our algorithm is asymptotically similar to Al-
gorithm 3.2 [5]. There are two differences between our algorithm and Algorithm 3.2 [5]
with respect to the running time. The first difference is that Algorithm 3.2 [5] preforms
Dijkstra-Undo and Bounded-Dijkstra, for every point that satisfies the update condition (see
Line 28 in Algorithm 3.2 [5]), and our algorithm scans all the points in increasing order, and
then, for each pair that satisfies our condition (see Lines 29-30 in Algorithm 2), it updates
the points’ weights in O(1) time, and its SW in O(logn) time (using data structure e.g.,
AVL or Skip-List). Observe that the number of pairs examined by our algorithm is a subset
of the pairs examined by the Bounded-Dijkstra executed in Algorithm 3.2 [5]. The second
difference is that our algorithm, updates the priority queue, PQ, in the end of each bucket
for all p € P, such that d(p,u) < 2tL; or d(p,v) < 2tL; for all (u,v) that was added to the
spanner in this bucket. To go through the points in increasing order, we use a data structure
for SW (e.g., AVL or Skip-List). To maintain the priority queue, we update each point in
O(logn) time (even though implementations with O(1) time exists, for simplicity, and since
this part does not affect the overall running time, we use O(logn) updating time). Finally,
for every p € P, the number of times p can be included in such update process is bounded
by O(1/(t — 1)°@) for every bucket (as shown in Lemma 3 [5]). Maintaining the queues
and SW data structures takes O(1/(t — 1)°(@nlogn) time, since the number of buckets is
O(n). Executing Bounded-Dijkstra in the beginning of each bucket takes O(nlogn) time,
and thus, the total running time of our algorithm is O(1/(t — 1)°@n2logn).

—— References

1 S. P. A. Alewijnse, Q. W. Bouts, Alex P. ten Brink, and K. Buchin. Distribution-sensitive
construction of the greedy spanner. Algorithmica, pages 1-23, 2016.

2 Sander P. A. Alewijnse, Quirijn W. Bouts, Alex P. ten Brink, and Kevin Buchin. Computing
the greedy spanner in linear space. Algorithmica, 73(3):589-606, 2015.

3 I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete and Computational Geometry, 9(1):81-100, 1993.

4 Gali Bar-On and Paz Carmi. §-greedy t-spanner. In WADS, pages 85-96, 2017.

EuroCG’'21

6:6

Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better

Prosenjit Bose, Paz Carmi, Mohammad Farshi, Anil Maheshwari, and Michiel H. M. Smid.
Computing the greedy spanner in near-quadratic time. Algorithmica, 58(3):711-729, 2010.
Quirijn W. Bouts, Alex P. ten Brink, and Kevin Buchin. A framework for computing the
greedy spanner. In SOCG’14, page 11, 2014.

G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners.
Int. J. Comp. Geom. and Applic., 7(4):297-315, 1997.

Mohammad Farshi and Joachim Gudmundsson. Experimental study of geometric t¢-
spanners. ACM Journal of Experimental Algorithmics, 14, 2009. URL: http://doi.acm.
org/10.1145/1498698. 1564499, doi:10.1145/1498698.1564499.

Lions and contamination, triangular grids, and
Cheeger constants

Henry Adams, Leah Gibson, and Jack Pfaffinger

—— Abstract

Suppose each vertex of a graph is originally occupied by contamination, except for those vertices

occupied by lions. As the lions wander on the graph, they clear the contamination from each vertex
they visit. However, the contamination simultaneously spreads to any adjacent vertex not occupied
by a lion. How many lions are required in order to clear the graph of contamination? We give a lower
bound on the number of lions needed in terms of the Cheeger constant of the graph. Furthermore,
the lion and contamination problem has been studied in detail on square grid graphs by Brass et
al. and Berger et al., and we extend this analysis to the setting of triangular grid graphs.

Related Version arXiv:2012.06702v2

1 Introduction

In the “lions and contamination" pursuit-evasion problem [1, 2, 5], lions are tasked with
clearing a square grid graph consisting of vertices and edges. At the start of the problem,
all vertices occupied by lions are considered cleared of contamination, and the rest of the
vertices are contaminated. The lions move along the edges of the grid, and each new vertex
they occupy becomes cleared. However, the contamination can also travel along the edges
of the grid not blocked by a lion and re-contaminate previously cleared vertices. How many
lions are needed to clear the grid?

Certainly n lions can clear an n X n grid graph by sweeping from one side to the other.
One might conjecture that n lions are required to clear an n x n grid graph. However, in
general it is not yet known whether n — 1 lions suffice or not. As a lower bound, the paper [2]
proves that at least |5] + 1 lions are required to clear an n x n grid graph. The details of
the discretization certainly matter, in the following sense. For a n x n x n grid graph, one
might expect that n? lions are required, but [1] shows that when n = 3, only 8 = n? — 1
lions suffice to clear a 3 x 3 x 3 grid.

We consider the case of planar triangular grid graphs, under various models of lion
motion. Given R, ;, a planar parallelogram of height n vertices and length [vertices
triangulated by equilateral triangles, n lions suffice to clear R,, ;. However, we conjecture that
n lions do not suffice when all lions must move simultaneously. In the setting of simultaneous
motion (which we refer to as “caffeinated lions," as the lions never take a break), we show
that [32] lions suffice to clear R, ;. Furthermore, via a comparison with [1, 2], we show
that [5| lions are insufficient to clear a triangulated rhombus, in which each side of the
rhombus has length n. Lastly, for an equilateral triangle discretized into smaller triangles,
with n vertices per side, we conjecture that % lions are not sufficient to clear the graph.

In the setting of an arbitrary graph G, we give a lower bound on the number of lions
needed to clear the graph in terms of the Cheeger constant of the graph. The Cheeger
constant, roughly speaking, is a measure of how hard it is to disconnect the graph into two
pieces of approximately equal size by cutting edges [4]. The use of the Cheeger constant
in graph theory is inspired by its successful applications in Riemannian geometry [3]. Our
bound on the number of lions in terms of a graph’s Cheeger constant is quite general (it
holds for any graph), and therefore we do not expect it to be sharp for any particular graph.
We use Cheeger constants for “polite lions” where only one lion may move at a time. If we

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

7:2 Lions and contamination, triangular grids, and Cheeger constants

let G be a connected graph with vertex set V and with volume Cheeger constant g, then
if £ < %L%J g, then G cannot be cleared by k polite lions. The advantage of using the
volume Cheeger constant is that it gives a lower bound on the number of lions needed to
clear an arbitrary graph. That is not to say that the bound obtained by this method is near
the optimal number of lions. Rather, Theorems 2 and 3 gives a weak bound for any graph,
including graphs that do not have obvious symmetry that can be used to discover a better

bound.

We explain the connection to the Cheeger constant in Section 2, and give one result on
triangular grid graphs in Section 3.

2 Connection to Cheeger constant

In graph theory, the term Cheeger constant refers to a numerical measure of how much of a
bottleneck a graph has. The term arises from a related quantity, also known as a Cheeger
constant, that is used in differential geometry: the Cheeger constant of a Riemannian
manifold depends on the minimal area of a hypersurface that is required to divide the
manifold into two pieces [3]. For both graphs and manifolds, the Cheeger constant can be
used to provide lower bounds on the eigenvalues of the Laplacian (of the graph or of the
manifold). In the graph theory literature, there are several different quantities known as the
Cheeger constant, and they are each defined slightly differently. For some more background
and applications of Cheeger constants to graphs, see [4, Chapter 2]. In this section, we show
a relationship between the Cheeger constant of a graph and the number of lions needed to
clear this graph of contamination.

Let us simplify the lion and contamination problem a bit. Recall a graph with polite lions
is one in which at each turn, at most one lion can move. We will now define a new value for
our graph, which we will call the volume Cheeger constant.

» Definition 1. For a graph G, let the S be a subset of vertices and define the volume
Cheeger constant to be

. |0S|
= —_— ZS G, S 7S G)
o= SEV@ S#0 5@

where S = {v € S | uv € E(G), u ¢ S} (i.e. the set of boundary vertices), and S is the set
V(G)\ S. Note that 95 is defined differently than the vertex boundary used in [4] (for us,
0S8 is a subset of S instead of S), but this doesn’t affect the value of the volume Cheeger
constant).

For a connected graph, we have 0 < g < 1. For the upper bound, consider a connected
graph G. If |S| = 1, then min{|S|,[S|} = 1 and since G is connected, |9S| = 1. Thus any
connected graph has a volume Cheeger constant at most 1 since g takes the minimum of
all vertex subsets. For the lower bound, note that if S is neither empty nor all of V(G),
then [0S| > 1 when G is connected. If G is disconnected then g = 0 since |0S| = 0 if you
take S to be a connected component. Roughly speaking, a larger g tells us that overall the
graph has more connections; a smaller g says that the graph is easier to break into pieces.
Consider the graphs in Figure 1 for a few examples of Cheeger constants.

Henry Adams, Leah Gibson, and Jack Pfaffinger 7:3

Figure 1 From left to right, the volume Cheeger constants are g =
Cheeger constants can be realized by taking the blue vertices to be set S.

We now give lower bounds on the number of lions needed to clear a graph in terms of
the volume Cheeger constant. We do this first for polite lions, and then next for arbitrary
lions.

» Theorem 2. Let G be a connected graph with vertex set V and with volume Cheeger
constant g. If k < %L%Jg, then G cannot be cleared by k polite lions.

Proof. Suppose that k < %L“Q/—‘jg impolite lions can clear G. Since the number of cleared
vertices can increase by at most one in each step with polite lions, in the process of clearing
there must be a time ¢ satistying |C(t)| = L%J Now, by the definition of the Cheeger
constant g, we have |[0C(t)| > L%Jg Since 2k < |0C(t)], this implies by Lemma 5 from
the following sec‘Tioln that |C(t + 1)| < |C(t)|. Therefore the number of cleared vertices is

v

always at most |5 |, contradicting the clearing of G' with & lions. <

» Theorem 3. Let G be a connected graph with volume Cheeger constant g. If k < ‘Z‘—I

1%
+g’
then G cannot be cleared by k lions.

Proof. If k < 9Vl then it follows that kE2+4) < %, and hence 2k < g(M — E) This

d+g> 2 2
implies that for any x satisfying 0 < z < g, we have 2k < g(% — x). By definition of the
volume Cheeger constant, g < “\/C?SI , where S is any subset of V' of size “;—l + z. Combining

ST

these two facts implies that for any z satisfying 0 < z < g, we have 2k < g(% —x) <195|,
where S C V is any set of size |S| = % 4+ 2. By Lemma 4 from the following section the
size of the cleared set can increase by at most k£ in any step. Therefore there is some time ¢
when the number of cleared vertices is within +% of % and when |C(t + 1)| > |C(t)]. But
since 2k < |0C(t)| at this time step ¢, Lemma 5 then implies that the number of cleared
vertices cannot increase in the next set, giving a contradiction. Therefore k lions do not
suffice to clear graph G. <

The advantage of using the volume Cheeger constant is that it gives a lower bound on
the number of lions needed to clear an arbitrary graph. That is not to say that the bound
obtained by this method is near the optimal number of lions. Rather, Theorems 2 and 3
give a weak bound for any graph, including graphs that do not have obvious symmetry that
can be used to discover a better bound.

For example, if the volume Cheeger constant is ¢ = 1, which happens if G is a complete
graph, then Theorem 3 implies that at least |V|/5 lions are needed to clear the graph G. If
g = 3, then Theorem 3 says that at least |V|/9 lions are needed.

EuroCG’'21

7:4 Lions and contamination, triangular grids, and Cheeger constants

3 Insufficiency of |7 | lions on a triangulated square

We will use some of the methods and proofs from [1] to show that |5 | (non-caffeinated)
lions cannot clear R, := R, , where R,, ,, is a planar graph which forms a parallelogram of
height n vertices and length n vertices, subdivided into a grid of equilateral. In this proof,
we stretch the “rhombus” graph R,, to instead be drawn as a square triangulated by right
triangles. It should be noted that this grid holds all of the same properties as before (the
isomorphism type of the graph is unchanged).

We define S,, to be the n x n square grid graph discussed in [1]; see Figure 2. When each
square is subdivided via a diagonal edge, drawn from the top left to the bottom right, then
we obtain a graph isomorphic to R,, as shown in Figure 3.

Figure 2 The graph Ss. Figure 3 Rs with right triangles.

The following two lemmas from [1] hold in an arbitrary graph.

» Lemma 4 (Lemma 1 of [1]). Let k be the number of lions on a graph. The number of
cleared vertices cannot increase by more than k in one time step.

» Lemma 5 (Lemma 2 of [1]). Let k be the number of lions. If there are at least 2k boundary
vertices in the set C(t) of cleared vertices, then the number of cleared vertices cannot increase
in the following step: |0C(t)| > 2k implies |C(t + 1)| < |C(t)].

For the specific case of square grid graphs S,,, [1] defines a “fall-down transformation".
This transformation T takes any subset of the vertices of S,,, and maps it to a (potentially
different) subset of the same size. The first step in the fall-down transformation, roughly
speaking, is to allow gravity to act on the subset of vertices, so that each vertex falls as
far as possible towards the bottom of its column. The number of vertices in any column
remains unchanged by this step. The second step in the fall-down transformation is to then
allow a horizontal force to act on the current subset of vertices, so that each vertex moves
as far as possible to the left-hand side of its row, maintaining the number of vertices in any
row.

In the case of a square grid S, [1] proves that the fall-down transformation does not
increase the number of boundary vertices in a set:

» Lemma 6 (Lemma 4 of [1]). In the graph Sy, the fall-down transformation T is monotone,
meaning that the number of boundary vertices in a subset S of vertices from S, does not
increase upon applying the fall-down transformation.

Since the vertex set of .S, is the same as the vertex set of R,,, we immediately get a fall-
down transformation T that maps a subset of vertices in R,, to a subset of vertices in R,,.
We will show that this new fall-down transformation has the same monotonicity property,
which is not a priori clear as the boundary of a set of vertices in S,, might be smaller than
the boundary of that same set of vertices in R,. Another comment is that when defining

Henry Adams, Leah Gibson, and Jack Pfaffinger 7:5

the fall down transformation 7" on .S,,, the choice of down vs. up or of left vs. right does not
matter. But these choices do matter when defining a fall-down transformation on R,,, due
to the diagonal edges as drawn in Figures 3 and 4. We want to emphasize we have chosen
to map down and to the left; the following lemma in part depends on this choice.

» Lemma 7. Let S be a set of vertices in R,, (or equivalently, in S,). The set of boundary
vertices of T(S) in Ry, is the same as the set of boundary vertices of T(S) in S,.

Figure 4 R,,. Figure 5 5,,.

Proof. We will show that the set of boundary vertices of T'(S) in R,, is the same as the set
of boundary vertices of T'(S) in S,,. First suppose that a vertex v of T'(S) is a boundary
vertex in R,. Referring to the diagram in Figure 4, this implies that one of d,c,b or a is
not in T'(S). However, we can reduce this to the case that one of ¢ or b is not in T'(S), since
d¢ T(S)=c¢T(S), and since a ¢ T(S) = b ¢ T(S). If ¢ ¢ T(S), then v is a boundary
vertex of T'(S) in both R, and S,,. The same is true if b ¢ T(S). This proves that if v is a
boundary vertex of T'(S) in R, then it is a boundary vertex of T'(S) in S,,. But, referring
to Figure 5, if v is a boundary vertex of T'(S) in Sy, then one of ¢ or b is not in T'(.S), which
implies that v is a boundary vertex of T(S) in R, as well. Therefore the set of boundary
vertices of T'(S) in R, is the same as the set of boundary vertices of T'(S) in S,,. <

We know that T' is monotone on S,,, i.e. that the number of boundary vertices does not
increase as a result of applying T. Lemma 7 therefore immediately implies that T is also
monotone on R,, i.e. that the number of boundary vertices of a set S in R,, is no more than
the number of boundary vertices of T'(S) in R,,.

» Corollary 8. In the graph R, the fall-down transformation T is monotone, meaning that
the number of boundary vertices in a subset S of vertices from R, does not increase upon
applying the fall-down transformation.

This now brings us to the last lemma.

» Lemma 9 (Lemma 5 of [1]). Any vertex set S on R,, satisfying %2 -4 <9 < ”2—2 + 3
has at least n boundary vertices.

Proof of Lemma 9. By Lemma 6, we know that the fall-down transformation T" acts monotonically

on the number of boundary vertices in R,,. Thus the proof of Lemma 5 from [1] will also
hold for our grid graph with diagonal edges added. |

» Theorem 10. |3] lions do not suffice to clear R,,.

Proof. Let the number of lions be k& < |§]. The lions will eventually have to clear all n?
vertices. By Lemma 5, we know that |C(t 4+ 1)] — |C(t)] < k& < % for all times ¢. Thus

there must be a time ¢ where ”72 -1 < "72 + 4 and [C(t + 1) > |C(t)|. But by
Lemma 9, there are at least n boundary vertices of C(¢) at time ¢, and so Lemma 5 tells us
that |C(t +1)| < |C(t)], which is a contradiction. Thus & < |5] lions do not suffice to clear

R,. <

EuroCG’'21

7:6

—— References

1

Lions and contamination, triangular grids, and Cheeger constants

Florian Berger, Alexander Gilbers, Ansgar Griine, and Rolf Klein. How many lions are
needed to clear a grid? Algorithms, 2(3):1069-1086, Sep 2009.

Peter Brass, Kyue D Kim, Hyeon-Suk Na, and Chan-Su Shin. Escaping off-line searchers
and a discrete isoperimetric theorem. In International Symposium on Algorithms and
Computation, pages 65-74. Springer, 2007.

Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Proceedings
of the Princeton conference in honor of Professor S. Bochner, pages 195-199, 1969.

Fan R. K. Chung. Spectral graph theory. Regional conference series in mathematics.
Published for the Conference Board of the mathematical sciences by the American
Mathematical Society, 1997.

Adrian Dumitrescu, Ichiro Suzuki, and Pawet Zylifiski. Offline variants of the “lion and
man” problem: Some problems and techniques for measuring crowdedness and for safe path
planning. Theoretical Computer Science, 399(3):220-235, 2008.

A Geometric Approach to Inelastic Collapse*

Bernard Chazelle!, Kritkorn Karntikoon?, and Yufei Zheng?

1 Department of Computer Science, Princeton University
chazelle@cs.princeton.edu

2 Department of Computer Science, Princeton University
kritkorn@cs.princeton.edu

3 Department of Computer Science, Princeton University
yufei@cs.princeton.edu

—— Abstract
We show in this note how to interpret logarithmic spiral tilings as one-dimensional particle systems
undergoing inelastic collapse. By deforming the spirals appropriately, we can simulate collisions
among particles with distinct or varying coeflicients of restitution. Our geometric constructions
provide a strikingly simple illustration of a widely studied phenomenon in the physics of dissipative
gases: the collapse of inelastic particles.

1 Introduction

Collisions in a granular gas preserve momentum but not kinetic energy. Interactions are
dissipative, with the velocities of two colliding particles governed by a stochastic matrix
(84, for p < 1/2. When the coefficient of restitution, defined as r = 1 — 2p, is less than
1, the collisions are inelastic and the particles may collapse to a single point in a finite
amount of time: this intriguing phenomenon of inelastic collapse was first investigated in
one dimension by Bernu & Mazighi [2] and McNamara & Young [6]. Further studies and
extensions to a larger number n of particles were given in [1, 2, 3, 4, 5, 6, 7, 8. In the case
n = 3, inelastic collapse requires r < 7—4+/3 [4, 6, 7], while in general the requirement is that
n 2 2(In2)/(1 — r). Matching constructions for large n exist but entail intricate eigenvalue
estimates [1, 2]. We rederive these bounds by simple geometric means, and we also extend
them to other types of collisions. Our particle systems are derived from one-dimensional
projections of spiral tilings of a disk (see §2). Using different spirals allows the presence
of particles with different coefficients of restitution (see §3). The notable feature of our
arguments is to be entirely geometric.

2 The Inelastic Collapse of Identical Particles

We describe the dynamics of n identical particles moving towards the center of a disk and
colliding along the way. The one-dimensional system is derived by projection to a line. We
begin with the geometry of the system, which is a quadrilaterial tiling of the complex unit
disk by logarithmic spirals.

2.1 Spiral tilings

Fix 0 < A, <1 and let C, = { AL¢7Q|6i¢ |l € R } The curve C, consists of two logarithmic
spirals running clockwise and counterclockwise from the point e®. The family {Cato<a<ar

* This work was supported in part by NSF grant CCF-2006125.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

8:2 A Geometric Approach to Inelastic Collapse

forms two foliations of the unit complex disk D (minus the origin). Whereas no pair of
spirals going in the same direction meet, the other pairs intersect infinitely often along the
diameter bisecting their starting points. Fix an integer n > 2 and write § = 7/n. We rectify
the spiral C,, by creating the vertices)\I()k(?*a\eike for all k£ € Z; then we join consecutive pairs
by straightline segments, which produces the polygonal spiral CZ in Figure 1(i).

Figure 1 (i) The spirals C, and CZ, for a = 0 and 6 = «/3; (ii) an (n, A)-tiling for a system of
2n = 12 colliding particles.

The collection of polygonal curves {Cﬁe [0<j<n } forms an infinite sequence of nested
concentric similar 2n-gons Py := Xe?? P, where \ =)\g and Py is the outer “star" shown in
Figure 1(ii): its vertices 0 X\(1=(=1/2 ryp in counterclockwise order (0 <1 < 2n). To ensure
that the shape is indeed a star, every other vertex of P needs to be reflex, which requires
that A < cosf. This partitions the polygon P, into an infinite collection of similar convex
quadrilaterals, which forms an (n, \)-tiling. We define the fundamental ratio p := ae/ac of
the (n, A)-tiling and justify its name by noting that it is independent of the polygon Py used
to define it. Referring to Figure 1(ii), we observe that ac = 1 — Acosf and ae = Acosf — \?
and that, for any 0 < A < cos¥,

A(cos O — \)

= —-—m—m—mm—mm_mm—_ 1. 1
P 1— Acosb and O<p< (1)

2.2 Particles traveling in a disk

Place two particles at each one of the n outer vertices of Py and set them in motion along
the two incident edges with a speed equal to bc. We show below that the particles will
zigzag toward the center (as in the trajectory ¢, b, e, f, g,...) provided that the coefficient of
restitution r is equal to p < 1, where r = 1 — 2p; recall that, whenever two particles with
velocities u,v € C collide, they bounce away from each other and update their velocities as

() < ()

where 0 <p<g<landp+g=1

B. Chazelle, K. Karntikoon and Y. Zheng 8:3

» Lemma 2.1. The 2n particles travel along the edges of the tiling through pairwise collisions
if and only if the fundamental ratio p is equal to the coefficient of restitution r. If each
particle spends one unit of time on the boundary 0Py, then it travels on OP; for a duration
of 6%, where 6 = \?/p. The total travel time is bounded if and only if A < (:0150 —tan#, in
which case it is equal to 1/(1 —§).

Proof. For convenience, we tilt the tiling by 6 to put b and f on the X-axis (Figure 2). Two
particles travel from ¢ and h to b with velocity v and v respectively. The first one bounces
at b and proceeds with velocity v’ = pu+ qv. Since u, = v, and u, = —v,, we have ul, = u,
and uy, = —ruy; therefore [slope(u)| = 7|slope(u)|. By similarity, bc and ef are parallel; hence
|slope(u’)| = r|slope(ef)|. The consistency of the particle collision with the tiling means that
u’ should be parallel to the segment be. The condition thus becomes |slope(be)| = r|slope(ef)|;
hence r = mf/mb = p.

Figure 2 How colliding particles follow the edges of the (n, \)-tiling. The coefficient of restitution
must be equal to the ratio p = mf/mb.

If the particle travels from c to b in one unit of time, then u, = ac and u; =

It follows that the time ¢ for the particle to bounce from b to e is equal to me/|u,| =
%me/ac = A2/r. More generally, § is the ratio between the time spent on be and that
spent on cb. By symmetry, the same ratio § holds between the travel times along any two
consecutive edges on the trajectory. This follows from the fact that the travel time along an
edge is itself a ratio length/speed and that, from one boundary 9Py to the next, dPy1, the
ratio between consecutive lengths is independent of k and the same is true of consecutive
speeds. This implies a travel time of 6¥ on dP,. Convergence implies that § < 1, which,
by (1), means that A\ must be less than the smaller root of A% cos@ — 2\ + cos 6 (since the
larger one exceeds 1). This gives us the inequality A < (1 —sin#)/cosf. Note that this
condition is not implied by the previous requirement that 0 < A < cos#. <

By (1), setting r = p for any A < cos 6 produces a valid particle system traveling inward
through the (n, \)-tiling. Of course, the interesting question is whether this holds for any value
of the coefficient of restitution. We address this issue below in the context of one-dimensional
systems.

—TUy = —Trac.

EuroCG’'21

8:4 A Geometric Approach to Inelastic Collapse

2.3 One-dimensional collapse

The real parts of the 2n particles’ positions in the unit disk D describe a one-dimensional
particle system. To see why, it is useful to distinguish between the positive particles, those
numbered 1, ..., n counterclockwise around D, from the others, the negative particles. The
name comes from the fact that the positive (resp. negative) particles always remain in the
upper (resp. lower) complex halfplane. Each positive particle j is naturally paired with the
negative particle 2n + 1 — j, since their trajectories are conjugate. Particles can only collide
with other particles of the same sign or with their conjugates; in the latter case, the collision
does not alter the motion along the real axis. All the other collisions occur in conjugate
pairs. This shows that the real-axis motion of the positive particles alone constitutes a bona
fide collision system over n particles with the same coefficient of restitution.

» Theorem 2.2. Fiz any integer n > 2, and write 6 = w/n and ro = (1 —sinf)/(1 + sin b).
Given any positive coefficient of restitution r < rg, there is a scaling factor \ such that
the line projection of the (n, \)-tiling forms the trajectory of a one-dimensional n-particle
system exhibiting inelastic collapse. The collapse time is r/ (7’ — /\2) for any r < rg and
A =qcosf — (¢>cos® 0 — r)Y/? where ¢ = (1 +7)/2.

Proof. Setting r = p in (1) yields the quadratic equation
A —2¢(cos)\ +r = 0; (2)

hence A\ = gcos® £ /g?cos?0 —r. The roots need to be real; hence sinf < p/q or,
equivalently, r < ro. We verify that 0 < A < cos 6, as required of a valid (n, A)-tiling, which
is a consequence of \/q?cos? @ —r < pcosf. By Lemma 2.1, the collapse time is infinite if
§ =A?/r > 1and equal to Y ,-,8" =1/(1 —6) = r/(r — A?) if § < 1. The smaller root
of (2), if strictly smaller, always satisfies the latter condition while the larger one never does.
This follows from the fact that A_A; =r, gcosf > /v, and A > qcos8; hence)\ﬁ_ >r. <

In our construction, the upper bound on the coefficient of restitution is (1—sin 6)/(1+sin).
As n goes to infinity, this gives us n = 27 /(1 — r), which matches the bounds from [1, 2].
For n = 3, our construction rediscovers the classic bound of 7 — 4/3 [4, 6, 7].

3 Distinct Coefficients of Restitution

Our construction does not require a fixed scaling . Instead of placing the vertices on
circles of radius A¥ for k > 0, we can use an arbitrary decreasing radius sequence (Ag)x>0,
with A\g = 1. We assign a coefficient restitution r; for the collisions at radius Ag; the
dependency on k might reflect a gain or loss of elasticity after repeated collisions. For
notational convenience, let p = (1 — r1)/2, A = A1, and g = Ag. By reference to Figure 3, we
now kick a particle from a to b with velocity u = b — a (using complex numbers), and one
from ¢ to b with velocity v = b — ¢. Post-collision, the first particle travels from b to d with
velocity v’ = pu + (1 — p)v = o1(d — b), for some o1 > 0; hence b — ¢+ p(c — a) = o1(d — b).
Since a =1, b = Xe"?, ¢ = €?? and d = p, we divide the equation by €? and find that

A—e? 4+ 2pisinh = oy (ue‘m —\);

therefore, A — cos @ = o1(ncos@ — A) and 1 = oqu. More generally, for £ > 0, we replace A
and p by A\p and Ag41, respectively, and we scale the relations by Ax_1:
cos 0 — Ag/Ak—1

d =—— 3
an "k >\k/)\k+1 — cos 6 ()

B Ap—1 €080 — A\
Tk = Ak — Agg1cosf

B. Chazelle, K. Karntikoon and Y. Zheng 8:5

Of course, we retrieve the relation 7 = p in (1) in the case A\, = A¥ corresponding to having
fixed coefficients of restitution.

Figure 3 An irregular tiling.

3.1 Finite-time inelastic collapse

From the relation ' = o1(d — b), we see that the time spent crossing bd is precisely 1/0;.
More generally, 1/0y, is the time spent on the (k + 1)-st star polygon, given a unit travel
time on the previous polygon. It follows that the total travel duration is the sum of all the
products of the form 1/07 - - - o, which is

o~ k)
1+ Z H /\J — >\j+1 cosf (4)

=N cosf — N\
By projection onto the real line, finite-time inelastic collapse is guaranteed if
1+c¢
A > —— A\ — CAp—1,
kel Z oo M k—1

for some fixed ¢ < 1. Again, we can check that, if A\, = A¥, then bounded travel time means

that A < 00159 — tan 6, as claimed in Lemma 2.1.

3.2 Red-blue particles

Consider two species of particles, blue and red. The blue particles collide together with the
coefficient of restitution r; and the same is true of the red ones. Particles of different colors,
however, collide with the coefficient r5. Arrange the particles as usual, with the sequence
blue, blue, red, red, blue, blue, red, red, etc. Set the scaling factor A\ = p? if k = 24, and
A = M/ if k =25 + 1. By (3), we choose

., _ pfcosf —) 4 . _ Acost —p
YT XN — pcosd o 27 1—Xcos
Each factor in (4) is of the form
Aj—Ajprcos® | p(l—AcosB)/(Acost — p) = pi/ro if j is even
Aj—1cost — A; (A —pcosB)/(cos@ — X) = pu/r else.

EuroCG’'21

8:6

A Geometric Approach to Inelastic Collapse

The travel time is finite if 42 < 7179, which is

—— References

1

(A — pcos@)(1 — Acosf) < (cos — A)(Acosf —).

D. Benedetto and E. Caglioti. The collapse phenomenon in one-dimensional inelastic point
particle systems. Physica D: Nonlinear Phenomena, 132(4):457 — 475, 1999.

B. Bernu and R. Mazighi. One-dimensional bounce of inelastically colliding marbles on a
wall. Journal of Physics A: Mathematical and General, 23(24):5745 — 5754, 1990.

B. Cipra, P. Dini, S. Kennedy, and A. Kolan. Stability of one-dimensional inelastic collision
sequences of four balls. Physica D: Nonlinear Phenomena, 125(3):183 — 200, 1999.

P. Constantin, E. Grossman, and M. Mungan. Inelastic collisions of three particles on a line
as a two-dimensional billiard. Physica D: Nonlinear Phenomena, 83(4):409 — 420, 1995.

S. McNamara. Inelastic collapse. pages 267 — 277, 2002.

W.R. Young. S. McNamara. Inelastic collapse and clumping in a one-dimensional granular
medium. Physics of Fluids A: Fluid Dynamics, 4(3):496 — 504, 1992.

K. Shida and T. Kawai. Cluster formation by inelastically colliding particles in one-
dimensional space. Physica A: Statistical Mechanics and its Applications, 162(1):145 —
160, 1989.

L.P. Kadanoff. T. Zhou. Inelastic collapse of three particles. Physical review E, 54(1):623
— 628, 1996.

Max-Min 3-dispersion on a Convex Polygon

Yasuaki Kobayashi!, Shin-ichi Nakano?, Kei Uchizawa?®, Takeaki
Uno?*, Yutaro Yamaguchi®, and Katsuhisa Yamanaka®

1 Kyoto University, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

2 Gunma University, Japan
nakano@cs.gunma-u.ac. jp

3 Yamagata University, Japan
uchizawa@yz.yamagata-u.ac. jp

4 National Institute of Informatics, Japan
uno@nii.jp

5 Kyushu University, Japan
yutaro_yamaguchi@inf .kyushu-u.ac. jp

6 Iwate University, Japan
yamanaka@cis.iwate-u.ac. jp

—— Abstract

Given a set P of n points and an integer k, we wish to place k facilities on points in P so that the
minimum distance between facilities is maximized. The problem is called the k-dispersion problem,
and the set of such k points is called a k-dispersion of P. Note that the 2-dispersion problem
corresponds to the computation of the diameter of P. Thus the k-dispersion problem is a natural
generalization of the diameter problem. In this paper we consider the case of k = 3, which is the
3-dispersion problem, when P is in convex position. We give an O(n?)-time algorithm to compute
a 3-dispersion of P.

1 Introduction

The facility location problem and many of its variants have been studied [11, 12]. Typically,
given a set P of points in the Euclidean plane and an integer k, we wish to place k facilities
on points in P so that a designated function on distance is minimized. In contrast, in the
dispersion problem, we wish to place facilities so that a designated function on distance is
maximized.

The intuition of the problem is as follows. Assume that we are planning to open several
coffee shops in a city. We wish to locate the shops mutually far away from each other to avoid
self-competition. So we wish to find k points so that the minimum distance between the
shops is “maximized”. See more applications, including result diversification, in [9, 20, 21].

Now, we define the maz-min k-dispersion problem. Given a set P of n points in the
Euclidean plane and an integer k with k < n, we wish to find a subset S C P with |S| =k
in which the cost cost(S) = min, ,eg d(u,v) is maximized, where d(u,v) is the distance
between v and v in P. Such a set S is called a k-dispersion of P. This is the max-min
version of the k-dispersion problem [20, 24]. Several heuristics to solve the problem are
compared [14]. The max-sum version [6, 7, 8, 9, 10, 15, 17, 20] and a variety of related
problems [4, 6, 10] are studied.

The max-min k-dispersion problem is NP-hard even when the triangle inequality is satis-
fied [13, 24]. An exponential-time exact algorithm for the problem is known [2]. The running
time is O(n**/31logn), where w < 2.373 is the matrix multiplication exponent.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 79, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

9:2 Max-Min 3-dispersion on a Convex Polygon

Figure 1 An example of 3-dispersion. {z,y, z} is a 3-dispersion.

The problem in the D-dimensional Euclidean space can be solved in O(kn) time for
D =1 if a set P of points are given in the order on the line and is NP-hard for D = 2 [24].
One can also solve the case D = 1 in O(nloglogn) time [3] by the sorted matrix search
method [16] (see a good survey for the sorted matrix search method in [1, Section 3.3]), and
in O(n) time [2] by a reduction to the path partitioning problem [16]. Even if a set P of
points are not given in the order on the line the running time for D = 1 is O((2k?)*n) [5].
Thus if k is a constant we can solve the problem in O(n) time.

If P is a set of points on a circle, and the points in P are given in the order on the
circle, and the distance between them is the distance along the circle, then one can solve
the k-dispersion problem in O(n) time [23].

For approximation, the following results are known. Ravi et al. [20] proved that, unless P
= NP, the max-min k-dispersion problem cannot be approximated within any constant factor
in polynomial time, and cannot be approximated with a factor less than two in polynomial
time when the distance satisfies the triangle inequality. They also gave a polynomial-time
algorithm with approximation ratio two when the triangle inequality is satisfied.

When k is restricted, the following results for the D-dimensional Euclidean space are
known. For the case k = 3, one can solve the max-min 3-dispersion problem in O(n?logn)
time [18]. For k = 2, the 2-dispersion of P corresponds to the computation of the diameter
of P, and one can compute it in O(nlogn) time [19].

In this paper we consider the case where P is a set of points in convex position.

and d is the Euclidean distance. See an example of a 3-dispersion of P in Figure 1. By
the brute force algorithm and the algorithm in [18] one can compute a 3-dispersion of P in
O(n?) and O(n?logn) time, respectively, for a set of points on the plane. In this paper we
give an algorithm to compute a 3-dispersion of P in O(n?) time using the property that P
is a set of points in convex position.

2 Preliminaries

Let P be a set of n points in convex position on the plane. In this paper, we assume n > 3.
We denote the Euclidean distance between two points u,v by d(u,v). The cost of a set
S C P is defined as cost(S) = min, ,es d(u,v). Let S be the set of all possible three points
in P. We say S € Ss is a 3-dispersion of P if cost(S) = maxg/es, cost(S’).

We have the following two lemmas.

» Lemma 2.1. If a triangle with corner points p;, pr,pe satisfies d(p;,p,) > L, d(p;,pe) > L
and d(pe,pr) < L for some L, then Zpgp;p, < 60°.

Y. Kobayashi et al. 9:3

(a) (b)

Figure 2 Illustrations for the square submatrix D; of D for p;.

» Lemma 2.2. If a triangle with corner points p;, p,,pe satisfies d(pi,pr) < L, d(p;,pe) < L
and d(pe,pr) = L for some L, then Zpgp;p, > 60°.

3 Algorithm

Let P = (pl,pg, .
clockwise in this order. Let D be the distance matrix of the points in P, that is, the element
at row y and column x is d(py,ps). Let C1 = {d(pi,p;) | 1 <1i < j < n}. The cost of a
3-dispersion in P is the distance between some pair of points in P, so it is in Cj.

The outline of our algorithm is as follows. Our algorithm is a binary search and proceeds
in at most 2logn stages. For each stage j = 1,2,...,k, where k is at most 2logn, we
(1) compute the median r; of C;, where C; is a subset of C;_1, which is computed in the
(j — 1)st stage (except the case of j = 1), (2) compute n square submatrices of D defined
by r; along the main diagonal in D, then (3) we check if some square submatrix among
them has an element greater than or equal to r;, or not. We prove later that at least one
square submatrix above has an element greater than or equal to r; if and only if P has a
3-dispersion with cost 7; or more. If the answer of (3) is YES then we set C 11 as the subset
of C; consisting of the distances greater than or equal to r;, otherwise we set C;;1 as the
subset of C; consisting of the distances less than r;. Note that in either case the cost of a
3-dispersion of P is in C;y; and |Cj41| < |C}]/2 holds. Since the size of Cjy; is at most
half of C; and |C| < n?, the number of stages is at most logn? = 2logn.

Now, we explain the details of each stage. For the computation of the median in (1), we
simply use a linear-time median-finding algorithm [22].

Next, we explain the detail of (2) for each stage j. Given r;, for each p; € P, we compute
the first point, say s; € P, on the convex polygon with d(p;,s;) > r; when we check the
points clockwise from p;. Similarly, we compute the first point, say ¢; € P, on the convex
polygon with d(p;,t;) > r; when we check the points counterclockwise from p;. See such

,Pn) be the set of points in convex position and assume that they appear

an example in Figure 3. Note that, when we check the points clockwise from s; to t;, for
some point, say pe, d(pi,pe) < rj may hold. See Figure 3. For each p; we define a square
submatrix D; of D induced by the rows s;, ..., t; and the columns s;, ...
Note that D; is located in D along the main diagonal. The square submatrix D; may appear
in D as four separated squares if it contains p; on the clockwise contour from s; to t;. See
Figure 2(b).

If we search each s; independently by scanning then total running time for the search of
51,82,...,8, is O(n?) in each stage, and O(n?logn) in the whole algorithm. We are going
to improve this. Since s;4; may appear before s; on the clockwise contour (See Figure 4)

,ti. See Figure 2(a).

EuroCG’'21

9:4 Max-Min 3-dispersion on a Convex Polygon

Figure 3 An example of s; and ¢; for p;. The drawn circle is a circle with the center of p; the
radius of length r;.

Figure 4 s;.1 may appear before s; on the clockwise contour.

the search is not so simple.

We estimate the total number of distance checks for computing s; of p; for each i =
1,2,...,n in stage 1. Given 71, we check each point clockwise starting at p;, and s; is the
first point from p; which has the distance r; or more. It can be observed that the total
number of checks for the distance in stage 1 is at most n + [C1]/2 < n + n?/2. In the
estimation, n checks are required for the pairs of (s;,p;) for every ¢ = 1,2,...,n and |Cy|/2
checks are required for the pairs (p,p;) which satisfies that p appears between p; and s;
clockwise and d(p,p;) < ri, for every i = 1,2,...,n. Remember that r; is the median of
distances in C7. Then, in each stage j = 2,3,...,k (k < 2logn), given r;, if the answer to
(3) of the preceding stage j — 1 is YES then we check each point clockwise starting at s; of
the preceding stage j — 1 (since r; > r;_1 holds, all points before s; of the preceding stage
are within distance r; from p;), otherwise we check each point clockwise starting again at
the starting point of the preceding stage j — 1. In either case we check at most n + n?/27
points in total for the search for si,ss,...,s, in the stage j, and at most 2nlogn + 2n?
points for the whole algorithm. Note that the total number of checks in each stage j is n
for s1,82,...,8, plus |C;]/2 < n?/27 for the points with distance less than r; from its p;.

Now, we give a lemma mentioned in (3). Assume that we are at stage j, and s; and t;
for p; are given. If there is a set of three points in P containing p; with cost r; or more,
then the square submatrix D; has an element greater than or equal to r;. The reverse may
be wrong. If the submatrix D; for some p; has an element greater than or equal to r; at row
y and column z, it only ensures d(ps,py) > r;. That is, d(p;, pz) < r; and/or d(p;,py) < 15
may hold. We show that this situation cannot occur in the following lemma.

» Lemma 3.1. The square submatriz D; of stage j has an element greater than or equal to

Y. Kobayashi et al. 9:5

Figure 5 An illustration for Lemma 3.1.

r; if and only if there is a set of three points S C P including p; with cost(S) > r;.

Proof. If there is a set of three points S C P including p; with cost(S) > r; then clearly
the square submatrix D; of stage j has an element greater than or equal to ;.

We only prove the other direction, that is, if the square submatrix D; of stage j has an
element greater than or equal to r; then there is a set of three points S C P including p;
with cost(S) > r;. Assume that D; has an element greater than or equal to r; at row y and
column z, that is d(p,, py) > r;. We have the following four cases and in each case we show
that there exists a set S of three points such that cost(S) > r;.

Case 1: d(p;,py) > r; and d(p;, py) > 7.
The set S = {p;, pz, py} has cost(S) > r;.

Case 2: d(p;,ps) < r; and d(p;,py) < 7j.

We show that, for S = {p;, s;,t;}, cost(S) > r; holds. We assume for a contradiction
that d(s;, t;) < r; holds. Then, we have Zs;p;t; < 60° by Lemma 2.1 and Zp.p;p, > 60° by
Lemma 2.2. This is a contradiction to the convexity of P.

Case 3: d(pi,ps) < r; and d(p;, py) > ;.

In this case, we show that the set {p;, s;,p,} attains cost(S) > r;. Since, d(p;,py) > 7
and d(p;, s;) > r;, we have to prove d(s;,py) > 7.

Assume for a contradiction that d(s;,p,) < r; holds. See Figure 5. Now, we first show
that {s;,ps,py} forms an obtuse triangle with the obtuse angle p,, below. We focus on
the rectangle consisting of p;, py, pz, and s;. Since d(p;,py) > r; and d(p;, s;) > rj, and
d(s;,py) < rj, we have Zs;p;p, < 60° by Lemma 2.1. Let p’ be the point on the line
segment between p; and s; with d(p;,p’) = r;. Since Zp;p'p, < 90° holds, we can observe
that Zp;sip, < 90° holds. Since d(p;,py) > 75, d(pe,py) > 15, and d(pi,ps) < rj, we
have Zp;pyp, < 60° by Lemma 2.1. Now, the sum of the internal angles of the quadrangle
consisting of p;, s;, pz, and p, implies that Zs;pyp, > 150°, and {s;,ps,py} are the points
of an obtuse triangle with obtuse angle at p,. However d(p,,py) > r; and d(s;,py) < 75,
which is a contradiction.

Case 4: d(p;,ps) > r; and d(p;, py) < ;.
Symmetry to Case 3. Omitted. o

Now, we are ready to describe our algorithm and the estimation of the running time.
First, as a preprocessing, we construct the set C1 = {d(p;,p;) | 1 <1 < j < n} of distances
and n x n distance matrix D. Next, we repeat the following stage for each j = 1,2,... k,
where k£ < 2logn. (1) we compute the median r; of C;, (2) compute s; and ¢; of p; for

EuroCG’'21

9:6 Max-Min 3-dispersion on a Convex Polygon

i =1,2,...,n, and (3) check whether there exists an index ¢, (1 < i < n), such that the
maximum value of D; is greater than or equal to 7;. Then, if such i exists, we set Cj41 =
{d(pi,pj) € C; | d(pi,pj) > r;}, otherwise, we set Cj11 = {d(ps,p;) € C; | d(pi,pj) <15}

The analysis of the running time is as follows. The preprocessing can be done in O(n?)
time. For (1), we can compute the median r; of stage j in O(n/27~!) time by using a linear-
time median-finding algorithm [22], and hence O(n?) time for the whole algorithm. The
computation for (2) can be done in O(n?) time in the whole algorithm, as described above.
For (3), after O(n?)-time preprocessing for D, we can compute the maximum element in the
given submatrix in D in O(1) time for each query by using the range-query algorithm [25],
so we need O(n) time for each stage and O(nlogn) time for the whole algorithm. (For
a separated square as shown in Figure 2(b) we need four queries but total time is still a
constant.)

Now, we have our main theorem.

» Theorem 3.2. One can compute a 3-dispersion of P in O(n?) time if P is a set of n
points in convex position.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers JP18HO0-
4091, JP19K11812, JP20H05793, JP20H05962, JP20K19742. The fourth author is also sup-
ported by JST CREST Grant Number JPMJCR1401.

—— References

1 P. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput.
Surv., 30:412-458, 1998.

2 T. Akagi, T. Araki, T. Horiyama, S. Nakano, Y. Okamoto, Y. Otachi, T. Saitoh, R. Uehara,
T. Uno, and K. Wasa. Exact algorithms for the max-min dispersion problem. Proc. of FAW
2018, LNCS 10823:263—-272, 2018.

3 T. Akagi and S. Nakano. Dispersion on the line. IPSJ SIG Technical Reports, 2016-AL-
158-3, 2016.

4 K. Amano and S. Nakano. An approximation algorithm for the 2-dispersion problem.
IEICE TRANS. INF.SYST., E103-D:506-508, 2020.

5 T. Araki and S. Nakano. The max-min dispersion on a line. Proc. of COCOA 2018, LNCS
11346:672-678, 2018.

6 C. Baur and S. P. Fekete. Approximation of geometric dispersion problems. Proc. of
APPROX 1998, pages 63-75, 1998.

7 B. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-clique algo-
rithm using factor-revealing LPs. Algorithmica, 50:42-59, 2009.

8 A. Cevallos, F. Eisenbrand, and R. Zenklusen. Max-sum diversity via convex programming.
Proc. of SoCG 2016, pages 26:1-26:14, 2016.

9 A. Cevallos, F. Eisenbrand, and R. Zenklusen. Local search for max-sum diversification.
Proc. of SODA 2017, pages 130-142, 2017.

10 B. Chandra and M. M. Halldorsson. Approximation algorithms for dispersion problems. J.
of Algorithms, 38:438-465, 2001.

11 Z. Drezner. Facility location: A Survey of Applications and Methods. Springer, 1995.

12 7. Drezner and H.W. Hamacher. Facility Location: Applications and Theory. Springer,
2004.

13 E. Erkut. The discrete p-dispersion problem. FEuropean Journal of Operational Research,
46:48-60, 1990.

Y. Kobayashi et al. 9:7

14

15

16

17

18

19

20

21

22

23

24

25

E. Erkut, Y. Ulkusal, and O. Yenicerioglu. A comparison of p-dispersion heuristics. Com-
puters € Operational Research, 21:1103-1113, 1994.

S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight cliques.
Algorithmica, 38:501-511, 2004.

G. Frederickson. Optimal algorithms for tree partitioning. Proc. of SODA 1991, pages
168-177, 1991.

R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion.
Operation Research Letters, 21:133-137, 1997.

T. Horiyama, S. Nakano, T. Saitoh, K. Suetsugu, A. Suzuki, R. Uehara, T. Uno, and
K. Wasa. Max-min 3-dispersion problems. Proc. of COCOON 2019, LNCS 11653:291-300,
2019.

F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer-
Verlag, 1985.

S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42:299-310, 1994.

M. Sydow. Approximation guarantees for max sum and max min facility dispersion with
parameterised triangle inequality and applications in result diversification. Mathematica
Applicanda, 42:241-257, 2014.

R. L. Rivest T. H. Cormen, C. E. Leiserson and C. Stein. Introduction to algorithms, Third
Edition. MIT Press, 2000.

K. H. Tsai and D. W. Wang. Optimal algorithms for circle partitioning. Proc. of COCOON
1997, LNCS 1276:304-310, 1997.

D. W. Wang and Y.-S. Kuo. A study on two geometric location problems. Information
Processing Letters, 28:281-286, 1988.

H. Yuan and M. J. Atallah. Data structures for range minimum queries in multidimensional
arrays. Proc. of SODA 2010, pages 150-160, 2010.

EuroCG’'21

The maximal number of 3-term arithmetic
progressions in finite sets in different geometries

Itai Benjamini' and Shoni Gilboa?
1 Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001,
Israel

2 Department of Mathematics and Computer Science, The Open University of
Israel, Raanana 4353701, Israel

—— Abstract

Green and Sisask showed that the maximal number of 3-term arithmetic progressions in n-element
sets of integers is [n2/21; it is easy to see that the same holds if the set of integers is replaced
by the real line or by any Euclidean space. We study this problem in general metric spaces,
where a triple (a,b, ¢) of points in a metric space is considered a 3-term arithmetic progression if
d(a,b) = d(b,c) = 3d(a,c). In particular, we show that the result of Green and Sisask extends to any
Cartan-Hadamard manifold (in particular, to the hyperbolic spaces), but does not hold in spherical
geometry or in the r-regular tree, for any r > 3.

Related Version arXiv:2011.04410

1 Introduction

It was shown in [6, Theorem 1.2] that the maximal number of 3-term arithmetic progressions in
n-element sets of integers is [n?/2] (counting increasing, decreasing and constant progressions).
Combined with some tools from additive combinatorics, this result was used in [6] to obtain
their main result that [n?/2] is also the maximal number of 3-term arithmetic progressions
in n-element subsets of the additive group Z/pZ for prime p, provided that n/p is smaller
than some absolute constant. Additive structure is probably the most natural context of
arithmetic progressions, but it may be viewed also as a metric notion, which is the direction
we pursue here; we study the maximal number of 3-term arithmetic progressions in n-element
subsets of various metric spaces and examine how it relates to geometric properties of these
spaces.

» Definition 1.1. Let M be a metric space. We say that (a,b,c) € M3 is a 3-term arithmetic
progression in M if dps(a,b) = dar(b,c) = $dar(a, c), where dyy is the metric of M. For any
set A C M, let

AT pm(A) :={(a,b,c) € A3 | dys(a,b) = dpr(b,c) = %dM(a,c)}
be the set of 3-term arithmetic progressions in the set A. For every positive integer n, let
(M) i= max{| ATy (A)] : A C M, |A] = n}
be the maximal number of 3-term arithmetic progressions in n-element subsets of M.

» Observation 1.2. Note that (b,b,b) € AT p(A) for every b € A and that if (a,b,c) €
AT p(A), then (¢,b,a) € AT p(A) as well.

As already mentioned, it was shown in [6] that p,,(Z) = [n?/2] for every n, and the same
argument shows that for every n,

pn(R) = [n?/2]. (1)

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

10:2 Maximal number of 3-term arithmetic progressions in different geometries

This yields, by a simple projection argument, that the same is true for Euclidean spaces of
any dimension. We show that this extends to a rather large class of metric spaces. First,
let us recall some basic notions. Let M be a metric space; a curve v : I — M, where [is a
connected subset of the real line, is a geodesic if dps(y(y),y(x)) = y — x for every x < y in I;
aset I' C M is a geodesic segment with endpoints p, q if there is a geodesic v : [a,b] = M
such that T' = v([a,b]), p = v(a) and ¢ = ~(b); the metric space M is uniquely geodesic if
any two distinct points in M are the endpoints of a unique geodesic segment; finally, a curve
~v: I — M, where I is a connected subset of the real line, is a local geodesic if around every
a € I there is an open interval I, such that the restriction of v to I NI, is a geodesic.

» Theorem 1.3. Let M be a uniquely geodesic Riemannian manifold in which every local
geodesic is a geodesic. Then, j,(M) = [n?/2] for every n; moreover, any set A of n points
in M for which |AT p(A)| = [n?/2] is contained in the image of a geodesic.

The proof of Theorem 1.3 is given in section 2.

» Remark. In particular, Theorem 1.3 applies to the hyperbolic spaces, and more generally,
to any Cartan—Hadamard manifold, i.e., complete simply connected Riemannian manifold
that has everywhere nonpositive sectional curvature (see, e.g., [1, 4]). However, the result
does not extend to the wider class of Hadamard spaces, i.e., complete metric spaces of global
nonpositive curvature, in the sense of A. D. Alexandrov (note that each such metric space is
uniquely geodesic, and every local geodesic in it is a geodesic; see, e.g., [2, 3]). For instance,
let T, be the (discrete) r-regular tree, r > 2, equipped with the graph metric, and let T, be
the corresponding metric graph, where all the edges have unit length, which is a Hadamard
space. A simple computation shows that for every ball A in T,

272

(1 (r—2) 5 2(r—2) 2
|AT T, (A)] = (2 +) |AI* + T'A‘ + ol

Since obviously pn(T,) > yun(T,) for every n, it follows that for every r > 3,
. Nn(TT) . Nn(Tr> 1 (7“ - 2)2 1 T |_7”L2/2~|
fmsup =z 2 s = 5 2 5+ g 2 =M e

Next, we consider the unit circle S' = {u € R? : |u| = 1}, with respect to the arc length
metric.

» Theorem 1.4. For every n # 2,

nmod 4 = 0,

n nmod 4 = 1,

[T

1
nsl :777‘2_’_
Hn(S7) 2 2 nmod 4 = 2,
1

5n—1 nmod4=3.
The proof of Theorem 1.4 is given in section 3.
By considering subsets of the unit sphere S? = {u € R3 : |u| = 1} that are composed of
an appropriate set of n — 2 points on a great circle of the sphere and the pair of respective
poles, it is simple to show that for every n > 2,

2n—4 mnmod4 =0,
1, J5n—8 nmod4=1,
-n® +
2 3n—6 mnmod4d =2,

gn—7 n mod 4 = 3.

:un(sz) >

I. Benjamini and S. Gilboa 10:3

We believe that this lower bound for j,,(S?) is tight for every n > 2. Note that combining
(2) with Theorem 1.4 yields that p,,(S?) > u,(S*) for every n > 5.

2 Proof of Theorem 1.3

Theorem 1.3 will follow from the following, more general, theorem.

» Theorem 2.1. Let M be a metric space, and let L be a family of subsets of M ; we will

refer to any set in L as a ‘line’. Assume that the following conditions hold:

1. Fach line in L is isometric to a subset of the real line.

2. For any two distinct points in M there is a unique line in L containing them both.

3. For every nonconstant 3-term arithmetic progression (a,b,c) in M, the points a,b,c lie
on a common line in L (which is obviously unique, by the previous condition).

Then, p,(M) < [n2/2] for every n; moreover, if u,(M) = [n?/2], then any set A of n

points in M for which |AT pr(A)| = [n?/2] is contained in a line in L.

Proof. Let A be a set of n points in M.

If A is contained in a line L € £, then since L is isometric to a subset of the real line, it
follows from (1) that [AT a(A)| < pn(L) < pn(R) = [n?/2].

Assume that A is not contained in a line in £. For every L € L, let rp, := |AN L|. Let
La:={L € L |ry > 2} be the set of lines ‘determined’ by the set A. For every L € L4,
since L is isometric to a subset of the real line, it follows from (1) that

ATs(AN D) — 1 < jir, (B) — g = M = (1) -2 < (7)1 ©

For any two distinct points of A, there is a unique line in £ 4 containing them both. Therefore,

= (0)-6) g

and moreover, since the points in A are not all on a single line, it follows from Fisher’s
inequality [5] that
|Lal = n. (5)

For each nonconstant (a, b, c) € AT pr(A), there is a unique line in £4 containing all three
points a, b, c. Hence,

AT w(A) ==Y (ATm(ANL)| = rp).

LelLa

Therefore, by (3), (4) and (5),

oo 2 (2)) =) 0= ()

and hence, |AT p(A4)| < () < [n?/2], which concludes the proof. <

We proceed to prove Theorem 1.3. Consider the family of ‘lines’
L:={~v(I)|~v:I— M is a maximal geodesic},

where a geodesic is maximal if it cannot be extended to a geodesic with a larger domain.

EuroCG’'21

10:4 Maximal number of 3-term arithmetic progressions in different geometries

Any geodesic segment in M is contained in a unique line in £. Indeed, let ' be a geodesic
segment in M, let p, ¢ be its endpoints and let § := dps(p,q). There is a unique geodesic
v : [0,8] = M such that v([0,d]) =T, v(0) = p and v(d) = ¢. Since M is a Riemannian
manifold, v may be uniquely extended to a maximal local geodesic 4 : I — M (i.e., a local
geodesic that cannot be extended to a local geodesic with a larger domain). Since each
local geodesic in M is a geodesic, it follows that 4(I) is the unique line in £ containing the
geodesic segment T.

Let us verify that the metric space M and the family £ of subsets of M satisfy all the
conditions of Theorem 2.1. For any geodesic v : I — M, the set v(I) is isometric to the
subset I of the real line; in particular, every line in £ is isometric to a subset of the real line.
For any two distinct points p, ¢ in M there is a unique geodesic segment I' with endpoints
P, q, since M is uniquely geodesic; the unique line in £ containing I' is obviously the unique
line in £ containing both p and ¢. Finally, if (a,b,¢) is a nonconstant 3-term arithmetic
progression in M, then it is straightforward to show, since das(a,b) + dps(b, ¢) = dar(a,),
that the union I' of a geodesic segment with endpoints a,b and a geodesic segment with
endpoints b, ¢ is necessarily a geodesic segment with endpoints a, ¢; hence, the points a, b, ¢
lie on the line in £ containing I'.

Theorem 1.3 now follows from Theorem 2.1, upon taking an arbitrary nonconstant
geodesic v : I — M and observing that for every n we may find an n-term arithmetic
progression A,, C I and then, p,(M) > pun(y(I)) = pn(I) > |ATr(A,)| = [n2/2].

3 Proof of Theorem 1.4

For every pair of distinct points a,b in S1, let C,; be the open arc of S! from a to b
counterclockwise, and let M, ; be the midpoint of this arc.

First, we prove the lower bound in Theorem 1.4. We say that a set {p1,p2,...,pn} of
n > 2 points in S', where the points p1,pa, ..., pn are ordered counterclockwise, is evenly
spread around the circle if dgi(p1,p2) = -+ = ds1(Pn—1,pn) = ds1(pn,p1) = 27/n. Let
Fi:={{a} | a € S'} and for every n > 2, let F,, be the family of all n-element subsets of S*
that are evenly spread around the circle. For every positive integer n which is divisible by 4,
let p,, be the rotation of S* by an angle of 7/n (counterclockwise) and let

FUU={A\{a} | A€ F,, a € A},
FIm2={A\ {a,b} | A€ F,, a,b e A such that dg:(a,b) < 5 and My, My, € A},
Fi={AU{a} | A € Fn, pula) € A},

FHA.—fAU{a,b} | A€ Fp, a,b e S* such that p,(a), pn(b), My, Myq € A}
A straightforward computation yields that for every positive integer n,
|AT s1(A)| = 2n[n/4] +n for any A € F,,, (6)

and for every positive integer n which is divisible by 4,

AT g1 (A) =2 (n—1)2+Li(n-1) -1 for any A € Fi1, (7a)
|AT 51(A)| =3(n—2)% +2 for any A € FL-2), (7b)
AT s1(A)| =3(n+1)2 + L(n+1) for any A € FLr, (7c)
AT s1(A)| =3 (n+2)% +2 for any A € FLr2). (7d)

I. Benjamini and S. Gilboa 10:5

The lower bound in Theorem 1.4 follows since if n mod 4 = 0, then |AT g1(A)| = 4n?+n for
any A € Fy, by (6); if n mod 4 = 1, then [AT s1(A)| = in?+ Jn for any A € F, Uf,[:fl], by
(6) and (7c); if n mod 4 = 2 and n > 2, then [AT g1 (A)| = $n?+2 for any A €]-',[;_22] Uf,[:i],
by (7b) and (7d); finally, if n mod 4 = 3, then |AT s1(A)| = 4n*+ n—1 for any A € .7-",[;11],
by (7a).

We proceed to prove the upper bound in Theorem 1.4. Let A be a set of n points in S™.

For any b € A, denote
wa(d) == [{(z,y,2) € AT51(4) 1y = b}|.
Note that w4 (b) is odd for every b € A, by Observation 1.2; hence, w4 (a) + Jw4(b) is an
integer for every a,b € A. Denote
Pi={{a,b} CA|a#b, [|[ANCup| — [ANCyal| <1}

» Lemma 3.1. For any {a,b} € P,

swala) + zwa(b) < [5] + 1. (8)
Proof. Denote

Hy = f{r €S |dgi(a,2) < 3}, Hyi={we S |dsi(bx) < 5}.

We may assume that the arc C, is at least as long as the arc C 4, and that if the two
arcs have the same length then [ANCy 3| < |[ANChql.

If (b,b,b) # (x,b,y) € AT s1(A), then z,y are both in AN Hy, and at least one of them is
in the arc Cy . Hence, wa(b) < 1+2[ANHyNCypl. Similarly, wa(a) < 1+2[ANH,NCypl
and hence,

%wA(a) + %wA(b) <1+|ANH,N Ca,b| +|ANHyN Ca,b|- (9)

If the points a, b are antipodal, then H,UH;, = S, H,NH, = {Myp, My o}, |ANC, | = L"T_ﬂ
and hence,

JANHo N Capl + [ANH, N Cop| = |ANCop| + [AN{Map}| < [252] +1=|%]. (10)
If the points a,b are not antipodal, then the set Cy, N H, N Hp is empty and hence

JANH, N Capl +[ANHyNCop| <|ANCop| <[22 =[%]-1< %] (11)

Combining (9), (10) and (11) yields (8). <

» Observation 3.2. By examining closely the proof of Lemma 3.1, it follows that if {a,b} € P
and %wA(a) + %wA(b) = § + 1 (in particular, n is even), then the points a,b are antipodal,
the set A is invariant under the reflection of R? through the line through the points a,b and

moreover, the points Mgy, My o are in A.

If n is odd, then by (8),

|AT s1(A4)| = ZwA(b) = Z (3wa(a) + 3wa(d)) < [P (%5* +1) = 302 + 3n,

beA {a,b}eP

which yields the desired upper bound if n mod 4 = 1. If n mod 4 = 3, then the desired upper
bound follows since [AT g1(A)| — n is even, by Observation 1.2, whereas (3n? + %n) —n=

n”T’l is odd in this case.

EuroCG’'21

10:6 Maximal number of 3-term arithmetic progressions in different geometries

If n is even, then

AT s1(A)] => wa®) =2 > (Jwala) + Jwa(d)). (12)

beA {a,b}eP

Hence, if n mod 4 = 0 then [AT s1(A)| < 2|P| (2 + 1) = 4n* +n, by (8), as desired. Finally,
suppose that n mod 4 = 2 and let

Py = {{a,b} eP] %wA(a) + %wA(b) =3+ 1}.
If |Po| < 1, then by (12) and (8),
AT 51 (A)| < 2[Po| (3 +1) +2(IP| = [Pol) & = $n? +2[Po| < $n? +2

as desired. To conclude the proof we will show that if 7 := [Py| > 1, then |AT g1 (A)| < 4n?+2.
Note that by Observation 3.2, each member of Py is a pair of antipodal points. Suppose that

Po = {{pi,pr+i}}::_()1, where the points pg,p1,...,p2-—1 are ordered counterclockwise. It
follows from Observation 3.2 that the set {po,p1,...,par—1} is evenly spread around the circle
and moreover, 7 is odd, since n is not divisible by 4. Let s := Tgl. For every 0 < ¢ < 2r —1,
the point

a; = Mpiyp(i+1) mod 2r Mp(ifs) mod 2rP(i+1+s) mod 2r

is in A, by Observation 3.2, since {P(;—s) mod 2r> P(i+1+s) mod 2r} € Po. Using Observation 3.2
once more, it follows that there are mg, m; such that for every 0 <i < 2r — 1,

|A N Cpmai‘ = M mod 2 |A N Oai7p(i+1) mod 27‘| = MM (i41) mod 2-

Necessarily mg # my, since n is not divisible by 4. Now it is simple to show, by using an
argument similar to the one used to prove Lemma 3.1, that for every 0 <i < 2r — 1,

swala;) + swa(b;) < 2 -1,

2r—1
i=0

where b; is the point in A for which {a;,b;} € P. Hence, if we denote Py := {{a;,b;}}
then by (12) and (8),

(AT s1(A)] < 2[Po| (5 +1) +2/P1] (5 —1) + 2(IP| = [Pol — [P1]) §
=1n2+2(|Po| — |P1]) < in% +2.

Acknowledgments. We thank Lev Buhovski, Dan Hefetz, Bo’az Klartag and Pierre Pansu
for fruitful discussions.

—— References

1 Werner Ballmann, Mikhael Gromov, and Viktor Schroeder. Manifolds of nmonpositive
curvature, volume 61 of Progress in Mathematics. Birkhduser Boston, Inc., Boston, MA,
1985. doi:10.1007/978-1-4684-9159-3.

2 Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, vol-
ume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1999. doi:10.1007/978-3-662-12494-9.

3 Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.
doi:10.1090/gsm/033.

I. Benjamini and S. Gilboa 10:7

4 Jeff Cheeger and David G. Ebin. Comparison theorems in Riemannian geometry. North-
Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New
York, 1975. North-Holland Mathematical Library, Vol. 9.

5 R. A. Fisher. An examination of the different possible solutions of a problem in incomplete
blocks. Ann. Fugenics, 10:52—75, 1940.
6 Ben Green and Olof Sisask. On the maximal number of 3-term arithmetic progressions in

subsets of Z/pZ. Bull. Lond. Math. Soc., 40(6):945-955, 2008. doi:10.1112/blms/bdn074.

EuroCG’'21

Notes on pivot pairings

Barbara Giunti'+?

1 Universita degli Studi di Modena e Reggio Emilia, Italy

2 Graz University of Technology, Graz, Austria
bgiunti@tugraz.at

—— Abstract

We present a row reduction algorithm to compute the barcode decomposition of persistence modules.
This algorithm dualises the standard persistence algorithm and clarifies the symmetry between clear
and compress optimisations.

1 Introduction

Persistent homology is a tool of Topological Data Analysis (TDA) whose applications range
widely from biology to urban planning to neuroscience (see [16] for an extended list of
applications). Persistent homology summarises a dataset’s information in the form of barcode
[6, 15]. The efficient computation of such barcodes is one of the main algorithmic problems
in TDA [17].

We provide an algorithm (Algorithm 1) for the barcode decomposition based on row pivot
pairing, which is the dual of the column pivot pairing presented in [10, 13]. The algorithm
reduces the boundary matrix of a given filtered simplicial complex proceeding by rows and
performing row additions, allowing the full exploitation of the compress optimisation [3].

A non-exhaustive list of algorithms to decompose persistence modules into interval
modules includes the so-called standard algorithm [13], the chunk algorithm [3], the twist
algorithm [9], the pHrow algorithm [12], and Ripser [2]. The implementation of the first four
can be found in [4] (cf. [5]), and that of Ripser in [1]. All of them take as input a filtered
simplicial complex and employ column operations. Moreover, in a recent and independent
work [14], a dualisation of the standard algorithm is presented, using row operations. In
addition to these algorithms, in [7] it is shown that the barcode decomposition can also be
achieved via the decomposition of filtered chain complexes, whose reduction is performed by
row operations. However, the reduction in [7] is different from the standard one, which is the
focus of this work. Thus, we will not further study the algorithm presented in [7].

As we mention, the idea of proceeding by row is not new. Here, we use the straightforward
idea of row pivots to clarify the duality between clear and compress optimisations in the
computation of persistent homology and cohomology. In [2, 5, 12], it is shown that, for
Vietoris-Rips complexes, the column reduction, coupled with the clear optimisation and
applied to the coboundary matrix, provides a significant speed-up in the computation of the
barcode. This improvement is not mirrored when the same reduction is coupled with the
compress optimisation and applied to the boundary matrix [2, 3, 12]. Here, we show that
the reason for this asymmetry is that the second procedure is not the true dual of the first
one: to obtain the dual, and thus the same number of operations, it is necessary to reduce
the boundary matrix via row operations instead of via column operations.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

11:2 Notes on pivot pairings

2 Preliminaries

Throughout the work, the symbol K = {04, ..., 0,,} denote a simplicial complex of dimension
d, such that for each ¢ < m, K, = {o01,...,0;} is again a simplicial complex. The chain
=KyC K C-- CK,, =K, denoted by the symbol FFK throughout the work, is called a
filtration of K.

Given a simplex o of dimension h, its boundary is the set of the faces of o in dimension
h — 1. If h = 0, the boundary is empty. Otherwise, it consists of exactly h + 1 simplices.
The boundary matrix 0 of FK, is a (m x m)-matrix with coefficients in Fo where the j-th
column represents the boundary of o}, i.e. 9[i,j] =1 if and only if o; is in the boundary of
o;. Note that, since o; is in the complex before o; is added, 0 is an upper-triangular matrix.

For 0 <i <m and 0 < p < d, we denote the p-th homology of K; over the field Fy by
H,(K;). The inclusions K; — Kj, for all ¢ < j, induce maps on the homology vector spaces
H,(K;) = H,(Kj) for all 0 < p < d. This collection of vector spaces and maps forms a
diagram called a persistence module (Fig. 1(a)) [8].

(a) 0 Vi Va Viner —— Vi
(b) 0 Fy —2—Fy —2— ... —2 T, 0
a a+1 b b41

Figure 1 (a) A persistence module; (b) An interval module with interval [a, b].

Since we consider only simplicial complexes with finitely many simplices, the vectors
spaces are finite-dimensional. In this case, a persistence module admits a nice decomposition
into interval modules, which consist of copies of Fy connected by the identity morphism for
the indices inside an interval, and zero otherwise (Fig. 1(b)) [11]. The collection of intervals
in the decomposition of a persistence module is called a barcode [6, 15], and it is an invariant
of isomorphism type. In [13, Sec. VII], the standard algorithm to retrieve the barcode of a
filtered simplicial complex is described. This algorithm retrieves the barcode by studying the
lowest elements in the columns of the boundary matrix, whose indices form the so-called
(column) pivots (see Definition 3.2). Namely, the algorithm performs left-to-right column
additions on columns with the same pivot until no two columns share the same pivot.

3 Row vs column pivot pairing

The (column) pivot pairing in a reduced boundary matrix 0 provides the lifespan intervals of
the homological features of a persistence module [13]. Usually, the reduction is performed
using only one type of elementary column operation: adding a column to a later column.
Here, we prove that also a reduction performed using only one type of elementary row
operation, namely adding a row to a previous row, achieves the same pairing (cf. [14]). The
reason why other types of elementary row (column) operations are not allowed is that they
do not preserve the order of the generators, and thus cannot maintain the pairing.

Let FK be a filtered simplicial complex, as described in Section 2, with boundary matrix
0. For the i-th row of 9, let left (i) denote the column index of the leftmost element of such
row. If row ¢ is zero, set left (i) = 0.

B. Giunti 11:3

» Definition 3.1. A matrix R is called row reduced if left (i) # left (i) for all non-zero
rows ¢ # ¢'. An index j is called a row pivot (of R) if there exists a row ¢ of R such that

j=left(q).

We recall the some standard notions from [13]. The symbol low (j) denotes the index
row of the lowest element of column j. If column j is trivial, then low (j) = 0.

» Definition 3.2. A matrix C' is called column reduced if low (j) # low (j') for all non-zero
columns j # j'. An index i is called a column pivot (of C) if there exists a column j of C
such that j = low (i).

Algorithm 1, called row pivot reduction, takes as input the boundary matrix 0 of a
filtered simplicial complex F'K and reduces it by row operations. This algorithm is one of
the possible methods to achieve a row reduced matrix. Indeed, several different row reduced
matrices can be obtained by the same boundary matrix 0. This follows from the fact that,
to the right of each row pivot, there can be several non-zero elements that do not affect the
row pivots.

Let m be the number of rows of 0.

Algorithm 1: Row pivot reduction

Input: Boundary matrix 9
Output: Row reduced boundary matrix 9
R=0
fori=m,...,1do
if left (i) # 0 then
L while there exists i’ > i with left (i) = left (i) # 0 do
L add row i’ to row i

In matrix notation, Algorithm 1 computes the reduced matrix as R = W - 9, where W is
an invertible upper-triangular matrix with Fy-coefficients.

For a matrix D, consider the following value:
rp (i,5) =1k D} — 1k D], | +1k D/} — 1k D]™!

where D{ is the lower left submatrix of D, given by all the rows of D with index h > ¢ and
all the columns with index [< j. The Pairing Lemma [13] states that, for a column reduced
matrix C' of a boundary matrix 9, i = low (j) in C if and only if 9 (z,5) = 1. An analogous
result holds for row reduced matrices (cf. [14, Lem 2.2]):

» Lemma 3.3 (Row pairing lemma). Let 0 be a boundary matriz and R a row reduced matriz
of 0. Then j =left (i) in R if and only if ro (i,5) = 1.

The proof is precisely the same as the Pairing Lemma [13] since the used technique
relies on the lower-left submatrices. Moreover, from the Pairing Lemma [13] and the above
Lemma 3.3, j = left (i) in a row reduced matrix R of 0 if and only if i = low (j) in a column
reduced matrix C of 9. In particular, if j = left (i) or i = low (j), the indices (i, j) form a
persistence pair.

» Remark. Since the coboundary matrix is the anti-transpose of the boundary one (i.e. an
element in position (4, 7) is sent to position (m + 1 — j,m + 1 — 1)), Algorithm 1 performs
the standard column reduction on the coboundary matrix. Indeed, for a reduced matrix R,
j = left (i) if and only if 4 = low (j) in its anti-transpose R~7. Thus, Lemma 3.3 provides
an alternative proof of the correctness of the standard persistence algorithm in cohomology,
result originally showed in [12].

EuroCG’'21

11:4 Notes on pivot pairings

The running time of Algorithm 1 is at most cubic in the number of simplices, as it is for
the standard persistence algorithm. We now refine this estimate a little.

» 3.4. Computational costs of the reduction. In [13], it is shown that the running time of the
inner (i.e. while) loop in the standard persistence algorithm for the column j, representing
a h-simplex o; and whose column pivot is in row i, is (h+ 1)(j —4)%. If o, is positive, i.e.
at the end of the reduction column j is trivial, then the cost is higher: (h + 1)(j — 1)2.
When reducing the coboundary matrix via column operations, as in [2, 12], the running
time becomes c(j —)2, where c is the number of cofaces of the simplex 0, and the cost
of reducing a positive column is ¢(j — 1)2. When reducing the boundary matrix via row
operations, as in Algorithm 1, the running time of the inner loop in Algorithm 1 for the row
i, representing a simplex o; and whose row pivot is in column j, is ¢(j — i)2. Note that, if o;
is negative, i.e. Tow i becomes zero at the end of the reduction, then the cost is ¢(m — 5)?,
where m is the number of rows. Thus, using row operations, the negative rows are the more
expensive to reduce, dually to what happens when reducing by columns.

4 Clear and compress

We now recall two standard runtime optimisations from [3, 9], and show their duality using
row and column reductions. Similar observations can be found in [7].

A simplex in the filtered simplicial complex F' K is called positive if it causes the birth of
a homological class, and negative if it causes the death of a homological class. By extension,
columns and rows in d are called positive (resp. negative) if the corresponding simplices are
positive (negative).

» 4.1. Clear. The clear optimisation is based on the fact that if a row of index j is positive,
the j-th column of 9 cannot be negative. As was already observed in [3, 9], this optimisation
is particularly effective when performed on the boundary matrices in decreasing degrees,
or, as shown in [5], when applied to the coboundary matrices in increasing degrees. Since
the clear avoids reducing columns that are already known not to contain pivots, it is quite
helpful in the persistent algorithms up-to-date. However, it is not so useful when reducing
by rows, since it shrinks by one the length of each row, but does not avoid any reduction.

» 4.2. Compress. The compress optimisation hinges on the fact that if a column of index ¢
is negative, the i-th row of 9 cannot be positive. From Section 3, it follows the real advantages
of the compress optimisation are obtained when the matrix reduction is performed using row
operations. Indeed, in this case, it avoids a costly loop whose results is already known, while,
in accordance with previous results [5], it is quite inefficient when applied using column
operations because it only shortens the columns by one element. Performed using the row
reduction, the compress is particularly effective when applied to the boundary matrices in
increasing degrees.

Finally, for what we showed, in the computation of the barcode of a filtered simplicial
complex the number of rows that need to be reduced in the boundary matrix using the
compress optimisation is the same as the number of columns that have to be processed in the
coboundary matrix when exploiting the clear optimisation. In the case of acyclic complexes,
as done in [2, 7], we can be more precise and show that this number is
1
(")

h=0

B. Giunti 11:5

where d is the maximal dimension of the acyclic filtered simplicial complex and v the number
of vertices. It follows that any algorithm that reduces the coboundary matrix using column

operations and the clear can be described as reducing the boundary matrix using row

operations and the compress.

Acknowledgments. The author was supported by FAR2019-UniMORE and by the Austrian
Science Fund (FWF) grant number P 29984-N35. The author thanks Claudia Landi, Michael
Kerber, Wojciech Chachdlski, and Havard B. Bjerkevik for useful discussions and feedback.

—— References

1

10

11

12

13

14

15

16

Ulrich Bauer. Ripser: a lean C++ code for the computation of Vietoris—Rips persistence
barcodes. https://ripser.org, 2015-2020.

Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes, 2019.
arXiv:1908.02518.

Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing
persistent homology in chunks. Mathematics and Visualization, 03 2013. doi:10.1007/
978-3-319-04099-8_7.

Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. PHAT - Persistent
Homology Algorithms Toolbox. https://bitbucket.org/phat-code/phat/src/master/.

Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat—persistent

homology algorithms toolbox. J. Symbolic Comput., 78:76-90, 2017. doi:10.1016/j.jsc.

2016.03.008.

Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas Guibas. Persistence
Barcodes for Shapes. In Roberto Scopigno and Denis Zorin, editors, Symposium on Geometry
Processing. The Eurographics Association, 2004. doi:10.2312/SGP/SGP04/127-138.
Wojciech Chacholski, Barbara Giunti, Alvin Jin, and Claudia Landi. Algorithmic decompo-
sition of filtered chain complexes, 2020. arXiv:2012.01033.

Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability
of persistence modules. SpringerBriefs in Mathematics. Springer, [Cham], 2016. doi:
10.1007/978-3-319-42545-0.

Chao Chen and Michael Kerber. Persistent homology computation with a twist. In
Proceedings 27th European Workshop on Computational Geometry, 2011.

David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Computational geometry (SCG’06), pages 119-126.
ACM, New York, 2006. doi:10.1145/1137856.1137877.

William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules.
J. Algebra Appl., 14(5):1550066, 8, 2015. doi:10.1142/S0219498815500668.

Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, 17, 2011. doi:10.1088/0266-5611/27/
12/124003.

Herbert Edelsbrunner and John L. Harer. Computational topology. American Mathematical
Society, Providence, RI, 2010. An introduction. doi:10.1090/mbk/069.

Herbert Edelsbrunner and Katharina Olsbock. Tri-partitions and bases of an ordered
complex. Discrete & Computational Geometry, 64(3):759-775, Oct 2020. doi:10.1007/
s00454-020-00188-x.

Robert Ghrist. Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. (N.S.),
45(1):61-75, 2008. doi:10.1090/S0273-0979-07-01191-3.

Database of real-world applications of TDA. https://www.zotero.org/groups/2425412/tda-
applications. 2020.

EuroCG’'21

11:6 Notes on pivot pairings

17 Nina Otter, Mason Porter, Ulrike Tillmann, Peter Grindrod, and Heather Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6, 06 2015.

Improved Approximation Bounds for
Half-Guarding Monotone Polygons

Hannah Miller Hillberg!, Erik Krohn', and Alex Pahlow?!

1 University of Wisconsin - Oshkosh
hillbergh,krohne,pahloa45@uwosh.edu

—— Abstract

We consider a variant of the art gallery problem where all guards are limited to seeing to the right

inside a monotone polygon. We provide a polynomial-time approximation for point guarding the
entire monotone polygon. We improve the best known approximation of 40 from [11], to 8.

1 Introduction

An instance of the art gallery problem takes as input a simple polygon P. A polygon P is
defined by a set of points V' = {v1,vs,...,v,}. There are edges connecting (v;, v;4+1) where
1=1,2,...,n — 1. There is also an edge connecting (v1,v,). If these edges do not intersect
other than at adjacent points in V' (or at v; and v,,), then P is called a simple polygon. For
any two points p,q € P, we say that p sees ¢ if the line segment pg does not go outside of P.
The art gallery problem seeks to find a guarding set of points G C P such that every point
p € P is seen by a point in GG. In the point guarding problem, guards can be placed anywhere
inside of P. In the vertex guarding problem, guards are only allowed to be placed at points
in V. The optimization problem is defined as finding the smallest such G in each case.

1.1 Previous Work

There are many results about guarding art galleries. Several results related to hardness
and approximations can be found in [2, 6, 7, 8, 9, 14]. Whether a polynomial time constant
factor approximation algorithm can be obtained for vertex guarding a simple polygon is a
longstanding and well-known open problem, although a claim for one was made in [4].
Additional Polygon Structure. Due to the inherent difficulty in fully understanding the
art gallery problem for simple polygons, there has been some work done guarding polygons
with additional structure, see [3, 5, 11, 13] for example. In this paper we consider monotone
polygons, described below.

a-Floodlights. Motivated by the fact that many cameras and other sensors often cannot
sense in 360°, previous works have considered the problem when guards have a fixed sensing
angle « for some 0 < a < 360. This problem is often referred to as the a-floodlight problem.
More specifically, a half-guard is defined as a 180°-floodlight that sees only in one direction.
This subset of the floodlight problem is motivated by considering the polygon to be a time
sequence as one works from left to right. The leftmost point is time 0 and time increases
as one sweeps from left to right. A guard cannot see back in time, therefore, seeing back
to the left does not make sense. This variant attempts to model time in the problem by
ensuring that a region is guarded in a specific time range from the time it is placed until
some time in the future. A constant factor approximation for half-guarding was first shown
in [11] and NP-hardness with vertex guards was shown in [10]. Some of the work on the
a-floodlight problem has involved proving necessary and sufficient bounds on the number

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

12:2 Improved Approximation Bounds for Half-Guarding Monotone Polygons

of a-floodlights required to guard (or illuminate) an n vertex simple polygon P, where
floodlights are anchored at vertices in P and no vertex is assigned more than one floodlight,
see for example [15, 16]. Computing a minimum cardinality set of a-floodlights to illuminate
a simple polygon P is APX-hard for both point guarding and vertex guarding [1].

1.2 Qur Contribution

In this paper, we improve the approximation bounds for half-guarding monotone polygons.
A simple polygon P is z-monotone (or simply monotone) if any vertical line intersects the
boundary of P in at most two points. A half-guard can see only to the right, so we redefine
sees as: a point p sees a point ¢ if the line segment pg does not go outside of P and p.x < q.z,
where p.x denotes the z-coordinate of a point p. In a monotone polygon, let [and r denote
the leftmost and rightmost point of P respectively. Consider the “top half” of the boundary
of P by walking along the boundary clockwise from [to r. We call this the ceiling of P. We
obtain the floor of P by walking counterclockwise along the boundary from [to r.

LY
=

Figure 1 A regular guard can see this entire monotone polygon, but needs Q(n) half-guards.

Krohn and Nilsson [13] give a constant factor approximation for monotone polygons
using guards that can see 360°. There are monotone polygons P that can be completely
guarded with one guard that require Q(n) half-guards considered in this paper, see Figure
1. Due to the restricted nature of half-guards, new observations are needed to obtain the
approximation given in this paper. A 40-approximation for this problem was presented in
[11]. The algorithm in [11] places guards in 5 steps: guard the ceiling vertices, then the
floor vertices, then the entire ceiling boundary, then the entire floor boundary, and finally
any missing portions of the interior. We propose a modified algorithm that requires only
3 steps: guarding the entire ceiling, then the entire floor, and lastly any missing portions
of the interior. By modifying the algorithm and providing improved analysis, we obtain an
8-approximation.

The remainder of the paper is organized as follows. Section 2 gives an algorithm for point
guarding a monotone polygon using half-guards where we wish to guard the boundary of the
polygon. Section 3 provides a sketch of the 8-approximation.

2 Guarding the Boundary

In this section, we give an algorithm for guarding the boundary of a monotone polygon P
with half-guards that see to the right. We first give a 2-approximation algorithm for guarding
the entire ceiling. A symmetric algorithm works for guarding the entire floor giving us a
4-approximation for guarding the entire boundary of the polygon.

Before we describe the algorithm, we provide some preliminary definitions. A vertical line
that goes through a point p is denoted l,. Given two points p, ¢ in P such that p.z < q.x, we
use (p, q) to denote the points s such that p.z < s.z < g.z. Similarly, we use (p, ¢] to denote
points s such that p.x < s.x < q.x.

H. Miller Hillberg, E. Krohn and A. Pahlow 12:3

2.1 Ceiling Guard Algorithm

We first give a high level overview of the algorithm for guarding the entire boundary of the
ceiling. Any feasible solution must place a guard at the leftmost vertex where the ceiling and
floor come together (or this vertex would not be seen). We begin by placing a guard here.
We iteratively place guards from left to right. When placing the next guard, we let S denote
the guards the algorithm has already placed, and we let p denote the leftmost point on the
ceiling that is not seen by any guard in S. Note that p may be a ceiling vertex or any point
on the ceiling. The next guard g that is placed will lie somewhere on the line [,,. We initially
place g at the intersection of I, and the floor, and we slide g upwards vertically along I,. The
algorithm locks in a final position for the guard g by sliding it upwards along {,, until moving
it any higher will cause g to no longer see some unseen portion on the ceiling; let r be the
first such point. See, for example, Figure 2. In this figure, when ¢ is initially placed on the
floor, it does not see r, but as we slide g up the line {,, r becomes a new point that g can
see. If we slide g up any higher than as depicted in the figure, then g would no longer see 7,
and therefore we lock g in that position. We then add g to .S, and we repeat this procedure
until the entire ceiling is guarded. The ceiling guarding algorithm is shown in Algorithm 1.

Figure 2 A guard g slides up [, and sees a point r. If g goes any higher, it will stop seeing r.

Algorithm 1 clearly returns a set of guards that sees the entire ceiling. All steps, except
the sliding step, can be trivially done in polynomial time. The analysis of [11] uses a similar
sliding step but only considers guarding a polynomial number of vertices on the ceiling or
floor. When considering an infinite number of points on the ceiling, it is not immediately
clear that the sliding can be done in polynomial time since each time a guard moves an €
amount upwards, it will see a different part of the boundary. We use the following lemma to
help bound the number of locations a guard g must consider on [,.

» Lemma 1. Consider a guard g and a point on the floor f such that g.x < f.x. If g sees f,
then the floor cannot block g from seeing any ceiling point in (g, f).

Proof. By assumption, g sees f. Consider a point on the ceiling p such that g.x < p.z < f.x.

If g is being blocked from seeing p because of a floor vertex, then g cannot see any point to
the right of p, see Figure 3. Therefore, g cannot see f and we have a contradiction. <

EuroCG’'21

12:4 Improved Approximation Bounds for Half-Guarding Monotone Polygons

Algorithm 1 Ceiling Guard
1. procedure CEILING GUARD(monotone polygon P)
2 S « {g} such that g is placed at the leftmost point .
3: while there is a point on the ceiling that is not seen by a guard in S do
4 Let p be the leftmost ceiling point that is currently unseen by any guards in S.
Place a guard g where [, intersects the floor and slide g up. As g is being slid up, let
r be the first point on the ceiling that g would stop seeing if ¢ moved any further up.
Place g at the highest location on I, such that g sees 7.
S+ SuU{g}.
end while
return S
end procedure

Figure 3 If the floor blocks g from a ceiling point p, then g will not see any floor point f where
g.x < p.x < f.x. More generally, g will not see any point f where g.x < p.x < f.x.

We now give a sketch of a proof for why there are at most O(n?) potential guard locations
on [, that must be considered. The approximation analysis sketched later in Section 3 relies
on the fact that g is as high as possible on [,,. If g is moved higher, then there is a point r
on the ceiling that would not be seen. In simple polygons, any point that is seen by a point
on [, must by seen by a contiguous line segment of [,,, see Figure 2. There are several cases
to consider on whether or not g is moved upwards and how far it needs to move.

In the cases below, whenever the algorithm is sliding a guard, one only needs to consider
the following locations on I,: (A) Rays shot from a vertex through another vertex until it
hits /,. There are O(n?) potential locations on I,. (B) Shoot a ray from previously placed
guards g’ € S through every vertex. Let C(g’) be the set of all of the points on the ceiling
that these rays hit. Let C = J C(g¢’). Shoot a ray from all ¢ € C' through all vertices until

=
the ray hits [,. There are at fnost n guards, therefore |C(g¢")| < n. For each guard, there are
at most O(n?) potential locations on I, to consider for a total of O(n?®) locations.
Case 1: If there exists some vertex v; such that g sees vertex v;, but does not see vertex v;41
because v; is blocking ¢ from seeing v; 1, see Figure 4. If there are multiple v; candidates,
we choose the v; that is leftmost. Shoot a ray from g through v; and let r be the point on

H. Miller Hillberg, E. Krohn and A. Pahlow 12:5

Figure 4 r is seen by g and g is the leftmost guard that sees r.

the boundary that is hit.

Case 1la: If r is on the ceiling, then no guard to the left of g is able to see r. If g is slid up,
then g would no longer see r. In other words, g is the leftmost guard that sees r. In this
case, we place g on the floor.

Case 1b: If r is on the floor, then moving g upwards will not see any more ceiling points to
the right of r because v; is blocking ¢ from seeing them, see Figure 5. By Lemma 1, moving
g upwards will not result in seeing any more ceiling points since the floor cannot be blocking
g from any point on the ceiling to the left of ». However, the approximation analysis relies on
r being as high as possible on [,. Therefore, we slide g upwards until it would have stopped
seeing some previously unseen point 7’ on the ceiling and set r = 7’. If no previously unseen
ceiling point v’ € [p,v;] exists, then it must be the case that all points on I, see all of the
ceiling points of [p,v;]. In this case, we place g on the ceiling at point p and set r = v;.

Figure 5 Case 1b where g cannot see v;+1 because v; is blocking it and r is on the floor.

Case 2: If, for all v; that are seen by g, ¢ is not blocked from seeing v;11 by v;, we slide g
upwards. If none of Case 1 happens while sliding upwards, then the algorithm stops whenever
g would stop seeing a previously unseen point on the ceiling. In Figure 6, a portion of the

edge e = [vj41, Vit2], namely [v; 41, 2], was seen by previously placed guards in the algorithm.

EuroCG’'21

12:6 Improved Approximation Bounds for Half-Guarding Monotone Polygons

It is possible that previously placed guards saw a portion of e between (z,v;2|. However, we
consider the rightmost point such that all of [v;11,] is seen. Let r be the point directly to
the right of z. If g is pushed up too far (e.g. g3) in order to see v; 2, it ends up missing a
portion of e, namely r. One must slide g between the floor point of [, and g3 to ensure the
algorithm places guards that see all of e. In this case, we wish to place a guard on [, as high
as possible such that g sees r. Let go be the highest point on [, that sees r. Placing g above
g2 will cause it to miss seeing point r. Placing g lower than gs might allow a guard in the
optimal solution to see r and also see more of e than g saw. Therefore, by using the set of
guard locations as defined in (B) above, g would be placed at go. The approximation relies
on the fact that g is as high as possible on [, such that it still sees r.

Figure 6 No point on I, sees all of (z,vi4+2). Algorithm places a guard at g2 to ensure r is seen.

3 Sketch of Approximation

We will now sketch out the proof of why Algorithm 1 will place no more than 2 times the
number of guards in the optimal solution. An optimal solution O is a minimum cardinality
guard set such that for any point p on the ceiling of P, there exists some g € O that sees p.
The argument will be a charging argument; every guard placed will be charged to a guard in
O in a manner such that each guard in O will be charged at most twice. The approximation
argument similar to [11] is sketched here. Consider two consecutive guards g;,g;11 € S
returned by Algorithm 1:

Case 1: If an optimal guard is in (g, g;+1], we charge g; 11 to that optimal guard.

Case 2: If there is no optimal guard in (g;, g;+1], then consider the point on the ceiling
directly above g;41, call this point p. g;41 was placed on [, because no previously placed
guards saw p. Consider an optimal guard o that sees p. 0.z < g;41.2 and even more so,
o.x < g;.x since, by assumption, there is no optimal guard in (g;, gi+1]. Since g; did not see
p, it must be the case that the op line goes above g; and the floor blocks g; from seeing p, see

H. Miller Hillberg, E. Krohn and A. Pahlow 12:7

Figure 7. The 0p line cannot be below g;. If it were, then g; would have had the opportunity
to see p as g; was moving upwards. This is not possible because by assumption, p is not seen
by any previously placed guard and g; would not have gone so far upwards as to stop seeing
a previously unseen ceiling point.

Since g; is blocked from seeing p by the floor, g; cannot see any ceiling points to the right
of p. The reason that g; stopped moving upwards is because it saw some point r on the
ceiling that no previous guard saw. Since g; cannot see to the right of p, » must be to the
left of p. By assumption, the optimal guard o’ that sees r must be to the left of g;. If g;
were to have moved any higher up, it would have missed r. Any guard that sees r must be
“below” the g;7 line, see Figure 7. Any point on the ceiling that o’ sees to the right of r, g;
will also see (Lemma 1, [11]). Therefore, g; dominates o’ with respect to the ceiling to the
right of r. We charge g;11 to o’ and o' cannot be charged again.

Figure 7 If no optimal guard exists in (g;, gi+1], then o’ must exist to see r such that o’.x < g;.z.

The entire ceiling can be guarded with at most 2 - |O| guards. A similar algorithm is
applied to the floor to give at most 4 - |O] guards to guard the entire boundary. Finally,
even though the entire boundary is guarded, it is possible that a portion of the interior is
unseen, see Figure 8. Let us assume that a guardset G = {g1, 92, ...gx} guards the entire
boundary of a monotone polygon such that for all ¢, g; < g;+1. In [12], they prove that
between any consecutive guards of GG, a region can exist that is unseen by any of the guards
in G. However, they prove that the region is convex and can be guarded with 1 additional
guard. If |G| = k, then there are at most k — 1 guards that need to be added to guard these
unseen interior regions. This doubles the approximation to give us the following theorem.

Figure 8 g1, g2 and g3 see all of the boundary. The shaded region is unguarded.

» Theorem 2. There is a polynomial-time 8-approximation algorithm for point guarding a
monotone polygon with half-guards.

EuroCG’'21

12:8

1

10

11

12

13

14

15

16

Improved Approximation Bounds for Half-Guarding Monotone Polygons

References

Ahmed Abdelkader, Ahmed Saeed, Khaled A. Harras, and Amr Mohamed. The
inapproximability of illuminating polygons by a-floodlights. In CCCG, pages 287-295,
2015.

Alok Aggarwal. The art gallery theorem: its variations, applications and algorithmic aspects.
PhD thesis, The Johns Hopkins University, 1984.

Pritam Bhattacharya, Subir Ghosh, and Bodhayan Roy. Approximability of guarding weak
visibility polygons. Discrete Applied Mathematics, 228, 02 2017. doi:10.1016/j.dam.2016.
12.015.

Pritam Bhattacharya, Subir Kumar Ghosh, and Sudebkumar Prasant Pal. Constant
approximation algorithms for guarding simple polygons using vertex guards. CoRR,
abs/1712.05492, 2017. URL: http://arxiv.org/abs/1712.05492, arXiv:1712.05492.
Pritam Bhattacharya, Subir Kumar Ghosh, and Bodhayan Roy. Vertex guarding in weak
visibility polygons. In Sumit Ganguly and Ramesh Krishnamurti, editors, Algorithms and

Discrete Applied Mathematics, pages 45-57, Cham, 2015. Springer International Publishing.
Bjorn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons
is APX-hard. In CCCG, pages 45-48, 2001.

Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Information Processing
Letters, 100(6):238-245, 2006.

Stephan Eidenbenz. Inapproximability results for guarding polygons without holes. In
ISAAC, pages 427-436, 1998.

Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete € Computational Geometry, 17(2):143-162, 1997.

Matt Gibson, Erik Krohn, and Matt Rayford. Guarding monotone polygons with vertex
half-guards is np-hard. Furopean Workshop on Computational Geometry, 2018. URL:
https://conference.imp.fu-berlin.de/eurocgl8/program.

Matt Gibson, Erik Krohn, and Matthew Rayford. Guarding monotone polygons with half-
guards. In Joachim Gudmundsson and Michiel H. M. Smid, editors, Proceedings of the
29th Canadian Conference on Computational Geometry, CCCG 2017, July 26-28, 2017,
Carleton University, Ottawa, Ontario, Canada, pages 168-173, 2017.

Erik Krohn and Bengt J. Nilsson. The complexity of guarding monotone polygons. In
CCCG, pages 167-172, 2012.

Erik Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear
polygons. Algorithmica, 66(3):564-594, 2013.

D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE Trans.
Inform. Theory, 32(2):276-282, March 1986.

Bettina Speckmann and Csaba D. Téth. Allocating vertex m-guards in simple polygons via
pseudo-triangulations. Discrete & Computational Geometry, 33(2):345-364, 2005.

Csaba D. T6th. Art galleries with guards of uniform range of vision. Computational
Geometry, 21(3):185 — 192, 2002.

Mapping Multiple Regions to the Grid with
Bounded Hausdorff Distance
Ivor van der Hoog!, Mees van de Kerkhof!, Marc van Kreveld?,

Maarten Loffler!, Frank Staals!, Jéréome Urhausen!, and Jordi L.
Vermeulen?!

1 Utrecht University, the Netherlands

{I.D.vanderHoog, M.A.vandeKerkhof, M.J.vanKreveld, M.Loffler, F.Staals,
J.E.Urhausen, J.L.Vermeulen}@Quu.nl

—— Abstract

We study a problem motivated by digital geometry: given a set of disjoint geometric regions, assign
each region R; a set of grid cells P;, so that P; is connected, similar to R;, and does not touch
any grid cell assigned to another region. Similarity is measured using the Hausdorff distance. We
prove an asymptotically tight bound on the achievable Hausdorff distance for convex input regions
in terms of the number of input regions, and prove that there is no upper bound to the Hausdorff
distance for three or more general regions.

1 Introduction

Digital geometry is concerned with the proper representation of geometric objects and
their relationships using a grid of pixels. This greatly simplifies both representation and
many operations, but the downside is that common properties of geometric objects no
longer hold. For example, it may be that two digitized lines intersect in multiple connected
components. How to digitize a set of geometric objects so that such properties are guaranteed
is one objective in digital geometry, referred to as consistency. Another objective is the
representation of vector objects with bounded error, using subsets of pixels. Here we may
assume the unit grid, and measure error in one of multiple ways.

Early results in digital geometry were mostly concerned with consistency and arose in
computer vision. For a survey, see Klette and Rosenfeld [13, 14]. The interest from the
algorithms community is more recent. Besides consistency, the Hausdorff distance of digital
representations is a topic of study. Chun et al. [7] investigate the problem of representing
rays originating in the origin as digital rays such that certain properties are satisfied. They
show that rays can be represented on the n x n grid in a consistent manner with Hausdorff
distance O(logn). This bound is tight in the worst case. By ignoring one of the consistency

Figure 1 Three disjoint simply-connected regions and a grid representation of them.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

13:2 Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

Figure 2 The Hausdorff distance between the green and red regions is large while the Hausdorff
distance between their boundaries is small. The inverse is true for the red and purple regions.

conditions, the distance bound improves to O(1). Their research is extended by Christ et
al. [5] to line segments (not necessarily starting in the origin), who obtain the logarithmic
distance bound in this case as well. A possible extension to curved rays was developed by
Chun et al. [6]. Recently, Chiu and Korman [3] extended some results to high dimensional
segments. Additionally, Chiu et al. [4] prove that the above mentioned lower bound of
Q(logn) does not extend to higher dimensions and proved an Q(log" =% n) bound instead.
Other results with a digital geometry flavor within the algorithms community are those on
snap rounding [8, 9, 12], integer hulls [1, 11], and discrete schematization [15].

In a recent paper, Bouts et al. [2] showed that any simple polygon, no matter how detailed,
can be represented by a simply-connected set of unit pixels such that the Hausdorff distance
to and from the input is bounded by the constant %\/5 They also prove that for the Fréchet
distance between the boundaries, a constant distance is not possible. In this paper we extend
their results to multiple regions, see Figure 1 for an example.

In Section 2, we show that when we restrict the m input regions to be convex, we can find
a grid representation within Hausdorff distance ©(m). This bound is tight. Furthermore,
we can extend the result from Bouts et al. [2] to two general regions; that is, we can find
a representation with constant Hausdorff distance. This is in contrast with our proof in
Section 3 that for three or more general regions, there is no universal bound on the Hausdorff
distance of a grid representation.

We do not make any assumptions on the resolution of the input. If the minimum distance
between any pair of polygons is at least some constant (e.g., 4y/2 is enough), then we can
realize a constant Hausdorff bound in all cases by applying the results from Bouts et al. [2]
separately on each polygon. We consider the case where no such assumptions are made.

Notation and definitions. We denote by T' the (infinite) unit grid, whose unit squares
are referred to as pizels. The (symmetric) Hausdorff distance between two sets A, B C
R? is defined as H(A, B) = max{max,e(minyep(|ab|)), maxye g(minge4(|ab]))}, where
|ab| is the distance between the points a and b. Furthermore, we denote by H'(A, B) =
max{H (A, B), H(0A,0B)} the maximum of the (symmetric) Hausdorff distance between
the sets themselves and between their boundaries. See Figure 2 for an example where the
distinction between H(-,-) and H'(-,-) is important.

Consider a set of m disjoint simply-connected regions R = {R1, Ra, ... R,,} in the plane,
which we can imagine having different colors. A choice of pixels for each region can then be
seen as a coloring of the grid by m colors ¢y, ..., ¢y, Where pixels may remain uncolored.

In this paper, we show how to assign a simply-connected subset of the pixels P; C I" to
each region R; € R, such that the result is a set of m disjoint simply-connected regions.
Two such grid polygons are disjoint if they do not meet in any edge or vertex of the grid. A
grid polygon is connected if its pixels are connected by edge adjacency. A grid polygon is
simply-connected if it is connected and its complement is also connected by edge adjacency.
Hence, we do not allow vertex adjacency at all as it is ambiguous. In this paper a grid

van der Hoog, van de Kerkhof, van Kreveld, Loffler, Staals, Urhausen, Vermeulen

polygon is by default simply-connected. We call the set Py, P, ..., P, of such grid polygons
a wvalid assignment, see for example Figure 1. We are interested in finding for any set of
regions R a valid assignment where for each region R; € R, its corresponding grid polygon
P; has a (symmetric) Hausdorff distance to R; of at most h and their boundaries are also
within (symmetric) Hausdorft distance h.

2 Input regions are convex regions

When R is a set of convex regions, we can easily show that a coloring has a Hausdorff distance
of Q(m) in the worst case: we place m horizontal line segments of length Q(m) that all pass
through the same pixels. Then P must have its elements on disjoint lines of pixels, giving
Hausdorfl distance at least €2(m) for the outer regions. Each P; must extend sufficiently far
left and right. Since each P; is connected, all P; will intersect a common vertical line. The
topmost or bottommost intersection with this line belongs to a grid polygon with Hausdorff
distance Q(m).

We will describe an algorithm that, given a set of convex regions R, gives a set of disjoint
grid polygons P that is a valid assignment and such that for all i, H'(R;, P;) = O(m).

» Observation 2.1. Let Ry, Ry € R be two disjoint conver regions, and let £ be a horizontal
line that intersects Ry left of Ry. Then any horizontal line intersecting both Ry and Rs
intersects Ry left of Ry. Analogously, all vertical lines that intersect both Ry and Ry do so
in the same above-below order.

Observation 2.1 allows us to define two partial orders <, and <, on R: R; =, R; if and
only if there is a horizontal line intersecting both regions and R; intersects the line left of
R;; since the regions are convex we get a partial order [10]. We extend this partial order to
a linear order X% : R — [1,m] in any manner. A linear order Yz : R — [1,m] is defined
symmetrically.

Given X and Yx, we assign a coloring as illustrated in Figure 3. Let 'y, be a coarsening
of the grid I' whose cells have k x k pixels with k = 2m. The factor 2 ensures that adjacent
polygons do not touch. These cells are also called superpizels. In the following, we ensure
that if the region R; intersects a superpixel, this superpixel or an adjacent one contains a

pixel of P; and vice versa. Thus, we get a bound of O(k) on the Hausdorff distance H(R;, P;).

For any superpixel S € T, we denote by S[z,y] the pixel that is the (2z)" from the left and
(2y)th from the bottom within S. The horizontal and vertical lies induced by T'j, are called
magjor lines. Each region R; that intersects at most one major horizontal line and at most
one major vertical major line is a small region. Each region R; that intersects at least two
major horizontal lines or at least two major vertical lines is a large region. Our assignment
of regions to pixels works as follows:

1. For each small region R; we choose one superpixel S containing a point of R; and color
the pixel p(S, R;) := S[Xr(R;), Yr(R;)] with ¢;; this single pixel will be P;.

2. For each superpixel S and each large region R; intersecting S that also intersects the two
major horizontal lines incident to S, or the two major vertical lines incident to S, we
color p(S, R;) = S[Xr(R;),Yr(R;)] with ¢;. We use full lines, not the edges of S here.

3. For any two pixels that are colored with ¢; in edge-adjacent superpixels (R; must be
large), we color all pixels in the row or column between them with ¢; as well.

4. For any four superpixels that share a common vertex, if they each contain a pixel colored
with ¢; in Step 2, we color all pixels in the square between these pixels with ¢; as well.

13:3

EuroCG’'21

13:4 Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

; [} [} I
/ -} o o -}
(] [} [} : (] . I
[} [} I

@ (b) (©

Figure 3 The coloring algorithm for convex regions. (a) shows the input of five convex regions,
overlaid onto a superpixel grid with & = 10. (b) shows the pixels colored in Steps 1 and 2 of the
algorithm. (c) shows the final coloring obtained after Steps 3 and 4.

The set P of polygons induced by this grid coloring is a valid assignment, that is, the polygons
are connected and do not intersect or touch.

Overall, if a region R; intersects a superpixel S, then P; has a pixel in S or in any of
the 8 adjacent superpixels. Conversely, if P; has a pixel in a superpixel S, we know that
R; intersects S. This gives a bound on the Hausdorff distance between the regions and
the grid polygons. For the boundaries, note that if R; contains a superpixel S and all four
edge-adjacent superpixels, then P; contains S. Furthermore, if P; contains a superpixel S,
then R; also contains S. Together this gives a bound on the Hausdorff distance between the
boundaries. Since superpixels have size ©(m), the Hausdorff distance between R; and P;
and between their boundaries is at most O(m). We thus obtain the following result.

» Theorem 2.2. If R consists of m convex regions, a valid assignment to regions exists such
that for each region R; € R and grid polygon P;, we have H'(R;, P;) = O(m). Furthermore,
there exists a set R of m convex regions such that for every valid assignment, there exists
some 1 < i <m with H(R;, P;) = Q(m).

3 Two or three general regions

We extend the result from Bouts et al. [2] to two general regions using the result from van
Goethem et al. [16], that is, we can find two grid polygons with constant Hausdorff distance
to two input regions. Below, as a stark contrast, we show that the Hausdorff distance between
an input of at least three general regions and any corresponding grid polygons is unbounded.
Formally, for a given integer h > 0, we show a construction of regions R = {R, B, G} for
which there is no valid assignment of corresponding grid polygons with Hausdorff distance
smaller than h.

We only sketch the main idea here. We construct regions R = {R, B, G} that form nested
spirals that pass multiple times through a thin region Z of height 1 (formal definition below).
The height of Z is the bottleneck in the construction: it is traversed from left to right h
times by each of R, B, and G. If we remove the parts of R, B, and G inside the region Z,
we get 3h 4+ 3 connected components in total. Outside the the region Z, the three regions are
more than 2h apart. This is illustrated in Figure 4 for h = 3. We formally define 7 to be the
part of the plane within distance h of at least one of the bottom horizontal segments of the
regions R. All region components must be connected inside Z. Inside Z, it is possible that
the grid polygons make different connections than those in R. However, we argue that no
matter how these connections are made, the grid polygons Pr, Pg, and Pg, together have to
pass through 7 from left to right at least h + 2 times, thus requiring Z to have height at least

van der Hoog, van de Kerkhof, van Kreveld, Loffler, Staals, Urhausen, Vermeulen

Figure 4 The regions for h = 3. The region Z is highlighted. The dashed segment subdivides the
boundary of Z into its left and right part.

2h + 3. However, the available vertical space is only 2h + 1 if the Hausdorff distance must

stay below h, allowing h + 1 connections of pixel polygons. Hence, we obtain a contradiction.

The most involved part is to argue that Pr, Pg, and Pg, together have to pass through
T at least h + 2 times. This argument critically depends on the following lemma.

» Lemma 3.1. Given an alternating sequence V.= r1,b1,4g1,...,Tk, bk, gx of 3k 3-colored
points on a line ¢, any planar drawing below the line £ connecting points of the same color
induces a partition of the points into at least 2k + 1 components.

The line in Lemma 3.1 represents the left (or right) half of the boundary of Z. We can
use the lemma to show that we can decrease the number of connected components by at
most h — 1 by connecting the regions incident to the right side of Z to other regions on the
right side of Z. The same holds for the regions on the left side of Z. It thus follows that the
remaining 3h + 3 — 2(h — 1) = h + 2 components on the left side must be connected to the
remaining h + 2 components on the right side of Z; after all, in the end there are only three
regions left; one for each color. Therefore, Pr, Pg, and Pg pass through Z at least h + 2
times as claimed. This allows us to obtain the following result:

» Theorem 3.2. For any h > 0 there exist three regions R = {R1, Ra, R3}, for which there is
no valid assignment to grid polygons Py, Py, P3 so that all regions R; € R have H(R;, P;) < h.

4 Conclusion

In this paper we have shown what Hausdorff distance bounds can be attained when mapping
disjoint simply-connected regions to the unit grid. We expressed our bounds in the number
of regions. We have shown a worst case optimal bound of O(m) for convex regions. For
general regions there is a stark contrast between the bounds for two and three regions: for
two regions it is constant, while for three regions it is unbounded. In the full paper we also
show bounds on convex (§-fat regions and point regions.

While we concentrated on worst-case optimal bounds, our constructive proof of the upper
bound for convex regions will often give visually unfortunate output. Also, for a given

13:5

EuroCG’'21

13:6 Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

instance we will not achieve O(1) Hausdorff distance even when it would be possible for that
instance. This leads to the following two open problems. Firstly, can we realize visually
reasonable output when this is possible for an instance (and how do we define this)? Secondly,
can we realize a Hausdorff distance that is at most a constant factor worse than the best
possible for each instance, in polynomial time?

—— References

1 Ernst Althaus, Friedrich Eisenbrand, Stefan Funke, and Kurt Mehlhorn. Point containment
in the integer hull of a polyhedron. In Proceedings 15th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 929-933, 2004.

2 Quirijn W Bouts, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Willem Sonke,
and Kevin Verbeek. Mapping polygons to the grid with small Hausdorff and Fréchet
distance. In Proceedings 24th Annual European Symposium on Algorithms, pages 22:1—
22:16, 2016.

3 Man-Kwun Chiu and Matias Korman. High dimensional consistent digital segments. STAM
Journal on Discrete Mathematics, 32(4):2566-2590, 2018.

4 Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama. Distance
bounds for high dimensional consistent digital rays and 2-d partially-consistent digital rays.
arXiv preprint arXiv:2006.14059, 2020.

5 Tobias Christ, Domotor Palvolgyi, and Milo§ Stojakovié. Consistent digital line segments.
Discrete € Computational Geometry, 47(4):691-710, 2012.

6 Jinhee Chun, Kenya Kikuchi, and Takeshi Tokuyama. Consistent digital curved rays. In
Abstracts 34th European Workshop on Computational Geometry, 2019.

7 Jinhee Chun, Matias Korman, Martin Noéllenburg, and Takeshi Tokuyama. Consistent
digital rays. Discrete & Computational Geometry, 42(3):359-378, 2009.

8 Mark de Berg, Dan Halperin, and Mark Overmars. An intersection-sensitive algorithm for
snap rounding. Computational Geometry, 36(3):159-165, 2007.

9 Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Tanenbaum. Snap
rounding line segments efficiently in two and three dimensions. In Proceedings 13th Annual
Symposium on Computational Geometry, pages 284-293, 1997.

10 Leo J. Guibas and F. Frances Yao. On translating a set of rectangles. In Proceedings 12th
Annual ACM Symposium on Theory of Computing, pages 154-160, 1980.

11 Warwick Harvey. Computing two-dimensional integer hulls. SIAM Journal on Computing,
28(6):2285-2299, 1999.

12 John Hershberger. Stable snap rounding. Computational Geometry, 46(4):403-416, 2013.

13 Reinhard Klette and Azriel Rosenfeld. Digital Geometry: Geometric methods for digital
picture analysis. Elsevier, 2004.

14 Reinhard Klette and Azriel Rosenfeld. Digital straightness - a review. Discrete Applied
Mathematics, 139(1-3):197-230, 2004.

15 Maarten Loffler and Wouter Meulemans. Discretized approaches to schematization. In
Proceedings 29th Canadian Conference on Computational Geometry, 2017.

16 Arthur van Goethem, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Max
Sondag, and Jules Wulms. The Painter’s Problem: Covering a grid with colored connected
polygons. In Proceedings 25th International Symposium on Graph Drawing and Network
Visualization, pages 492-505, 2018.

A Dynamic Data Structure for k-Nearest
Neighbors Queries

Sarita de Berg! and Frank Staals?!

1 Department of Information and Computing Sciences, Utrecht University,
Netherlands
s.deberg@uu.nl, f.staals@uu.nl

—— Abstract

We present an insertion-only data structure that supports k-nearest neighbors queries for a set of n
point sites in O(Q(n)logn + k) time, based on any static data structure that can perform k’-nearest
neighbors queries in O(Q(n) + k') time. The key component is a general query algorithm that allows
us to find k-nearest neighbors spread over t substructures simultaneously, thus reducing the O(tk)
term in the query time to O(k). Applying this to the logarithmic method yields an insertion-only
data structure with both efficient insertion and query time. We apply our method in the plane
for the Euclidean and geodesic distance. We then briefly discuss the main difficulties to achieve a
similar running time in the fully dynamic case.

1 Introduction

In the k-nearest neighbors (k-NN) problem we are given a set of n point sites S in R?, and
we wish to preprocess these points such that for a query point ¢ and an integer k, we can
find the k sites in S ‘closest’ to ¢ efficiently. This static problem has been studied in many
different settings [3, 4, 8, 12, 13]. In particular, for sites in R? and the Euclidean distance
metric, Chan and Tsakalidis [8] achieved the optimal O(logn + k) query time using linear
space and O(nlogn) preprocessing time. Very recently, Liu showed how to achieve the same
query time for general distance functions (in R?) using O(nloglogn) space [13].

In this paper, we study the dynamic version of the k-nearest neighbors problem, in which
points can be inserted into or deleted from S, and the points lie in the plane. When we wish
to report only one nearest neighbor (i.e. 1-NN searching), several efficient fully dynamic data
structures exist [5, 7, 11]. Actually, all these data structures are variants of the same data
structure by Chan [5]. For the Euclidean distance, the current best result using linear space
achieves O(log? n) query time and polylogarithmic update time [7]. The variant by Kaplan
et al. [11] achieves similar results for general distance functions. These data structures can
also answer k-NN queries in O(log®n + klogn) time [5]. Recently, Liu [13] claimed that
the version of Kaplan et al. [11] can support such queries in O(log? n + k) time. However,
we believe that there are some issues with this approach, as we briefly discuss in Section 4.
For the Euclidean distance, Chan achieves a query time of O(log2 n/loglogn + k) for k-NN
queries using O(nlogn) space, by adapting his original data structure [6].

We are actually interested mostly in the insertion-only variant of the problem. Since
nearest neighbor searching is decomposable, we can directly apply the logarithmic method [14]
to turn a static k-NN searching data structure into an insertion-only data structure. However,
this again yields an unwanted O(klogn) term in the query time. Our main goal is to
reduce this term to O(k) instead. In Section 2, we show how to achieve this goal. We
present a general query algorithm that allows us to find the k-nearest neighbors spread over ¢
substructures in O(Q(n)t + k) time, assuming that the static data structure supports &’-NN
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the

community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

14:2 A Dynamic Data Structure for k-Nearest Neighbors Queries

T

Figure 1 Example of expansion. Blue elements are included in a clan, orange elements are not.
The expansion (building the next subheap) occurs when all elements have been included in a clan.

queries in O(Q(n) + k') time. This yields a linear space data structure supporting queries in
O(log? n + k) time and insertions in O(log” n) time, when using the Euclidean distance.’

Our original interest in the problem stems from a setting in which S is a set of points
inside a simple polygon P with m vertices, and we use the geodesic distance as the distance
measure. In this setting, Agarwal, Arge, and Staals [2] describe an insertion-only data
structure for 1-NN queries that achieves O(log2 nlog? m) query time, and O(lognlog3 m)
insertion time. As we show in Section 3, applying our machinery in this setting allows for
efficient (O(log? nlog® m + klogm) time) k-NN queries and insertions, as well.

2 Insertion-Only Data Structure

We describe a method that transforms a static k-NN data structure with query time
O(Q(n) + k) into an insertion-only k-NN data structure with query time O(Q(n)logn + k).
Insertions take O((P(n)/n)logn) time, where P(n) is the preprocessing time of the static data
structure, and C(n) is its space usage. We assume Q(n), P(n), and C(n) are non-decreasing.

To support insertions, we use the logarithmic method [14]. We partition the sites into
O(logn) groups St, .., So(ogn) With [S;| = 27 for i € {1,..,0(logn)}. To insert a site s, a new
group containing only s is created. When there are two groups of size 2°, these are removed
and a new group of size 2/+! is created. For each group we store the sites in the static k-NN
data structure. This results in an amortized insertion time of O((P(n)/n)logn). This bound
can also be made worst-case [14]. The main remaining issue is then how to support queries
in O(Q(n)logn + k) time, thus avoiding an O(klogn) term in the query time.

Query algorithm. Let ¢ be the query point and k£ the number of nearest neighbors we wish
to find. We use the heap selection algorithm of Frederickson [9] to answer k-NN queries
efficiently. This algorithm finds the & smallest elements of a binary min-heap of size N > k in
O(k) time by forming groups of elements, called clans, in the original heap. Representatives
of these clans are then added to another heap, and smaller clans are created from larger clans
and organised in heaps recursively. For our purposes, we (only) need to consider how clans
are formed in the original heap, because we do not build the entire heap we query before
starting the algorithm. Instead, the heap is expanded during the query when necessary, see
Figure 1 for an example. Note that any (non-root) element of the heap will only be included
in a clan by the Frederickson algorithm after its parent has been included in a clan.

The heap H, on which we call the heap selection algorithm, contains all sites s € §
exactly once, with the distance d(s, q) as key for each site. Let Si,..,.S¢ be a partition of S

1 With a slight variation of this method we can match the O(log® n/loglogn + k) query time of Chan’s [6]
fully dynamic data structure for planes. However, this increases the insertion time to O(log?*¢ /loglogn).

S. de Berg, F. Staals 14:3

Level 0 Hy
Level 1 j
Level 2
Level 3
H(S1) H(S2) H(S3) H(S:)

Figure 2 The heap that we construct for the k-nearest neighbors query. The subheaps of which
all elements have been included in a clan are indicated in blue. The subheaps that have been built,
but for which not all elements have been included in a clan, are indicated in orange. The white
subheaps have not been built so far, because not all elements of their predecessor are in a clan yet.

into ¢ disjoint sets. For each set of sites S, j € {1,..,t}, we define a heap H(S;) containing
all sites in S;. We then “connect” these ¢ heaps by building a dummy heap Hy of size O(t)
that has the roots of all H(S;) as leaves. We set the keys of the elements of Hy to —oo. Let
H be the complete data structure (heap) that we obtain this way, see Figure 2. It follows
that we can now compute the k sites closest to ¢ by finding the |Hy| 4 k smallest elements in
the resulting heap H and reporting only the non-dummy sites.

What remains is how to (incrementally) build the heaps H(S;) while running the heap se-
lection algorithm. Each such heap consists of a hierarchy of subheaps H1(S;), .., Ho(iog n)(S;),
such that every element of S; appears in exactly one H,(S;). Moreover, since the sets S, .., S;
are pairwise disjoint, this holds for any s € S, i.e. s appears in exactly one H;(S;). Each
heap H;(S;) consists of the k1 = Q(n) sites in S; closest to ¢, which we find by querying the
static data structure of that group. We call these the level 1 heaps. The subheap H;(S;) at
level ¢ > 1 is built only after the last element e of H;_1(S;) is included in a clan, i.e. e is
considered by the heap selection algorithm. When e is included, we add a pointer from e to
the root of H;(S;), such that the root of H;(S;) becomes a child of e, as in Figure 1.

To construct a subheap H;(S;) at level i > 1, we query the static data structure of S
using k; = k12°~'. The new subheap is built using all sites returned by the query that have
not been encountered earlier. It follows that all elements of H;(S;) are larger than any of
the elements in Hy(S;), .., H;—1(S;). Thus, the heap property is preserved.

Analysis of query time. As stated before, finding the k-smallest non-dummy elements of
H takes O(k + |Hp|) time [9]. In this section, we analyse the time used to construct H.

First, the level 0 and level 1 heaps are built. To build the level 1 heaps, we query each of
the substructures using k1 = Q(n). In total these queries take O((Q(n) + k1)t) = O(Q(n)t)
time. Building Hy takes only O(t) time. Retrieving the next k; elements to build H;(S;) for
i > 1 requires a single query and thus takes O(Q(n) + k;) time. To bound the time used to
build all heaps at level greater than 1, we first prove the following two lemmas.

» Lemma 1. The size of a subheap H;(S;), j € {1,..,t}, at level i > 1 is exactly k2" 2.

EuroCG’'21

14:4 A Dynamic Data Structure for k-Nearest Neighbors Queries

Proof. To create H;(S;), we query the static data structure of S; to find the k127! sites
closest to ¢q. Of these sites, only the ones that have been not been included in any of the lower
level subheaps are included in H;(S;). The sites previously encountered are exactly the k;2'~>
sites returned in the previous query. It follows that |H;(S;)| = k1 (2071 —2072) = k12072, <«

» Lemma 2. The total size of all subheaps H;(S;) at level i > 1 is O(k).

Proof. There are essentially two types of subheaps: complete subheaps, of which all elements
have been included in a clan (shown blue in Figure 2), and incomplete subheaps, of which
only part of the elements has been included (shown orange in Figure 2). Note that the heap
H;(S;), i > 1, is only built when all elements of H;_1(S;) have been included in a clan. In
total, O(k) elements (not in Hp) are included in a clan, so the total size of all complete
subheaps is O(k). Because the size of a subheap is at most twice the size of its predecessor,
it follows that the total size of all incomplete heaps at level greater than 1 is also O(k). <«

Building H;(S;) takes O(Q(n)+k;) time. To pay for this, we charge O(1) to each element
of H;_1(S;). Because we choose k1 = Q(n), Lemma 1 implies that |H,_1(5;)| = Q(Q(n)),
and that k; = k12071 = 22k,273 = O(|H;-1(S;)|). From Lemma 2, and the fact that all
subheaps are disjoint, it follows that we charge O(1) to only O(k) sites. We then have:

» Lemma 3. Let Sy, .., S; be disjoint sets of point sites of sizes ny, .., ny, each stored in a data
structure that supports k-NN queries in O(Q(n;) + k) time. There is a k-NN data structure
on |J; Si that supports queries in O(Q(n)t + k) time. The data structure uses O(>; C(n;))
space, where C(n;) is the space required by the k-NN structure on S;.

Applying Lemma 3 to the logarithmic method, we obtain the following result.

» Theorem 4. Let S be a set of n point sites, and let D be a static k-NN data structure of
size O(C(n)), that can be built in O(P(n)) time, and that can answer queries in O(Q(n) + k)
time. There is an insertion-only k-NN data structure on S of size O(C(n)) that supports
queries in O(Q(n)logn + k) time. Inserting a new site in S takes O((P(n)/n)logn) time.

Throughout this section, we used the standard assumption that for any two points p, g
their distance d(p, q) can be computed in constant time. When evaluating d(p, ¢) takes T
time, our technique achieves a query time of O(T(Q(n)logn + k)).

3 Applications

Points in R?. In the Euclidean metric, k-nearest neighbors queries in the plane can be
answered in O(logn + k) time, using O(n) space and O(nlogn) preprocessing time [1, 8].

» Corollary 5. There is an insertion-only data structure of size O(n) that stores a set of n
sites in R?, allows for k-NNs queries in O(log® n+ k) time, and insertions in O(log? n) time.

By using the logarithmic method with only O(log, n) groups, where |S;| = b%, we can
improve the query time to O(log, nlogn + k), at the cost of increasing the insertion time
to O(blog, nlogn). Setting b = log®n, we match the O(log® n/loglogn + k) query time of

#*t< /loglogn). For general distance

Chan [6] and still achieve an insertion time of O(log
functions we achieve the same query time using Liu’s data structure [13], using O(n loglogn)

space and expected O(polylogn) insertion time.

S. de Berg, F. Staals 14:5

< T

Figure 3 A partial decomposition of P and the corresponding heap used in a k-NN query for gq.

Points in a simple polygon. In the geodesic k-nearest neighbors problem, S is a set of
sites inside a simple polygon P with m vertices. For any two points p and ¢ the distance

d(p, q) is defined as the length of the shortest path between p and ¢ fully contained within P.

The input polygon P can be preprocessed in O(m) time so that the geodesic distance d(p, q)
between any two points p,q € P can be computed in O(logm) time [10].

We recursively partition the polygon P into two subpolygons P, and P, of roughly the
same size [2]. We denote by S, and S, the sites in P, and Py, respectively. This results
in a decomposition of the polygon of O(logm) levels. For both sets, and at each of the
levels, we again use the logarithmic method to support insertions. At every level, we store
S¢ in the static k-NN query data structure of Theorem 22 of [2]. It requires O(nlogn)
space, excluding the size of the polygon, and finds the k-nearest neighbors among S, for
a point ¢ € P, in O((logn + k)logm) expected time. Building the data structure takes
O(n(lognlogm + log>m)) time. Insertions using the logarithmic method therefore take
O(log?® nlog® m + log nlog® m) time, as there are O(logm) levels in the decomposition of P.

During a k-NN query, we have a partition of S into O(lognlogm) disjoint groups S;, as
we consider one set, of sites (S¢ or S,) for each level of the decomposition. An example is
shown in Figure 3. Lemma 3 thus states that there is a data structure that allows for k-NN
queries in O(log2 nlog®m + klog m) time. We can reduce this by setting k1 = logn instead
of lognlogm and charging O(logm) to each site of H;_1(S;) to pay for building H;(S;).

» Theorem 6. Let P be a simple polygon with m vertices. There is an insertion-only data
structure of size O(nlognlogm + m) that stores a set of n point sites in P, allows for
geodesic k-NN queries in O(log2 nlog®m + klog m) expected time, and inserting a site in
O(log?® nlog® m + lognlog® m) time.

4 Supporting Deletions

The data structures for 1-NN queries also supporting deletions in O(polylogn) time are all
based on an idea of Chan [5]. Liu [13] recently claimed that this data structure (in particular
the version of Kaplan et al. [11]) also supports k-NN queries in O(log®n + k) time. We
believe there are some issues with this approach, which we sketch below.

EuroCG’'21

14:6 A Dynamic Data Structure for k-Nearest Neighbors Queries

The key ingredient for dynamic 1-NN searching is an algorithm that takes a subset S of n
of the sites and produces an (abstract) data structure T storing S, and a partition of S into
a set “good” sites G and a set of “bad” sites B. The key properties are that every site in S is
stored at most O(logn) times in T, and that G has size Q(n). By recursively applying this
algorithm on the bad sites, we obtain a partition of S into r = O(logn) good sets Gy, .., G,
Each good set G; is stored in a static 1-NN searching data structure D;, and thus we can
answer queries by querying each of these O(logn) data structures. Deleting a site may cause
some sites in these good sets to become marked as bad. These sites are reinserted into the
structure of B, hence we essentially move some sites from a G; to a new good set G;. It
can be shown that the total number of good sets remains O(logn). When a query in some
static data structure D; returns a site marked as bad we simply discard it. Chan shows
that this still allows us to answer queries correctly, and that deletions (and insertions) take
O(polylogn) amortized time [5, 11]. Note that the data structures 7y, .., 7, are used only to
collect which functions become bad when performing deletions, not to answer queries.?

Liu claims that this data structure can also support k-NN queries in O(log? n-+k) time [13].
Presumably, by replacing the 1-NN data structures Dy, .., D, by k-NN data structures (all
details are omitted). However, the sites in Dy, .., D, are not pairwise disjoint, and thus we
may encounter a site in the output to a query in multiple D;’s. This yields an O(klogn)
term in the query time, which matches the bound given by Chan [5].

To answer k-NN queries efficiently, Chan adapted his original data structure to accomodate
k-NN queries. By using the data structures 7y, .., 7, to answer queries, and deleting planes
that are removed from these structures explicitly, a query time of O(log2 n/loglogn + k) is
achieved. However, it is not straightforward how to generalize this approach for more general
distance functions (for example the geodesic distance function). We are currently working
on this problem.

—— References

1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three di-
mensions. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 180-186. STAM, 2009.

2 Pankaj K. Agarwal, Lars Arge, and Frank Staals. Improved dynamic geodesic nearest
neighbor searching in a simple polygon. In 3/th International Symposium on Computational
Geometry, SoCG, volume 99 of LIPIcs, pages 4:1-4:14. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2018.

3 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. Commun. ACM, 51(1):117-122, 2008.

4 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of < k-
levels in three dimensions. SIAM J. Comput., 30(2):561-575, 2000.

5 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1-16:15, 2010.

6 Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom.
Appl., 22(4):341-364, 2012.

2 In the presentation of Kaplan et al. [11] D; actually coincides with the lowest “layer” of in the “tower”
of shallow cuttings 7;. The issue sketched here also applies to this version, as the cuttings in 7; do not
cover the t-level of G; but of G; U B for some B. The sites/functions in B are “good” w.r.t. some other
G, and may thus be encountered multiple times.

S. de Berg, F. Staals 14:7

10

11

12

13

14

Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In 35th
International Symposium on Computational Geometry, SoCG, volume 129 of LIPIcs, pages
24:1-24:13. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2019.

Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d
and 3-d shallow cuttings. Discret. Comput. Geom., 56(4):866-881, 2016.

Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comput.,
104(2):197-214, 1993.

Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. J. Comput. Syst. Sci., 39(2):126-152, 1989.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar voronoi diagrams for general distance functions and their algorithmic applications. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 2495-2504. SIAM, 2017.

Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE Transactions
on Computers, C-31(6):478-487, June 1982.

Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 2842-2859. STAM, 2020.

Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes
in Computer Science. Springer, 1983.

EuroCG’'21

Tukey Depth Histograms®

Daniel Bertschinger!, Jonas Passweg?, and Patrick Schnider?

1 Department of Computer Science, ETH Ziirich, Switzerland
daniel.bertschinger@inf.ethz.ch

2 Department of Computer Science, ETH Ziirich, Switzerland
jpassweg@student.ethz.ch

3 Department of Mathematical Sciences, University of Copenhagen
psC@math.ku.dk

—— Abstract
The Tukey depth of a flat with respect to a point set is a concept that appears in many areas of

discrete and computational geometry. In this work, we introduce the Tukey depth histogram of
k-flats in R? with respect to a point set P, which is a vector D¥'?(P), whose i’th entry D*(P)
denotes the number of k-flats spanned by k + 1 points of P that have Tukey depth i with respect to
P. We give a complete characterization of the depth histograms of points, that is, for any dimension
d we give a description of all possible histograms Do’d(P).

Related Version A full version is available at http://arxiv.org/abs/2103.08665

1 Introduction

Many fundamental problems on point sets, such as the number of extreme points, the number
of halving lines, or the crossing number do not depend on the actual location and distances of
the points, but rather on some underlying combinatorial structure of the point set. There is
a vast body of work of combinatorial representations of point sets, at the beginning of which
are the seminal series of papers by Goodman and Pollack [2, 3, 4], where many important
objects such as allowable sequences and order types are introduced. In particular order types
have proven to be a very powerful representation of point sets. For many problems however,
less information than what is encoded in order types is sufficient. One example for such a
problem is the determination of the Tukey depth of a query point with respect to a planar
point set. The Tukey depth of a query point ¢ with respect to a point set P is the minimum
number of points of P that lie in a closed halfspace containing ¢g. In the plane, this can be
computed knowing only for each k, how many directed lines through ¢ and a point of P
have exactly k points to their left. This defines the ¢-vector of q. The Tukey depth of ¢ is
now just the smallest k for which the corresponding entry in the ¢-vector is non-zero. In [6],
a characterization of all possible /-vectors is given, phrased in terms of frequency vectors,
which is an equivalent object.

Interesting objects emerge after forgetting yet another piece of information: instead of
knowing the /-vector of each point, assume we only know the sum of all ¢-vectors. This
corresponds to knowing for each j the number of j-edges that is, knowing the histogram of
j-edges. The number of j-edges that a point set admits is a fundamental question in discrete
geometry and has a rich history, see e.g. [7], Chapter 4 in [1] or Chapter 11 in [5] and the
references therein.

In this work, we investigate a similar concept: depth histograms of points. This corre-
sponds to knowing for each j how many points of Tukey depth j are in the point set. We

* The third author has received funding from the European Research Council under the European Unions
Seventh Framework Programme ERC Grant agreement ERC StG 716424 - CASe.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

15:2 Tukey Depth Histograms

give a complete characterization of possible such histograms for point sets in general position.
In particular, we will show the following:

» Theorem 1.1. A vector D% is a depth histogram of a point set in general position in R¢
if and only if for all nonzero entries D?’d with © > 2 we have

i—1
> D} >2i4d-3.

Jj=1

In fact, both depth histograms of points as well as j-edges can be viewed as instances
of a more general definition, that of histograms of j-flats, which we will introduce in the
following. We hope that this work can serve as a small step in the systematic study of these
histograms.

In order to define histograms of j-flats, we first define the Tukey depth of a flat:

» Definition 1.2. Let Q be a set of k + 1 points in R?, k < d, which span a unique k-flat
F. The affine Tukey depth of @) with respect to a point set P, denoted by atdp(Q), is the
minimum number of points of P in any closed halfspace containing F'. The convex Tukey
depth of () with respect to P, denoted by ctdp(Q), is the minimum number of points of P in
any closed halfspace containing conv(Q).

Note that for £ = 0 both definitions coincide with the standard definition of Tukey depth,
and we just write tdp(q) in this case. Further note that if P U Q is in convex position, then

aﬁdp(Q) = Ctdp(Q).

» Definition 1.3. Let P be a set of points in R?. The affine Tukey depth histogram of j-flats,
denoted by D74(P), is a vector whose entries Dlj’d(P) are the number of subsets Q C P of
size j + 1 whose affine Tukey depth is 7. Similarly, replacing affine Tukey depth with convex
Tukey depth, we define the convexr Tukey depth histogram of j-flats, denoted by cD7%(P).

In the following, we will also call affine Tukey depth histograms just depth histograms,
that is, unless we specify the convez, we always mean an affine Tukey depth histogram. Note
however that for j = 0 or if P is in convex position, the two histograms coincide.

Many problems in discrete geometry can be phrased in terms of depth histograms. For
example, the number of extreme points of a point set P just corresponds to the entry D?’d(P)
(note that each point of P has Tukey depth at least 1). Further, the number of j-edges or,
more generally, j-facets corresponds to the entry D}i_l’d(P).

2 The condition is necessary

» Lemma 2.1. For any point set P C R% and any point p € P we have tdp(p) < "77‘”2.

Sketch of proof. Let P C R% and let p € P be any point with tdp(p) = k. We show that
any such point set consists of at least 2k — 2 + d points, which proves the lemma. Consider a
witnessing halfspace h, of p and its bounding hyperplane h. After rotation and translation,
we may assume that h contains p and d other points of P, and h,, contains k — 1 points in
its interior. The same has to hold for the complement of h,, giving at least 2(k — 1) + d
points. <

» Lemma 2.2. For any point set P C R? and any two points p,q € P with tdp(p) < tdp(q)
we have tdp(p) = tdp\4(p)-

D. Bertschinger, J. Passweg, and P. Schnider 15:3

Proof. The point ¢ cannot lie in any witnessing halfspace for p. <

By repeatedly applying the lemma one can easily show the following.

» Proposition 1. For any depth histogram [a1, as, ..., Gm—1,an], both [a1,as, ..., a;—1,a;]
and [a1, a9, ...,a;_1,1] with ¢ < m are depth histograms.

» Corollary 2.3 (Necessary condition of Theorem 1.1). For any depth histogram D% and all
. 0,d oy s
nonzero entries D" with 1 > 2 we have

7—1
ZD?’d > 2i+d— 3.

Jj=1

Proof. For the sake of contradiction, let us assume that there is a depth histogram D¢ for
which there is a nonzero entry D?’d and Z;;ll D?’d < 2i 4+ d — 3. Using Proposition 1, we
can cut off the depth histogram D%? at any point and so we can consider the histogram
D' = [D?’d, . ,D?’_dl, 1]. But then for the point set P’ corresponding to this histogram, we
have |P'| < 2i + d — 2, which contradicts Lemma 2.1. <

2.1 Two special configurations

We make a small detour and revisit Lemma 2.1, noting that the given bound is tight. We
will show this using point sets in so-called symmetric configuration [6]. These point sets will
also be at the core of our proof that the condition of Theorem 1.1 is sufficient.

» Definition 2.4. A point set P C R in general position is in

1. symmetric configuration if and only if there exists a central point ¢ € P such that every
hyperplane through ¢ and d — 1 other points of P separates the remaining points into
two halves of equal size.

2. eccentric configuration if and only if there exists a central point ¢ € P such that every
hyperplane through ¢ and d — 1 other points of P almost separates the remaining points
into two halves of equal size, that is, divides the remaining points in two sets with
difference in cardinality of at most 1.

Note that depending on the dimension and the size of P, only one of the definitions can
be applied. Examples of such point sets are given in Figure 1.

Figure 1 Two point sets in symmetric and eccentric configuration, respectively. The lines through
c and p or ¢ and g, respectively, (almost) divide the remaining point set.

The following follows from the definition:

EuroCG’'21

15:4 Tukey Depth Histograms

» Lemma 2.5. The symmetric central point ¢ in a symmetric (or eccentric) point set P has
depth tdp(c) = |2=2+2 .

At first glance, it is not clear that symmetric and eccentric point sets of any size exist in
any dimension. We will show that they do in the next section, this will be an important step
in proving that the condition of Theorem 1.1 is sufficient. For space reasons, we only sketch
the argument for higher dimensions.

3 The condition is sufficient

To prove that the condition we gave in Theorem 1.1 is sufficient, we build up point sets
according to their histograms by adding points one-by-one. In other words, given a histogram,
we start with points in convex position (as many as there are of depth 1). We then add
new points in the “center” of the point set, push them outwards until they have the right
depth, without changing the depth of any other point, maintaining that we can always add
yet another point in the center to get a symmetric or eccentric point set.

3.1 Moving points

Note that the Tukey depth of ¢ can only change if ¢ is involved in a change in the order type.
In other words, ¢ was pushed over a hyperplane formed by d other points of the point set.
We now formally characterize what happens in any such case.

» Proposition 2. Let P € R? be a point set and ¢ € P be an arbitrary point. Let ¢’ be a
point close to ¢, such that the order types of P and P’ := P\ {q} U{¢'} only differ in one
simplex &, that is, S := conv{p1,...,pd,q} and §’, respectively. Let h be the hyperplane
spanned by pi,...,pq and § the intersection of h with the line ¢q’.

If G ¢ conv{p1,...,pa}, then tdp(q) = tdp/(¢’), and

otherwise, if § € conv{p1,...,pa}, then |tdp(q) — tdp/(¢")] < 1.

For a proof, we refer to the full version of this paper. Note that whenever ¢ has the
highest depth among all points, we also know that the depths of the other points do not
change.

» Observation 3.1. Whenever we have tdp(q) > tdp(p) for all points p in the point set, then
tdp(p) = tdp(p).

3.2 Inserting a new point

We have already seen point sets, that contain a point of maximum possible depth. These
special point sets will help us placing new points of large depth, which we then can push
outwards. For this, let P be a point set in general position and in symmetric (eccentric,
respectively) configuration missing the symmetric central point. If we place a new point
p at the location of the (previously inexistent) symmetric central point, then by Lemmas
2.1 and 2.5, we know that p has the maximal possible depth. Now, we are able to push p
outwards until it has the desired depth and the resulting point set is in eccentric (symmetric,
respectively) configuration. An example in dimension 2 can be found in Figure 2.

» Lemma 3.2. For any point set P C R? in general position and in eccentric (symmetric,
resp.) configuration there exists a direction in which we can push the central point such that
after adding a new center we have a symmetric (eccentric, resp.) point set in general position.

D. Bertschinger, J. Passweg, and P. Schnider 15:5

Figure 2 A point set in symmetric configuration (left). After pushing the symmetric central point
out (second from left), we arrive at a point set in eccentric configuration missing the symmetric
central point. Adding a new point at maximum possible depth (third from left). Pushing out again
gets us back into a symmetric point set missing the symmetric central point (rightmost).

Proof. First, note that if P is in symmetric configuration, any direction does the job. If P is
eccentric, then there exist two neighbors p; and ps in the rotational order of points around
q without a symmetric central line dividing them. Now choose to move ¢ outwards on an
“opposite” halfline, see Figure 3, right. |

Figure 3 The central point and the direction in which we push it if the point set is symmetric
(left) and if the point set is eccentric (right).

In higher dimensions it is not so easy to see how to get the directions and why they
always exist. The core of our proof is the following theorem, whose full proof can be found
in the full version of the paper:

» Theorem 3.3. For every symmetric point set P C R?, there exist two directions vi and
vg such that we can push the central point into either direction; add a new central point and
arrive at an eccentric point set P'. We can then push the newly added point into the other
direction, and arrive at a symmetric point set P" missing the symmetric central point.

Sketch of proof. Project P to the sphere S9! C R? and note that the resulting point P’
set is still symmetric. Assume without loss of generality that no point of P’ is at the north
or the south pole. If we choose v; and vy as the directions to the north and the south pole,
respectively, we are almost done; the only issue is that the resulting point set is not in general
position. However, using stereographic projection at the north pole, we get an eccentric
point set @ C R?~! whose central point is the projection of the north pole. Using induction
on the dimension, we may assume that we can move the projection of the north pole into

some direction and add a new central point ¢ so that the resulting point set @’ is symmetric.

Reversing the stereographic projection, and placing the new central point ¢ at the south pole,
the directions v; and vs are given by the moved north pole and the south pole. |

EuroCG’'21

15:6 Tukey Depth Histograms

4 Conclusion

We have introduced Tukey depth histograms of j-flats, which relate to several problems in
discrete geometry. For histograms of points, we were able to give a full characterization.

It is an interesting open problem to find better necessary and also sufficient conditions,
perhaps even characterizations, of histograms of j-flats for 5 > 0. We hope that the ideas
and arguments in this paper might be useful in this endeavor.

Another interesting open problem is to relate depth histograms to other representations
of point sets. For example in the plane, the order type determines the ¢-vectors for each
point, but not vice-versa, that is, there are point sets that have the same sets of ¢-vectors
but different order types. Similarly, the set of f-vectors determines the histograms D%?2 and
D2, Is it true that the reverse is also true or are there point sets for which both D%2 and
D12 are the same but whose sets of (-vectors are different?

—— References

1 Stefan Felsner. Geometric graphs and arrangements: some chapters from combinatorial
geometry. Springer Science & Business Media, 2012.

2 Jacob Goodman and Richard Pollack. A theorem of ordered duality. Geometriae Dedicata,
12:63-74, 01 1982. doi:10.1007/BF00147331.

3 Jacob Goodman and Richard Pollack. Multidimensional sorting. SIAM J. Comput., 12:484—
507, 08 1983. doi:10.1137/0212032.

4 Jacob Goodman and Richard Pollack. Semispaces of configurations, cell complexes of ar-
rangements. J. Comb. Theory, Ser. A, 37:257-293, 11 1984. doi:10.1016/0097-3165(84)
90050-5.

5 Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science & Business
Media, 2013.

6 A. J. Ruiz-Vargas and E. Welzl. Crossing-free perfect matchings in wheel point sets. In A
Journey Through Discrete Mathematics: A Tribute to Jiri Matousek, pages 735-764. 2017.
doi:10.1007/978-3-319-44479-6_30.

7 Uli Wagner. k-sets and k-facets. Contemporary Mathematics, 453:443, 2008.

Enclosing Depth and other Depth Measures”

Patrick Schnider!

1 Department of Mathematical Sciences, University of Copenhagen
ps@math.ku.dk

—— Abstract
We study families of depth measures defined by natural sets of axioms. We show that any such
depth measure is a constant factor approximation of Tukey depth. Along the way, we introduce and
study a new depth measure called enclosing depth, which we believe to be of independent interest,
and show its relation to a constant-fraction Radon theorem on certain two-colored point sets.

Related Version A full version is available at http://arxiv.org/abs/2103.08421

1 Introduction

Medians are an important tool in the statistical analysis and visualization of data. Various
generalizations of medians to higher dimensions have been introduced and studied, see
e.g. [1, 9, 12] for surveys. Many of these generalized medians rely on a notion of depth of a
query point within a data set, a median then being a query point with the highest depth
among all possible query points. In particular, just like the median, many of these depth
measures only depend on the relative positions of the involved points, making them robust
against outliers. More formally, let SR denote the family of all finite sets of points in R?. A
depth measure is a function g : (SRd, R9) — R>(which assigns to each pair (S, q) consisting
of a finite set of data points S and a query point ¢ a value, which describes how deep the
query point ¢ lies within the data set S. We call a depth measure ¢ combinatorial if it
depends only on the order type of S U {q}. In this paper, we consider general classes of
combinatorial depth measures, defined by a small set of axioms, and prove relations between
them and concrete depth measures, such as Tukey depth (TD) and Tverberg depth (TvD).

» Definition 1.1. Let S be a finite point set in R? and let ¢ be a query point. Then the
Tukey depth of ¢ with respect to S, denoted by TD(S,), is the minimum number of points
of S in any closed halfspace containing q.

Tukey depth was introduced by John W. Tukey in 1975 [15] and has received significant
attention since, both from a combinatrial as well as from an algorithmic perspective, see
e.g. Chapter 58 in [14] and the references therein. Notably, the centerpoint theorem states
that for any point set S C RY, there exists a point ¢ € R? for which TD(S, q) > C}—f_ll [13].

In order to define Tverberg depth, we need a preliminary definition: given a point set S
in R, an r-partition of S is a partition of S into r pairwise disjoint subsets Si,...,S, C S

with (;_, conv(S;) # 0. We call (;_, conv(S;) the intersection of the r-partition.

» Definition 1.2. Let S be a finite point set in R? and let ¢ be a query point. Then the
Tverberg depth of ¢ with respect to S, denoted by TvD(S, ¢), is the maximum 7 such that
there is an r-partition of S whose intersection contains q.

* The author has received funding from the European Research Council under the European Unions
Seventh Framework Programme ERC Grant agreement ERC StG 716424 - CASe. Part of this work was
done when the author was employed at ETH Ziirich.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

16:2 Enclosing Depth and other Depth Measures

Tverberg depth is named after Helge Tverberg who proved in 1966 that any set of
(d+1)(r — 1) + 1 points in R? allows an r-partition [16]. In particular, this implies that
there is a point ¢ with TvD(S, q) > J—ill. Just as for Tukey depth, there is an extensive body
of work on Tverbergs theorem, see the survey [3] and the references therein.

In R!, both Tukey and Tverberg depth give a very natural depth measure: it counts the
number of points of S to the left and to the right of ¢ and then returns the minimum of the
two numbers. We call this measure the standard depth in R'.

Another depth measure that is important in this paper is called enclosing depth. We say
that a point set S of size (d+4 1)k in R? k-encloses a point g if S can be partitioned into d + 1
pairwise disjoint subsets S1,. .., S4+1, each of size k, in such a way that for every transversal
p1 € S1,...,pd+1 € Sa+1, the point ¢ is in the convex hull of pi,...,pg4+1. Intuitively, the
points of S are centered around the vertices of a simplex with ¢ in its interior.

» Definition 1.3. Let S be a finite point set in R? and let ¢ be a query point. Then the
enclosing depth of ¢ with respect to S, denoted by ED(S, ¢), is the maximum k& such that
there exists a subset of S which k-encloses gq.

It is straightforward to see that enclosing depth also gives the standard depth in R'. The
centerpoint theorem [13] and Tverberg’s theorem [16] show that both for Tukey as well as
Tverberg depth, there are deep points in any dimension. We will show that this also holds
for enclosing depth. In fact, we will show that enclosing depth can be bounded from below
by a constant fraction of Tukey depth. From this we get the main results of this paper: all
depth measures that satisfy the axioms given later are a constant factor approximation of
Tukey depth.

2 A first set of axioms

The first set of depth measures that we consider are super-additive depth measures. A
combinatorial depth measure ¢ : (%, R?) — R is called super-additive if it satisfies the
following conditions:
(i) for all S € SE" and ¢, p € R? we have lo(S, q) — o(S U {p},q)| <1 (sensitivity),
) forall S e SE* and ¢ € R? we have 0(S,q) = 0 for ¢ & conv(S) (locality),
(iii) for all S € SE" and ¢ € R? we have 0(S,q) > 1 for q € conv(S) (non-triviality),

) for any disjoint subsets Si, S C S and ¢ € R? we have o(S,q) > 0(S1,q) + 0(S2,9)
(super-additivity).

It is not hard to show that a one-dimensional depth measure which satisfies these
conditions has to be the standard depth measure (in fact, the arguments are generalized to
higher dimensions in the following two observations) and that no three conditions suffice for
this. Further, it can be shown that both Tukey depth and Tverberg depth are super-additive.
The following two observations follow from the definitions, see the full version for the proofs:

» Observation 2.1. For every depth measure o satisfying (i) sensitivity and (ii) locality and
for all S € S®* and q € R? we have o(S, q) < TD(S, q).

» Observation 2.2. For every depth measure p satisfying (iii) non-triviality and (iv) super-
additivity and for all S € SR and q € R? we have o(S,q) > TvD(S, q).

Finally, it is not too hard to show that TvD(S, q) > éTD(S, q), see e.g. [7] for an argument.

Combining these observations, we thus get the following.

P. Schnider 16:3

Figure 1 Enclosing depth does not satisfy the super-additivity condition: the point ¢ has enclosing
depth 1 with respect to both the blue and the red points, but its enclosing depth with respect to the
union of the two sets is still 1.

» Corollary 2.3. Let ¢ be a super-additive depth measure. Then for every point set S and
query point q in R we have

1
From Corollary 2.3 it follows that for any super-additive depth measure and any point
set there is always a point of depth at least %, for example any Tverberg point. On
the other hand, there are depth measures that give the standard depth in R! that are not

super-additive, for example enclosing depth, see Figure 1.

3 A second set of axioms

The second family of depth measures we consider are central depth measures. A combinatorial
depth measure g : (S®*,R%) — R is called central if it satisfies the following conditions:
(i) forall S e SE' and ¢,p € R? we have lo(S, q) — o(S U{p},q)| <1 (sensitivity),
ii) for all S € SE" and ¢ € RY we have 0(S,q) = 0 for ¢ & conv(S) (locality),
(iii’) for every S € S®* there is a ¢ € R? for which 0(S,q) > ﬁw\ (centrality).
) for all S € S®" and ¢,p € R? we have o(S U {p},q) > (S, q) (monotonicity),

We have seen before that any super-additive depth measure indeed satisfies the centrality
condition, and the super-additivity condition (iv) is stronger than the monotonicity condition
(iv’), so central depth measures are a superset of super-additive depth measures. It is actually
a strict superset, as for example the depth measure whose depth regions are defined as the
convex hulls of Tverberg depth regions is central but not super-additive.

While central depth measures enforce deep points by definition, they might still differ
from each other a lot locally. In the following, we will bound by how much they differ locally,

showing that every central depth measure is a constant factor approximation of Tukey depth.

» Theorem 3.1. Let ¢ be a central depth measure in R®. Then there exists a constant
c1 = c1(d), which depends only on the dimension d, such that

EuroCG’'21

16:4 Enclosing Depth and other Depth Measures

Here the first inequality is just Observation 2.1. As for the second inequality, we only
give a sketch here and refer the interested reader to the full version. We would like to argue
that if S k-encloses g then (S, ¢) = k. By centrality, there must indeed be a point ¢’ with
0(S,q") = k (note that |S| = k(d + 1) by definition of k-enclosing), but this point can lie
anywhere in the centerpoint region of S and not every point in the centerpoint region is
k-enclosed by S. However, by adding d 4+ 1 points very close to ¢, we can ensure that ¢ is
the only possible centerpoint in the new point set, and the second inequality then follows
from sensitivity and monotonicity after removing these points again. The most involved part
of Theorem 3.1 is the last inequality, which we will now prove:

» Theorem 3.2 (E(d)). There is a constant c; = c1(d) such that for all S € SE and q € RY
we have ED(S,q) > ¢1 - TD(S,q).

Note that E(1) is true and ¢;(1) = 1. Let P = RU B be a bichromatic point set with
color classes R (red) and B (blue). We say that B surrounds R if for every halfspace h we
have |[BNh| > |RNh|. Note that this in particular implies |B| > |R|. The statement E(d)
is related to the following constant-fraction Radon theorem:

» Theorem 3.3 (R(d)). Let P = RU B be a bichromatic point set in R? where B surrounds

R. Then there is a constant ca = ca2(d) such that there are integers a and b and pairwise

disjoint subsets Ry,..., R, C R and By,..., By, C B with

1. a+b=d+2,

2. |Ri| > co-|R]| foralll <i<a,

3. |Bi| > co|R| forall1 <i<b,

4. for every transversalrTy € Ry,...,14 € Ry, b1 € By,...,by, € By, we have conv(ry,...,rq)N
conv(by, ..., by) # 0.

In other words, the Radon partition respects the color classes. It can be shown that R(1)
can be satisfied choosing a =1, b =2 and ¢3(1) = %, see the appendix for a proof. In the
following, we will prove that R(d — 1) = E(d) and that E(d — 1) = R(d). By induction,

these two claims then imply Theorem 3.1.
» Lemma 3.4. R(d—1) = E(d).

Sketch of Proof. Assume without loss of generality that ¢ is the origin an that the halfspace
h:zq <0 witnesses TD(S,¢) = k. Consider the point set S’ derived from S by central
projection through ¢ to the hyperplane x4 = 1, and color all points from h red and the points
from the complement h¢ blue. Then S’ is a (d — 1)-dimensional point set where B surrounds
R. Further, every Radon partition in S’ which respects the color classes corresponds to a
simplex in S which contains q. |

For the proof of the second implication, we need to recall a few results, starting with the
Same Type Lemma by Bardny and Valtr [4].

» Theorem 3.5 (Theorem 2 in [4]). For every two natural numbers d and m there is a
constant c3(d, m) > 0 with the following property: Given point sets X1, ..., X,, € R% such
that X1 U ... U X,, is in general position, there are subsets Y; C X; with |Y;| > ¢35+ | X;| such
that all transversals of the Y; have the same order type.

The second result that we will need is the Center Transversal Theorem, proved indepen-
dently by Dol’nikov [6] as well as Zivaljevi¢ and Vreédica [17]. We will only need the version
for two colors, so we state it in this restricted version:

P. Schnider 16:5

» Theorem 3.6 (Center Transversal for two colors). Let 11 and po be two finite Borel measures

on R%. Then there exists a line £ such that for every closed halfspace H which contains {
d

and every i € {1,2} we have p;(H) > %,

Such a line £ is called a center transversal. By a standard argument (replacing points
with balls of small radius, see e.g. [10]), the same result also holds for two point sets Py, Ps
in general position, where p;(H) is replaced by |P; N H|. The lemma that is at the core of
the proof of the center transversal theorem is the following, again proved independently by
Dol'nikov [6] as well as Zivaljevié and Vreéica [17]:

» Lemma 3.7. Let g1 and go be two continuous assignments of points to the set of all
(d — 1)-dimensional linear subspaces of R. Then there exists such a subspace F in which

g1(F) = g2(F).

The centerpoint theorem follows by choosing in a unique way g; and g5 in the centerpoint
region of projected masses. If the two measures can be separated by a hyperplane, we can do
something similar with the center transversal:

» Lemma 3.8. Let ju; and uy be two finite Borel measures on R, which can be separated by
a hyperplane. Then there is a unique canonical choice of a center transversal.

For a proof we refer to the appendix. Again, the same statement holds for point sets in
general position. With these tools at hand, we are now ready to prove the second part of the
induction.

» Lemma 3.9. E(d —1) = R(d).

Sketch of Proof. Let ¢ be a line through the origin. Sweep a hyperplane orthogonal to ¢
from one side to the other (without loss of generality from left to right). Let hy (h2) be a
sweep hyperplane with exactly @ blue points to the left (right), and let A; (As) be the set

of these blue points. Let M be the set of red points between hq and he. Note that |M| > @.

Let ¢ be the unique center transversal of A; and A, given by Lemma 3.8. By Lemma 3.7,
there exists a choice of ¢, such that ¢ is also a center transversal for M. The projection of ¢
to an orthogonal hyperplane is a centerpoint of the projection of A;, thus by the statement
E(d — 1) there are three subsets Aj 1,... 41 4 of Ay, each of size ¢; - |41| whose projections
enclose the projection of c. Analogously we get subsets Ay 1,..., Az 4 of Ay and My,..., My
of M. By Theorem 3.5 there are subsets Aﬁ’l, ..., M, each of size linear in the size of the

original subset, such that each transversal has the same order type. Pick one such transversal.

It can be shown that he convex hulls of the blue points (from A; and As) and the red points
(from M) intersect. In particular, there is a subset of d 4+ 2 red and blue points, which form
a Radon partition. By choosing the subsets from which these points were selected, we now
get the subsets required for R(d). <

4 Conclusion

We have introduced two families of depth measures, called super-additive depth measures
and central depth measures, where the first is a strict subset of the second. We have shown
that all these depth measures are a constant-factor approximation of Tukey depth.

It is known that Tukey depth is coNP-hard to compute when both |S| and d is part of the
input [8], and it is even hard to approximate [2] (see also [5]). Our result is thus an indication
that central depth measures are hard to compute. However, this does not follow directly, as

EuroCG’'21

16:6 Enclosing Depth and other Depth Measures

our constant has an exponential dependence on d. It is an interesting open problem whether
the approximation factor can be improved.

There is a depth measure which has attracted a lot of research, which does not fit into
our framework: simplicial depth (SD). The reason for this is that while the depth studied in
this paper are linear in the size of the point set, simplicial depth has values of size O(]S]9*1).
However, after the right normalization, simplicial depth can be reformulated to satisfy all
conditions except super-additivity and centrality. It would be interesting to see whether there
is some function g depending on point sets and query points such that the depth measure
SD(S.a) g super-additive. Such a function, if it exists, could potentially be used to improve

9(5,9)
bounds for the first selection lemma (see e.g. [11]).

Acknowledgments. Thanks to Emo Welzl, Karim Adiprasito and Uli Wagner for the helpful
discussions.

—— References

1 Greg Aloupis. Geometric measures of data depth. In Data Depth: Robust Multivariate
Analysis, Computational Geometry and Applications, pages 147-158, 2003.

2 Edoardo Amaldi and Viggo Kann. The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical Computer Science, 147(1):181 — 210,
1995.

3 Imre Barany and Pablo Soberén. Tverberg’s theorem is 50 years old: a survey. Bulletin of
the American Mathematical Society, 55(4):459-492, 2018.

4 TImre Bardny and Pavel Valtr. A positive fraction Erdos-Szekeres theorem. Discrete €
Computational Geometry, 19(3):335-342, 1998.

5 Dan Chen, Pat Morin, and Uli Wagner. Absolute approximation of Tukey depth: The-
ory and experiments. Computational Geometry, 46(5):566 — 573, 2013. Geometry and
Optimization.

6 VL Dol’nikov. Transversals of families of sets in in R” and a connection between the Helly
and Borsuk theorems. Russian Academy of Sciences. Sbornik Mathematics, 79(1):93, 1994.

7 Sariel Har-Peled and Timothy Zhou. Improved approximation algorithms for tverberg
partitions. arXiv preprint arXiv:2007.08717, 2020.

8 D.S. Johnson and F.P. Preparata. The densest hemisphere problem. Theoretical Computer
Science, 6(1):93 — 107, 1978.

9 Regina Y. Liu, Jesse M. Parelius, and Kesar Singh. Multivariate analysis by data depth:
descriptive statistics, graphics and inference. Ann. Statist., 27(3):783-858, 06 1999. URL:
http://dx.doi.org/10.1214/a0s/1018031260, doi:10.1214/a0s/1018031260.

10 Jiff Matousek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Com-
binatorics and Geometry. Springer Publishing Company, Incorporated, 2007.

11 Jivr’i Matouvsek. Lectures on discrete geometry, volume 212 of Graduate texts in mathe-
matics. Springer, 2002.

12 Karl Mosler. Depth Statistics, pages 17-34. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013. URL: http://dx.doi.org/10.1007/978-3-642-35494-6_2, doi:10.1007/
978-3-642-35494-6_2.

13 Richard Rado. A theorem on general measure. Journal of the London Mathematical Society,
21:291-300, 1947.

14 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and com-
putational geometry. Chapman and Hall/CRC, 2017.

15 John W. Tukey. Mathematics and the picturing of data. In Proc. International Congress
of Mathematicians, pages 523-531, 1975.

P. Schnider 16:7

16 Helge Tverberg. A generalization of Radon’s theorem. Journal of the London Mathematical
Society, 1(1):123-128, 1966.

17 Rade T. Zivaljevi¢ and Sinisa T Vreéica. An extension of the ham sandwich theorem.
Bulletin of the London Mathematical Society, 22(2):183-186, 1990.

EuroCG’'21

Geometric Dominating Sets - A Minimum Version
of the No-Three-In-Line Problem

Oswin Aichholzer!, David Eppstein?, and Eva-Maria Hainzl3

1 Graz University of Technology
oaich@ist.tugraz.at

2 University of California, Irvine
eppsteinQuci.edu

3 Vienna University of Technology
eva-maria.hainzl@tuwien.ac.at

—— Abstract

We consider a minimizing variant of the well-known No-Three-In-Line Problem, the Geometric

Dominating Set Problem: What is the smallest number of points in an n X n grid such that every
grid point lies on a common line with two of the points in the set? We show a lower bound of Q(n2/3)
points and provide a constructive upper bound of size 2[n/2]. If the points of the dominating sets
are required to be in general position we provide optimal solutions for grids of size up to 12 x 12.
For arbitrary n the currently best upper bound remains the obvious 2n. Finally, we discuss some
further variations of the problem.

1 Introduction

The well-known No-Three-In-Line Problem asks for the largest point set in an n x n grid
without three points in a line. This problem has intrigued many mathematicians including
e.g. Paul Erdds for roughly 100 years now. Few results are known and explicit solutions
obtaining the trivial upper bound of 2n only exist for n up to 46 and n = 48,50,52 (See
e.g. [3]). Providing general bounds seems to be notoriously hard to solve; see [4, 6] for some
history of this problem.

In this note we concentrate on an interesting minimizing variant of the No-Three-In-Line
problem, which we call the Geometric Dominating Set Problem: What is the smallest number
of points (or points in general position) in an n x n grid such that every grid point lies on a
common line with two of the points in the set? This problem arose during the 2018 Bellairs
Winter Workshop on Computational Geometry. Later we found out that already in 1976
in Martin Gardner’s Mathematical Games column [4] the minimization version has been
mentioned. Gardner wrote: “Instead of asking for the maximum number of counters that can
be put on an order-n board, no three in line, let us ask for the minimum that can be placed
such that adding one more counter on any vacant cell will produce three in line.” According
to Gardner, the problem had already been mentioned briefly in a paper by Adena, Holton
and Kelly [1]. He mentioned their best results which they obtained by hand for 3 < n < 10.
These are 4,4,6,6,8,8,12,12. Surprisingly, up to n = 8, their solutions are indeed optimal
solutions as we will see in Section 3. However, it seems that no progress has been made since
then, except for the special case where lines are restricted to vertical, horizontal and 45°
diagonal lines [2].

This minimum version might remind one less of the No-Three-In-Line Problem, which
itself is based on a mathematical chess puzzle, and more of the Queens Domination Problem
that asks for a placement of five queens on a chessboard such that every square of the board
is attacked by a queen. In a more general setting this problem asks for the domination
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the

community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

17:2 Geometric Dominating Sets

a‘llLT n“a 11
|

TT;J 11
B 1 1
1 1
11

H 1 1

Figure 1 Three out of 228 solutions: Every square lies on a line defined by two pawns where no
three pawns are allowed to lie on a common line.

number of the n X n queen graph. Inspired by that, we call the smallest size of a solution for
the Geometric Dominating Set Problem the geometric domination number D,,.

After introducing the Geometric Dominating Set Problem formally, we will prove non-
trivial asymptotic upper and lower bounds and provide further computational results.

1.1 Dominating Sets

In the spirit of mathematical chess puzzles, the Geometric Dominating Set Problem can be
formulated in two variants as

How many pawns do we have to place on a chessboard such that every square lies on
a straight line defined by two pawns? How many pawns do we need if no three pawns are
allowed to lie on a common line?

We will see in Section 3, the answer for a chessboard is eight and some solutions are
the placements shown in Figure 1. In fact, there are 228 possibilities to do so, and 44 if we
cancel out rotation and reflection symmetries.

» Definition 1.1. Three points are called collinear, if they lie on a common line. Conversely,
a set S is called in general position if no three points in S are collinear.

We call a point p in the n x n grid dominated (by a set S), if p € S or there exist x,y € S
such that {x,y, p} are collinear. Similarly, we say p is dominated by a line L if p lies on L.

A subset S of the n x n grid is called a (geometric) dominating set or simply dominating
if every point in the grid is dominated by S.

We call the smallest size of a dominating set of the n x n grid the (geometric) domination
number and denote it by D,,. The smallest size of a dominating set in general position (an
independent dominating set) is called the independent (geometric) domination number and
denoted by J,,. Note that every point in an independent dominating set is only dominated
by pairs that include the point itself.

1.2 Summary Of Results

We will show that
I > D, = Q(n??) (Subsection 2, Theorem 2.3)
D, <2[n/2] (Subsection 3, Theorem 3.1)

and present several computational results.

0. Aichholzer and D. Eppstein and E.M. Hainzl 17:3

2 Lower Bounds

For a lower bound on D,,, let us consider a set S of s points in the n x n grid. Any pair of
points in S can dominate at most n points, so it has to hold that (;)n > n? which is the

case if s > 1 + /1 +2n > v/2n. Therefore, D,, = Q(n'/?).

However, hardly any lines in the n x n grid dominate n points. In fact, we can prove a
significantly better bound by using the following theorem, where ¢ denotes the Euler-Phi
function.

» Theorem 2.1. Let n =2k +1 and S be a subset of the n x n grid with |S| < 437", ¢(i),
where 1 < m < k. Then the number of points dominated by lines incident to a fized point
x € S and the other points in S is bounded by

m

1 +82 {?J (i) < §nm—&-O(nlogm).
i=1

T2

The proof of this theorem can be found in [6] and uses the following well known number
theoretic result.

» Theorem 2.2 (Arnold Walfisz [7]).

k

3 2 4
ZSD(Z) = ﬁkQ +0 (k(log k)3 (log log k)g)
i=1
> @ = %m +0 ((logm)%(log logm)%)

» Theorem 2.3 (A lower bound on D,,). Forn € N, it holds that D,, = Q(n?/3).

Proof. First, let n = 2k + 1, k € N and let S be a set of s points in the grid, where
Von < s < 2n. (Recall that 2n is a trivial upper bound on D,, and V2n a lower bound.)
Let m be the smallest positive integer such that s < 4 -3 ¢(i). Then s ~ 13m? by
Theorem 2.2.

By Theorem 2.1, the number of points dominated by lines incident to a fixed point p and
one of s — 1 additional points is bounded by %nm + O (nlogm). To dominate all points in
the grid, we thus need

T2

4
n® <s <8nm+ O(nlogm)) .

Next, we plug in the asymptotic expression for s, such that the inequality simplifies to

12 48 576
n? < <2m2 + O (mlog m)) <2nm + O (nlog m)) = —4nm3 +0 (nm2 logm)
T T T

If we divide by n, we can see that m = Q(n'/?) and consequently s = Q(n?/?) which
proves the claim for n odd.

For n even we embed the n x n grid into the (n + 1) x (n + 1) grid and obtain the same
asymptotic results. <

» Corollary 2.4. J,, = Q(n%/3).

Proof. Since any independent dominating set is a dominating set, J,, > D,,. |

EuroCG’'21

17:4 Geometric Dominating Sets

3 Upper Bounds

» Theorem 3.1 (An upper bound on D,,). Forn € N, it holds that D,, < 2 (%-‘

The proof is based on the construction in Figure 2 and can be found in [6]. If n = k? is
an odd square the result can be slightly improved to n — 1 by a construction similar to the
one depicted for k = 3 and n = 9 in the leftmost drawing of Figure 6.

® & & & 0 0 0 0
L S T T S T T o

Figure 2 Dominating set construction for n = 16.

So far, for J,, there is no better upper bound known than the obvious 2n.

4 Small Cardinalities and Examples

Figure 3 The unique (up to symmetry) minimal independent dominating set of size 8 for the
10 x 10 board and a small independent dominating set of size 16 for the 21 x 21 board. The latter
gives the currently best known ratio (number of points / grid size) of 16/21 < 0, 762.

To obtain results for small grids we developed a search algorithm based on the classic
backtracking approach. To speed up the computation, both symmetries — rotation and
reflection — were taken into account. For n = 2,...,12, we made an exhaustive enumeration
of all independent dominating sets, and the obtained results are summarized in Table 1. For
larger sets upper bounds on J,, are given in Table 2. Figure 3 gives two examples of small
independent dominating sets.

0. Aichholzer and D. Eppstein and E.M. Hainzl 17:5

nl2]3[4] 56
Jn | 4| 4| 4 6|6 8 8 8 8 10 | 10
non sym. sets | 1 | 2 | 2 26 | 2 573 44 3 1 19 2
allsets | 1 | 5| 2| 152 | 8 | 4136 | 228 | 11 4 | 108 | 12

Table 1 Size of smallest independent dominating sets for n = 2,...,12 and number of different
sets, considering symmetry (rotation and reflection), and all sets.

nl13[1a]15][16] 1718192021 2223 24 252627]28]29]30
o< |12]12[14] 14151616 |16 |16 18] 20 [20 | 22[24 [24[24|24 [25
Table 2 Currently best upper bounds for smallest independent dominating sets for n > 12.

Figure 4 Three independent dominating sets of cardinality 28 for a 36 x 36 board.

We also obtained results for larger sets, but there is no evidence that our sets are (near
the) optimal solutions. Most of these examples are rather symmetric, but that might be
biased due to the approach we used to generate larger sets from smaller sets by adding
symmetric groups of points. Figure 4 shows three drawings for n = 36 with independent
dominating sets of size 28.

Figure 5 shows different dominating sets for n = 7. The best dominating sets that contain
collinear points are smaller than the best solutions in general position. For n < 12 this is the
only board size where allowing collinear points leads to smaller dominating sets. Figure 6(left)
shows some nicely symmetric dominating sets with collinear points.

5 Variations of the Problem and Conclusion

We have already seen in the previous section that minimal examples can get smaller if we
allow dominating sets to contain collinearities, cf. Figures 5 and 6. We can also release the
restriction that the points of the dominating set have to lie within the grid, that is, the points
can have coordinates smaller than one, or larger than n. In Figure 6(right) we depict two
examples where the shown dominating sets are smaller than the best bounded solutions in
general position. So far we have not been able to find any examples where this idea combined
with collinear points in the dominating set provided even better solutions.

Another interesting variant is a game version: Two players alternatingly place a point
on the n x n-grid such that no three points are collinear. The last player who can place a
valid point wins the game (called normal play in game theory). It is not hard to see that for

EuroCG’'21

17:6 Geometric Dominating Sets

Figure 5 Five different dominating sets for a 7 x 7-board. The first two sets are in general
position and have size 8, while the remaining three sets have size 7 but contain collinear points.

1 ..

Figure 6 Left: Symmetric dominating sets with collinear points for n = 9 and n = 10. Right:
Smaller dominating sets for a 2 x 2-board and a 7 X 7-board if points are allowed to be outside of
the board. These solutions are unique up to symmetry.

any even n the second player has a winning strategy. She just always sets the point which is
center mirrored to the previous move of the first player. By symmetry arguments this move
is always valid, as long as the first player made a valid move. For n odd the situation is more
involved. If the first player does not start by placing the central point in her first move, then
we have again a winning strategy for the second player by the same reasoning (note that the
central place can not be used after the first two points have been placed, as this would cause
collinearity). So if the first player starts by placing the central point it can be shown that
for n = 3 she can also win the game. But for n = 5,7, 9 still the second player has a winning
strategy. For odd n we currently do not know the outcome for games on grids of size n > 11.

Several open problems arise from our considerations:

Is there a constant ¢ > 0 such that D,, <J,, < (2 — ¢)n holds for large enough n?

Do J,, and D,, grow in a monotone way, that is, is J,41 > J,, and D, 11 > D,,?

Is there some ng such that J,, > D,, for all n > ng?

Do minimal dominating sets in general position always have even cardinality? For n < 12

this is the case, but the currently best example for n = 17 might be a counterexample.

How much can the size of dominating sets (with or without collinear points) be improved

if the points are allowed to lie outside the grid?

Which player has a winning strategy in the game version for boards of size n > 11, n odd.

In [6], the problem was also considered on the discrete n x n torus. By extending the
probabilistic approach of Guy and Kelly to the No-3-In-Line problem [5] an upper bound
of O(v/nlogn) holds, which remarkably is below the lower bound of the regular grid. We
can show a lower bound of Q(+/n) for the torus if n is prime, but if n is a power of 2, then
actually 4 points are sufficient. We will provide detailed results in the full version.

Acknowledgments. This research was initiated at the 33"¢ Bellairs Winter Workshop on
Computational Geometry in 2018, and continued at the 2019 edition of this workshop. We
thank the organizers and participants of both workshops for a very fruitful atmosphere.

0. Aichholzer and D. Eppstein and E.M. Hainzl 17:7

—— References

M.A. Adena, D.A. Holton, and P.A. Kelly. Some thoughts on the no-three-in-line problem.

1

In J. Seberry, editor, Combinatorial Mathematics: Proceedings of the Second Australian

Conference, August 16-27, 1977, volume 403 of Lecture Notes in Mathematics, pages 6-17.

Springer, 1974. doi:10.1007/BFb0057371.
A.S. Cooper, O. Pikhurko, J.R. Schmitt, and G.S. Warrington. Martin Gardner’s minimum

no-3-in-a-line problem. American Mathematical Monthly, 121(3):213-221, 2014. doi:10.

4169/amer .math.monthly.121.03.213.
A. Flammenkamp. Solutions to the no-three-in-line problem. Available on his homepage at

the University of Bielelefeld, 1997. Retrieved on April 29, 2020. URL: http://wwwhomes.

uni-bielefeld.de/achim/no3in/table.txt.

M. Gardner. Mathematical games: Combinatorial problems, some old, some new and all
newly attacked by computer. Scientific American, 235(4):131-137, October 1976. URL:
https://www.jstor.org/stable/24950467.

R. Guy and P. Kelly. The no-three-in-line problem. Canadian Mathematical Bulletin,
11:527-531, 1968. doi:10.4153/CMB-1968-062-3.

E.M. Hainzl. Geometric dominating sets. Master’s thesis, TU Graz, July 2020.

A. Walfisz. Weylsche Ezxponentialsummen in der neueren Zahlentheorie. Deutscher Verlag
der Wissenschaften, Berlin, 1963.

EuroCG’'21

Polyline Bundle Simplification on Trees

Yannick Bosch, Peter Schifer and Sabine Storandt

University of Konstanz
{yannick.bosch, peter.schaefer, sabine.storandt}@uni-konstanz.de

—— Abstract

The polyline bundle simplification problem asks for the smallest consistent simplification (with
respect to a given distance threshold) of a set of polylines which may share line segments and
bend points. As the problem was shown to be APX-hard in previous work, we consider here an
interesting special case where the polylines form a rooted tree. Tree bundles naturally arise in
the context of movement data visualization. Moreover, general bundles might be decomposable
into a (small) set of tree bundles. We present an algorithm that computes optimal tree bundle
simplifications in time O(n?®) where n is the total number of points in the input. The applicability
of our approach is demonstrated in an experimental evaluation on real-world data.

1 Introduction

Polyline simplification is a well-studied optimization problem which can be solved to optimality
in polynomial time [3]. However, in case the input is a set of (partially) overlapping polylines,
individual simplification of each polyline leads to visually unpleasing results as shared parts
may be simplified in different ways. Aiming at more appealing results, Spoerhase et al. [5]
introduced the problem of Polyline Bundle Simplification (PBS), adding as an additional
constraint that shared parts must be simplified consistently (i.e. each point is either kept in
or discarded from all polylines containing it).

» Definition 1 (Polyline Bundle Simplification [5]). An instance of PBS consists of a triple
(P, L,5) where P = (p1,...,pn) is a set of n points in the plane, £ = {L,... L;} is a set of
simple polylines, each represented as lists of points from P, and § is a distance parameter.
Given a triple (P, L£,0), the goal is to obtain a minimum size subset P* C P of points such
that for each polyline L € L its induced simplification S = L N P* contains the start and
end point of L and has a segment-wise Fréchet distance of at most § to L.

PBS is a generalization of the classical polyline simplification problem but was proven
by Spoerhase etal. [5] to be NP-hard to approximate within a factor of n'/3=¢ for any
e > 0 even for two polylines. As a potentially practical feasible approach, a bi-criteria
(O(log(l 4+ n)), 2)-approximation algorithm was presented in [5]. This algorithm is allowed
to return results within a distance threshold of 24, and based on this constraint relaxation
achieves a logarithmic approximation factor (compared to the optimal solution for §) in
polynomial time.

With the general problem being APX-hard, we focus in this paper on designing efficient
algorithms for a special case of PBS in which the polylines form a rooted tree. Such polyline
bundles arise for example when aggregating vehicle trajectories from a certain starting
location, with the vehicles moving on (unique) shortest paths in an underlying road network.
Similar to the concept of the Imai-Iri algorithm for simplification of a single polyline [3], our
algorithm precomputes the possible set of shortcuts for the given distance threshold and
thereupon transforms the given geometric problem into a graph problem. But while in the
Imai-Iri algorithm a simple search for the minimum link-path in the shortcut graph suffices,
we need a more intricate dynamic programming approach to deal with the tree structure.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

18:2 Polyline Bundle Simplification on Trees

2 Problem Statement
We now formally define the concept of a Polyline Tree Bundle (PTB).

» Definition 2 (Polyline Tree Bundle). A PTB is a set of simple polylines £ where all L € £
start at the same root point p,, and for any pair of polylines L, L’ € £ the only allowed
intersection is a common prefix (p, ..., p;)-

As described in Definition 1 for general polyline bundles, our optimization goal is to find
for a given distance threshold § the smallest subset of points in the input such that the
induced simplification is valid with respect to § for each L € L. A distance function d is used
to measure the distance of a line segment (a,b) in the simplification to the corresponding
sub-polyline of L, which we abbreviate by L[a,...,b]. For a valid simplification, we require
d((a,b), Lla,...,b]) <. In the following, we will consider two distance functions: (i) the
Fréchet distance (as used in [5]), and (ii) the maximum Euclidean distance.

To transform the PTB simplification problem into a graph problem, we construct two
directed graphs from the input data: a tree graph and a shortcut graph. We start by
considering the polylines as embedded directed paths which start at the root point. The tree
graph G = (V, Er) is the union of these paths. More precisely, for each point p occurring
in the PTB there is a corresponding node v € V (with v, corresponding to the root point
pr), and there exists a directed edge (v, w) € Ep if there is a polyline L € £ which contains
the segment between the respective points (in that direction). For a given distance function
d and threshold 6 > 0, the shortcut graph Gg = (V, Eg) is the union of all valid shortcut
edges, i.e. edges (v,w) € (‘2/) where for all polylines L € £ that contain v and w (in that
order), we have d((v,w), L[v,...,w]) <. Note that By C Fg, i.e. all tree graph edges are
also contained in the shortcut graph.

The construction of these graphs can be accomplished in time O(n?). In a PTB on n
points, there can be at most n polylines with a total of O(n?) segments. Accordingly, the
tree graph can be constructed in time O(n?). We remark that we do not need to consider
the case where a polyline L’ € £ is a sub-polyline of L € £. By definition, we will include
the endpoints of all polylines in our simplification and hence if the endpoint of L’ lies on
L, we could simply consider that point as the root of another PTB which can be simplified
independently. For the shortcut graph construction, we compute the set of valid shortcuts by
considering the polylines one after the other. To avoid redundant computations along shared
parts, we store the result for already considered node pairs. Accordingly, the total number of
potential shortcuts that need to be checked is in O(n?). The time T} to check the validity
of a shortcut depends on the distance function d. For both, the Fréchet distance and the
Euclidean distance, we have T; € O(n). Therefore, the total construction time is in O(n?).

We are now ready to restate the PTB simplification problem (PTBS) as a graph problem.

» Definition 3 (Polyline Tree Bundle Simplification). Given a tree graph Gr(V, Er) and a
shortcut graph Gg(V, Es), the goal is to find a smallest node subset S € V such that:

The root node and all leaf nodes of the tree graph are contained in S.

For each path from the root node to a leaf node in G, its restriction to nodes in S has to
result in a valid path in Gg (i.e. consecutive nodes are connected with a valid shortcut).

In Figure 1, optimal PTBS solutions for an example instance are shown.

Y. Bosch, P.Schafer and S. Storandt 18:3

VAR
U4
S

Figure 1 A tree bundle and two optimal consistent simplifications for different distance thresholds.

3 A Polynomial Time Algorithm for PTBS

In this section, we describe a dynamic programming approach that operates on the tree
graph G and the shortcut graph G, and returns an optimal PTBS solution in O(n?).
Let Sub(v) C Gr be the sub-tree rooted at node v in the tree graph. Our main observation
is that we can break down an optimal solution recursively. If a node v is part of the solution
(v € 9), it’s easy to see that there can’t be shortcuts bypassing v. Thus, the solution S can be

split into two parts: an optimal solution for Sub(v) and an optimal solution for G \ Sub(v).

We denote the size of an optimal solution for Sub(v) by s(v). As we don’t know a priori
which nodes will end up in the solution, we strive for computing s(v) for each node v € V' in
an efficient manner. For leaf nodes v, we obviously get s(v) = 1. To compute s(v) for an
inner node v, we assume that s(w) is already known for all nodes w € Sub(v) \ {v}. For
each path from v to a leaf node in Sub(v), the solution for Sub(v) needs to contain a cover
node w such that (v, w) € Eg (that means there is a valid shortcut from v to w). To identify
the best selection of cover nodes, we compute a helping function h : V' — N for each node
w € Sub(v) as follows: Initially, h(w) = s(w) if (v,w) € Eg, and h(w) = co otherwise. Then,
in a post-order traversal of Sub(v), we set h(w) = min{h(w), >, c () h(w)} where N(w)
denotes the set of children (out-neighbors) of w in Gp. In that way, h(w) encodes the smallest
number of nodes that have to be kept in Sub(w) if for all paths from v to leaf nodes in Sub(w)
the respective cover node is contained in Sub(w). The optimal solution size s(v) for Sub(v) is
then equal to h(v) + 1 (as we have to additionally include v itself). Note that s(v) is always
well-defined (i.e., finite) as the tree edges are all valid shortcuts in Gg. The time to compute
s(v) is in O(|Sub(v)| + |{(v,w) € Es}|) and hence can be upper bounded by O(n). To make
sure that at the time we want to compute s(v) all values s(w) for w € Sub(v) \ {v} are
known, we also globally traverse the nodes in the tree graph in post-order. Hence altogether,
we have two nested post-order traversals with a total complexity of O(n?). The optimal set
of simplification nodes S can then be determined by backtracking.

For a faster running time in practice, we suggest to only compute h-values for nodes in
Sub(v) which are on a path from v to some potential cover node w with (v, w) € Eg. These
nodes can easily be identified by computing the reverse path from each such node w to v and
marking all nodes along the way (stopping as soon as a marked node is encountered to avoid
redundancy). For marked nodes w with an unmarked neighbor, we simply set 3_, ¢ n () 2(u)
to oo to maintain correctness. Especially for small distance thresholds § and large sub-trees
Sub(v), this modification is expected to accelerate the computation of s(v) significantly.

Finally, we remark that minimizing the number of nodes in the simplified tree bundle is
equivalent to minimizing the number of segments; while for general polyline bundles these
two optimization goals might lead to different results as discussed in [5].

EuroCG’'21

18:4 Polyline Bundle Simplification on Trees

AN
~ = - T = L
/ NN < T = =10

.(3'2) _)—\/ (00,0)

)

Figure 2 Example: computation of h(w). Tree egdes are black, shortcuts are dashed blue,
solution shortcuts are dashed green. Attached to each node: h(w) and s(w).

In the first figure, w is currently reachable by a shortcut, so is one of its children. However, since
one child is not reachable by a shortcut (indicated by h = c0), we compute h(w) = s(w) + 1.

In the second figure, h(w) is updated to 1, because the only child is reachable by a shortcut, and
the sum of h over the children is smaller than the original h(w).

In the bottom figure, we compute s(v) = h(v) as the sum of h over all children.

Y. Bosch, P.Schafer and S. Storandt 18:5

—+ recursive engineered

—>— iterative engineered |
12 9 20004 |

3700
1m0 | 3400
100 Il - i’ |
o ’ 10 1500 \ 2000
J\A 125 08 £ \ 2500

/ ’.')‘,) 110

M 95

1000

Shortcut time [s]
Simplification size [Nodes

@
2
3

0 1000 2000 3000 4000 o 1000 2000 3000 4000 0 50 100 150 200
Tree size [Nodes] Tree size [Nodes] Delta [m]

Figure 3 Experimental results on tree bundles of different size extracted from road networks. The
left image shows the time (in seconds) to compute the shortcut graph in dependency of the number
of nodes in the input. More orange lines indicate larger values of §. The image in the middle provides
running time results of the DP approach (subdivided by different means to compute a post-order of

the nodes in the tree graph). The right image depicts the computed optimal simplification sizes.

Here, darker lines indicate a larger number of nodes in the input. Points are averaged over 20 tree
bundles for every configuration of § and the tree size. J is given in meters.

4 Experiments

We implemented the dynamic programming-based approach for PTBS as well as the bi-criteria
approximation algorithm by Spoerhase et al. [5] suited for simplification of general polyline
bundles. Our input is constructed by randomly sampling a node from the road network of
Germany (extracted from OSM). Expanding from the root we construct a subgraph with
a certain size and perform a BFS to obtain a tree. A tree bundle is then generated by
backtracking from the leaves. Experiments were mainly conducted on a single core of an
AMD Ryzen 7 3700X with 4.1 GHz. Bi-criteria algorithm experiments were conducted on an
Intel Core 19 with 2.4 GHz.

Figure 3 illustrates the experimental results for our proposed approach on tree bundles of
different size and with different distance thresholds § (limiting the Euclidean distance). In
compliance with our theoretical analysis, we observe that the time to compute the shortcut
graph clearly dominates the overall running time. The dynamic program (DP) itself then
produces the optimal solution very quickly, especially when using the engineering idea
described above and an iterative depth-first-search run in the tree to compute a post-order of
the nodes. In the right plot in Figure 3, it can be nicely observed that the optimal number
of nodes in the simplification converges for growing values of § to the number of leaf nodes
in the tree graph, as those have to be kept by definition.

Furthermore, we compared the performance of the DP-based approach for PTBS to
that of the bi-criteria approximation algorithm (BCA) on the same input with the Fréchet
distance serving as the distance function. This experiment was conducted on a single core of
an Intel i5-4300U CPU with 1.90GHz and 12GB RAM. As BCA might return results where
the simplified polylines have a segment-wise Fréchet distance of up to 26 to the original
polylines, we ran the BCA algorithm twice, once with § and once with ¢/2. Table 1 shows
the respective results for the example tree bundle illustrated in Figure 4 and § = 0.00005.

We observe that BCA indeed makes use of the relaxed distance constraint. In the BCA
run with § = 0.00005, the resulting Fréchet distance is 1.75 times larger than §, coming
close to the theoretically guaranteed upper bound of 2. However, even with this increased
distance threshold, the BCA solution is worse than the optimal solution for the original
d computed with the DP-based approach. And if we use BCA with 9/2 to ensure that it
enforces the same distance bound as the DP-approach, the quality deteriorates further. In

EuroCG’'21

18:6 Polyline Bundle Simplification on Trees

Figure 4 Polyline tree bundle (based on the road network of Konstanz) with 8000 points.

addition, the DP-based approach is about 20 times faster. The same trend was observed on
other instances. We hence conclude that on tree bundles the DP-based approach is superior.
But of course BCA is more versatile as it can be applied to arbitrary polyline bundles.

’ ‘) Fréchet distance dr ‘ dr/d ‘ retained points ‘ time (msec) ‘
DP 0.00005 0.0000500 1.00 4009 21
BCA | 0.00005 0.0000877 1.75 4029 407
BCA | 0.000025 0.0000404 1.61 5276 350

Table 1 Comparison of the DP and the BCA algorithm on an input tree bundle with 8000 points.
Distances are given in geo-coordinates (0.00005 decimal degrees & 5m).

5 Outlook

We developed an efficient and exact approach for polyline tree bundle simplification. As
shown in our theoretical as well as empirical analysis, the running time is currently dominated
by the computation of the shortcut graph. Therefore, attempts to accelerate the approach
should focus on this step. For example, a shortcut (v, w) bypassing a node z of out-degree
larger than 1 can only be part of a feasible solution if for every subtree rooted at an out-
neighbor of z there is also a valid shortcut emerging from v that ends in that subtree. It
hence might be possible to reduce the number of potential shortcuts that have to be checked
based on structural observations.

Melkman and O’Rourke [4] and Chan and Chin [1] construct a shortcut graph for the
Euclidean distance in time O(n?). We will examine if their results are applicable to our
problem setting.

Another interesting direction for future work is the development of techniques to subdivide
a general polyline bundle into a set of tree bundles, which then could be simplified optimally
(and in parallel) with our approach. If only few points of the general bundle need to be
included in the solution set to realize a subdivision into tree bundles, then we would expect
to end up with a good overall simplification quality. We assume that real-life movement
trajectories might be well suited for such an approach.

Y. Bosch, P.Schafer and S. Storandt 18:7

—— References

1

W. Chan and Francis Chin. Approximation of polygonal curves with minimum number of
line segments. volume 6, pages 378-387, 1992. doi:10.1007/3-540-56279-6_90.
Chenglin Fan, Omrit Filtser, Matthew J. Katz, Tim Wylie, and Binhai Zhu. On the chain
pair simplification problem. In Algorithms and Data Structures. Springer International
Publishing, 2015.

Imai Hiroshi and Iri Masao. Polygonal approximations of a curve—formulations and algo-
rithms. In Machine Intelligence and Pattern Recognition, volume 6, pages 71-86. Elsevier,
1988.

Avraham Melkman and Joseph O’Rourke. On polygonal chain approximation. In God-
fried T. Toussaint, editor, Computational Morphology, volume 6, pages 87-95. 1988.
doi:https://doi.org/10.1016/B978-0-444-70467-2.50012-6.

Joachim Spoerhase, Sabine Storandt, and Johannes Zink. Simplification of polyline bun-
dles. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020.

EuroCG’'21

Folding Polyiamonds into Octahedra

Eva Bolle! and Linda Kleist?!

1 Technische Universitat Braunschweig, Germany
{eva.bolle,l.kleist}@tu-bs.de

—— Abstract

We study polyiamonds (triangular polyominoes) that fold into the smallest yet unstudied platonic
solid — the octahedron. We present a characterization for the convex polyiamonds that fold into
an octahedron. Moreover, we show a sharp size bound for foldable polyiamonds. While there exist
unfoldable polyiamonds of size 14, every polyiamond of size at least 15 folds into the octahedron.

1 Introduction

Algorithmic origami is a comparatively young branch of computer science that studies the
algorithmic aspects of folding various materials. The construction of three-dimensional
objects from two-dimensional raw materials is of particular interest and has applications in
robotics in general [10, 12], and also in the construction of objects in space [9].

While foldings of polycubes and tetrahedra have already been studied, we take the next
step and focus on the question of whether a given polyiamond folds into the octahedron?

&L

(a) The (unit) octahedron O. (b) A polyiamond P.

Figure 1 Does the polyiamond P fold into the octahedron O?

By an octahedron, we refer to the regular octahedron O composed of eight equilateral
(unit) triangles; for an illustration consider Figure 1(a). Note that in each of the six vertices
four triangles meet. Because all faces of the octahedron are triangles, our pieces of paper are
polygons arising from the triangular grid. A polyiamond of size n is a connected polygon in
the plane formed by joining n triangles from the triangular grid by identifying some of their
common sides; for an example consider Figure 1(b). To avoid confusion with the corners of
the octahedron, we refer to the vertices of the triangles forming P as the vertices of P; note
that these vertices may also lie inside P.

We view P as a set which includes the n open triangles and a subset of the shared
unit-length boundary edges; the existence of such an edge models the fact that the triangles
are glued along this side. Because we only want robust connections between triangles via
their sides, we do not specify the existence/non-existence of vertices which do not influence
the foldability. However, for the upcoming definitions of slits and holes, we assume that
the vertices do not belong to the polyiamond. If a shared edge does not belong to P, we
call it a slit edge. We also allow the polyiamonds to have holes; a hole of a polyiamond is a
bounded connected component of its complement, which is different from a single vertex.
We call a hole a slit if it has area zero and consists of one or more slit edges. We consider

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

19:2 Folding Polyiamonds into Octahedra

two polyiamonds to be the same if they are congruent, i.e., if they can be transformed into
one another by a set of translations, rotations and reflections. Moreover, a polyiamond is
convez if it forms a convex set in the plane.

Folding model. We consider foldings in the grid folding model, where folds along the grid
lines are allowed such that in the final state every triangle covers a face of the octahedron,
i.e., we forbid folding material strictly outside or inside the octahedron. Consequently, in the
final state the folding angles are + := arccos(1/3) or £180°. A folding of a polyiamond P
into a (partial) octahedron O induces a triangle-face-map, i.e., a mapping of the triangles
of P to the faces of O. We say P folds into O (or also P is foldable), if P can be transformed
by folds along the grid lines into a folded state such that the induced triangle-face-map is
surjective, i.e., each face of O is covered by at least one triangle.

Related work. Past research has particularly focused on folding polyominoes into polycubes.
Allowing for folds along the box-pleat grid (square grid lines and alternating diagonals),
Benbernou et al. (with differing co-authors) show that every polycube @ of size n can be
folded from a sufficiently large square polyomino [6] or from a 2n x 1 strip-like polyomino [5].
Moreover, common unfoldings of polycubes have been investigated in the grid model. The
(square) grid model allows folds along the grid lines of a polyomino with fold angles of +90°
and +180°, and allows material only on the faces of the polyhedron. Benbernou et al. show
that there exist polyominoes that fold into all polycubes with bounded surface area [5] and
Aloupis et al. study common unfoldings of various classes of polycubes [4]. Moreover, there
exist polyominoes that fold into several different boxes [1, 11, 13, 14, 15].

Decision questions for folding (unit) cubes are studied by Aichholzer et al. [2, 3]. The
half-grid model allows folds of all degrees along the grid lines, the diagonals, as well as along
the horizontal and vertical halving lines of the squares. In this model, every polyomino of size
at least 10 folds into the cube [3]. The remaining polyominoes of smaller size are explored
by Czajkowski et al. [8]. In the grid model, Aichholzer et al. [3] characterized the foldable
tree-shaped polyominoes that fit within a 3 x n strip. Investigating polyominoes with holes,
Aichholzer et al. [2] show that all but five basic holes (a single unit square, a slit of length 1,
a straight slit of length 2, a corner slit of length 2 and a U-shaped slit of length 3) guarantee
that the polyomino folds in the grid model into the cube.

In the context of polyiamonds, Aichholzer et al. [3] present a nice and simple characteri-
zation of polyiamonds that fold into the smallest platonic solid: Even when restricting to
folds along the grid lines, a polyiamond folds into the tetrahedron if and only if it contains
one of the two tetrahedral nets.

Results and organization. Our main results are as follows: In Section 2, we identify some
sufficient and necessary conditions for foldability and take a closer look at polyiamonds with
slits and holes. Among our findings, we characterize foldable polyiamonds containing a hole
of positive area: each but one polyiamond is foldable. In Section 3, we characterize the
convex foldable polyiamonds: A convex polyiamond folds into O if and only if it contains
one of five polyiamonds. Lastly, in Section 4, we show that every polyiamond of size > 15 is
foldable. An unfoldable polyiamond of size 14 proves that this bound is best possible.

E. Bolle and L. Kleist 19:3

2 First Thoughts
2.1 Foldability

A polyiamond P contains a polyiamond P’ if P’ can be translated, rotated, and reflected
such that all triangles and triangle sides of P’ also belong to P. Restricting our attention to
the triangles, a polyiamond P A-contains a polyiamond P’ if all triangles of P’ belong to P.
As we will show in Observation 2.5, neither containment nor A-containment of a foldable
polyiamond is a sufficient folding criterion. Nevertheless, we are able to show two sufficient
criteria based on A-containment of foldable polyiamonds. By zig-zag-folding as indicated in
Figure 2, every polyiamond can be reduced to a contained convex polyiamond.

» Lemma 2.1. A polyiamond P is foldable if it /\-contains a convex foldable polyiamond C.

Figure 2 Folding strategy to reduce to convex subpolyiamonds by zig-zag-folds of the outside.

A net of a polyhedron is formed by cutting along certain edges and unfolding the resulting
connected set to lie flat. There exist two interesting facts for nets of 3-dimensional regular
convex polyhedra [7]: Firstly, each net is uniquely determined by a spanning tree of the

1-skeleton of the polyhedron, i.e., the cut edges form a spanning tree of the vertex-edge graph.
Secondly, dual polyhedra (e.g., the cube and the octahedron) have the same number of nets.

Consequently, there exist eleven octahedron nets. They are depicted in Figure 3.

bz e o A
& Lor il
i

Figure 3 The eleven nets of the octahedron. In a folding, vertices of the same label are mapped
to the same corner of O.

We can show that A-containing a net is a sufficient folding criterion for a polyiamond.

» Lemma 2.2. A polyiamond is foldable if it \-contains an octahedron net.

EuroCG’'21

19:4 Folding Polyiamonds into Octahedra

2.2 Unfoldability

As indicated in Figure 4, the triangular grid graph allows for a proper 3-coloring. Because
every (connected) inner triangulation has at most one 3-coloring (up to exchange of the
colors), every polyiamond has a unique 3-coloring which is induced by the triangular grid. If
there exists a slit edge along a grid line, the polyiamond graph may have several vertices
corresponding to one grid vertex, see also Figure 6(b). Note that each corner of O has a
unique non-adjacent corner which we call its antipodal.

x o o x o o x o o x o

[m] o] X m] o X m] o] X m] o] X
X o o X o o} X o o} X o

[m] o] X u] o X u] o X u] o X
x m] o x n] o x m] o x o

Figure 4 A 3-coloring of the triangular grid.

In order to study the unfoldability, we also consider partial foldings. In particular, when
relaxing the condition that all faces are covered, we say a polyiamond is folded into a partial

octahedron.

» Lemma 2.3. Let P be a polyiamond with a 3-coloring of its vertices. In every folding of P
to a (partial) octahedron, the vertices of each color class are mapped to (one vertex or a pair
of) antipodal corners of O.

The proof of Lemma 2.3 follows from the following observation: Consider two neighboring
triangles of P and note that their two private vertices have the same color. If their common
side is folded by +4, the two vertices are mapped to antipodal corners of O; otherwise the
edge is folded by +180° and the two vertices are mapped to the same corner of O.

Let Cg and Cyg denote the polyiamonds depicted in Figures 5(a) and 5(c), respectively.
The following lemma is a crucial tool to disprove foldability.

» Lemma 2.4. Let P be a polyiamond folded into a partial octahedron O.

a. FEvery Cg A-contained in P covers at most 4 different faces of O.

b. If a Cg in P covers exactly 3 or 4 faces, then the induced triangle-face-mapping is unique
(up to symmetry) and as depicted in Figures 5(a) and 5(b), respectively.

c. Every Ciy contained in P covers at most 6 different faces of O.

o) o °
f2 S)
fi f3 fi fa v
(-] X | o X | X o
fi f3 fi I3
f2 f2 V3
o o o °
(a) A triangle-face-map of Cs (b) A triangle-face-map of Cs (c) Any triangle-face-map of
covering 3 faces of O. covering 4 faces of O. C1o covers at most 6 faces of O.

Figure 5 Illustration of Lemma 2.4 and its proof.

E. Bolle and L. Kleist 19:5

2.3 On Slits and Holes

Note that removing individual edges from a foldable polyiamond cannot destroy its foldability

(if connectivity is maintained). This allows us to focus on polyiamonds without slit edges.

We would like to remark that slits may in fact enable foldability.

» Observation 2.5. Let P be a polyiamond (\-)containing a foldable polyiamond P'. Then,
the polyiamond P may not be foldable.

As we show in Theorem 3.1, the polyiamond P depicted in Figure 6(a) does not fold
into O, while the polyiamond P’ with additional slit edges in Figure 6(b) can be transformed
into a polyiamond containing a net. Hence, P’ is foldable by Lemma, 2.2.

RN

(a) This polyiamond does not (b) With additional slit edges, the polyiamond folds into O.
fold into O. (Theorem 3.1)

Figure 6 Illustration for Observation 2.5.

We now characterize foldable polyiamonds with holes of positive area. Let O denote the
polyiamond illustrated in Figure 7(d).

» Theorem 2.6. Let P be a polyiamond containing a hole h of positive area. Then P folds
into O if and only if it is not the polyiamond O.

(a) Polyiamond P, (b) Polyiamond P, (c) Polyiamond P, (d) Polyiamond O

Figure 7 llustration for the proof of Theorem 2.6.

For the proof, we focus on a largest hole i of P and distinguish two cases: If h contains
two neighboring triangles, P reduces (by zig-zag-folding) to the foldable polyiamond P,
depicted in Figure 7(c). Otherwise, we focus on an individual triangle contained in h and
the case that P cannot be reduced to the foldable polyiamond P,, see Figure 7(a). Then,
zig-zag-folds yield a foldable subpolyiamond P’ of P, depicted in Figure 7(b). It follows that
every polyiamond with a hole h of positive area and size > 13 folds into O.

EuroCG’'21

19:6 Folding Polyiamonds into Octahedra

[/ ’ ;i >

Figure 8 Construction of all C-free polyiamonds; the inclusion-wise maximal C-free polyiamonds
0, p, s, and w are highlighted in red.

E. Bolle and L. Kleist 19:7

3 Characterization for Convex Polyiamonds

In this section, we characterize convex foldable polyiamonds. Let C denote the set of five
convex polyiamonds depicted in Figure 9.

Figure 9 Illustration for Theorem 3.1; the set C of foldable polyiamonds and their foldings.

» Theorem 3.1. A convex polyiamond P folds into O if and only if it contains one of the
five polyiamonds in C.

In the proof we exploit the convexity and Lemma 2.1 for both directions. For one, it
suffices to present folding strategies for the polyiamonds in C, see Figure 9. For the other
direction, we construct all convex C-free polyiamonds (that contain no polyiamond in C), see
Figure 8, and show that the inclusion-wise maximal C-free polyiamonds do not fold into O.

4 A Sharp Size Bound

As shown in the proof of Theorem 3.1, the polyiamond s depicted in Figure 8 is not foldable,
i.e., there exist polyiamonds of size 14 that do not fold into O. In this section, we show the
following complementing theorem.

» Theorem 4.1. Every polyiamond P of size > 15 folds into O.

To present an idea of the proof, we give some useful sufficient conditions and a simple
upper bound. Let P be a polyiamond and ¢ some grid line. The ¢-width of P denotes the size
of the polyiamond obtained by folding all edges parallel to ¢ in a zig-zag-fashion as indicated
in Figure 2. The width of P is the maximum of the three different /-widths. Because the
convex polyiamond P_ := z, depicted in Figure 8, folds into O, we obtain the following.

» Lemma 4.2. FEvery polyiamond P of width at least 10 folds into O.

Moreover, we determine an upper bound on the size of polyiamonds of width < 9, see
Figure 10 for the construction of the maximal polyiamonds of width at most 9. In particular,
they have size < 42 which yields a nice and simple upper bound.

» Corollary 4.3. Every polyiamond of size > 42 folds into O.

To show the sharp bound, we need to work a little harder.

EuroCG’'21

19:8 Folding Polyiamonds into Octahedra

»

(d)

(a)

(h) O] 0) (k)

Figure 10 Illustration for the proof of Corollary 4.3. Construction of the maximal polyiamonds
of width < 9; their sizes are indicated by numbers.

Proof sketch for the sharp upper bound. Theorem 4.1 is based on a strong sufficient
criterion. Let Px, Py, Pz, and P;, denote the polyiamonds depicted in Figures 11(a)
to 11(d), respectively.

» Proposition 4.4. FEvery polyiamond P that A-contains Px, Py, Pz, or P and has
size > 15 folds into O.

(a) Px (b) Pu (c) Pz (d) P

Figure 11 Illustration of the four polyiamonds used in Proposition 4.4.

We call a polyiamond P-free if it does not A-contain any of the polyiamonds P_, Py,
Py, Pz, or Pr,. By Theorem 3.1 and Proposition 4.4, it remains to show that no P-free
polyiamond of size > 15 exists. To do so, we construct all P-free polyiamonds bottom-up
with computer assistance and observe that indeed no such polyiamond exists.

Acknowledgments We thank Christian Rieck for valuable suggestions on a draft of this
manuscript and the anonymous reviewers for constructive feedback. Additionally, the first
author thanks Tilman Stehr for his good advice concerning questions of implementation.

E. Bolle and L. Kleist 19:9

—— References

1

10

11

12

13

14

15

Zachary Abel, Erik Demaine, Martin Demaine, Hiroaki Matsui, Giinter Rote, and Ryuhei
Uehara. Common developments of several different orthogonal boxes. In Canadian Con-
ference on Computational Geometry (CCCG ’11), 2011.

Oswin Aichholzer, Hugo Akitaya, Kenneth Cheung, Erik Demaine, Martin Demaine, Sén-
dor P. Fekete, Linda Kleist, Irina Kostitsyna, Maarten LofHler, Zuzana Masarova, and Klara
Mundilova. Folding polyominoes with holes into a cube. Computational Geometry (CGTA),
93:101700, 2020. doi:10.1016/j.comgeo.2020.101700.

Oswin Aichholzer, Michael Biro, Erik D. Demaine, Martin L. Demaine, David Eppstein,
Sandor P. Fekete, Adam Hesterberg, Irina Kostitsyna, and Christiane Schmidt. Folding
polyominoes into (poly)cubes. International Journal of Computational Geometry €& Appli-
cations (IJGCA), 28:197-226, 2018. doi:10.1142/50218195918500048.

Greg Aloupis, Prosenjit K. Bose, Sébastien Collette, Erik D. Demaine, Martin L. Demaine,
Karim Douieb, Vida Dujmovié¢, John Iacono, Stefan Langerman, and Pat Morin. Common
unfoldings of polyominoes and polycubes. In Computational Geometry, Graphs and Appli-
cations (CGGA ’10), pages 44-54. Springer, 2010. doi:10.1007/978-3-642-24983-9_5.
Nadia M. Benbernou, Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Univer-
sal hinge patterns for folding strips efficiently into any grid polyhedron. Computational
Geometry, page 101633, 2020. doi:10.1016/j.comgeo.2020.101633.

Nadia M. Benbernou, Erik D. Demaine, Martin L. Demaine, and Aviv Ovadya. Universal
hinge patterns for folding orthogonal shapes. Origami®: Proceedings of the 5th International
Conference on Origami in Science, Mathematics and Education (OSME ’11), pages 405—
419, 2011.

F. Buekenhout and M. Parker. The number of nets of the regular convex polytopes in
dimension < 4. Discrete Mathematics, 186(1):69 — 94, 1998. doi:10.1016/30012-365X(97)
00225-2.

K.Y. Czajkowski, Erik D. Demaine, Martin L. Demaine, K. Eppling, R. Kraft, Klara
Mundilova, and L. Smith. Folding small polyominoes into a unit cube. In Canadian
Conference on Computational Geometry (CCCG 20), 2020.

E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and R. J.
Wood. Programmable matter by folding. Proceedings of the National Academy of Sciences,
107(28):12441-12445, 2010. doi:10.1073/pnas.0914069107.

Kaori Kuribayashi, Koichi Tsuchiya, Zhong You, Dacian Tomus, Minoru Umemoto,
Takahiro Ito, and Masahiro Sasaki. Self-deployable origami stent grafts as a biomedical
application of ni-rich tini shape memory alloy foil. Materials Science and Engineering: A,
419:131-137, 03 2006. doi:10.1016/j.msea.2005.12.016.

Jun Mitani and Ryuhei Uehara. Polygons folding to plural incongruent orthogonal boxes.
In Canadian Conference on Computational Geometry (CCCG 08), pages 39-42, 2008.
Ala Qattawi, Mahmoud Abdelhamid, Ahmad Mayyas, and Mohammed Omar. Design
analysis for origami-based folded sheet metal parts. SAFE International Journal of Materials
and Manufacturing, 7(2):488-498, 2014. URL: http://www. jstor.org/stable/26268627.
Toshihiro Shirakawa and Ryuhei Uehara. Common developments of three incongru-
ent orthogonal boxes. International Journal of Computational Geometry € Applications
(IJGCA), 23(01):65-71, 2013. doi:10.1142/50218195913500040.

Ryuhei Uehara. A survey and recent results about common developments of two or more
boxes. In Origami®: Proceedings of the 6th International Meeting on Origami in Science,
Mathematics and Education (OSME ’1}), volume 1, pages 77-84, 2014.

Dawei Xu, Takashi Horiyama, Toshihiro Shirakawa, and Ryuhei Uehara. Common devel-
opments of three incongruent boxes of area 30. Computational Geometry (CGTA), 64:1-12,
2017. doi:10.1016/j.comgeo.2017.03.001.

EuroCG’'21

Computing Optimal Virtual Camera Trajectories

Kerem Geva'l, Matthew J. Katz?, and Eli Packer?

1 Ben-Gurion University of the Negev, Israel
gevak@post.bgu.ac.il

2 Ben-Gurion University of the Negev, Israel
matya@cs.bgu.ac.il

3 Intel Corporation, Israel
eli.packer@intel.com

—— Abstract

We introduce algorithms for generating virtual camera trajectories for highly dynamic scenes.
The input to our algorithms is the locations of objects forming the scene in each time frame of a
given sequence of such frames. In each frame, we determine the location of a virtual camera, so that
(i) the objects of interest are well captured, and (ii) the induced trajectory of the virtual camera has
plausible geometric properties. The trajectories we create should facilitate the generation of good
quality virtual clips that both show the main events of the underlying scene and are appealing to
view.

1 Introduction

Immersive videos (also known as 360-degrees videos) are videos in which a view in every
direction is recorded simultaneously by using a collection of cameras. By capturing scenes
from various angles and applying Multi View Stereo techniques [3], one can create virtual
videos that mimic immersive videos. This means that there are six degrees of freedom to
determine the camera position, viewing direction and zoom-in level in each frame. Having
this technology at hand, videos of virtual cameras have become popular in recent years. The
virtual cameras trajectories are usually determined by administrators who run dedicated
software. The resulting trajectories are usually very simple, e.g., straight lines or trajectories
that follow a specific dynamic object.

Creating virtual videos is a very challenging task, mainly because it greatly depends
on the 3D reconstruction of the objects in the scene. The latter is a non-precise task with
many challenging difficulties. Just to name a few, it depends on precise camera calibrations,
visibility of several cameras and the multi-view stereo algorithm. As those contain inherent
errors, the results are never completely precise and visible errors are evident.

Another challenging task is to define good virtual camera trajectories. The challenge
here mainly relates to finding trajectories that are plausible for the viewers, reveal the major
interests of the scene and hide potential 3D reconstruction errors. Moreover, the geometry
of the trajectory is usually crucial for producing good results. In many cases, it should be
smooth, of uniform speed and without fast turns, etc.

In this work, we propose an algorithmic framework to create good camera trajectories.
Our main goal is to generate trajectories such that the most interesting objects of the
scene are visible, while certain plausible geometric features (such as those mentioned above)
are maintained. We apply computational geometry tools and multi-objective optimization
techniques to achieve this goal. As far as we know, we are the first to do so in this context.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 A Contribution to EuroCG 2021

2 Overview

In this section we give an overview of our algorithm for the production of a virtual clip.

A clip is a sequence of k frames, where each frame captures a given simple scene. For
each frame, we need to determine the location of the virtual camera from which to capture
the given scene. This location should, on the one hand, enable a good view of the scene, and,
on the other hand, it should fit well in the sequence of locations forming the clip.

Our algorithm consists of the following three stages. In the first stage we consider each
frame separately. Given the scene for some frame f;, we compute a set of simple suitable
regions R; around the scene. A region is considered suitable if any point in it is a suitable
location for the virtual camera, in the sense that it enables a good view of the scene (assuming
the camera is directed towards the center of the scene).

In the second stage we construct a layer graph G with k layers, one per frame. The nodes
of the i’th layer are the regions of R;, and the subgraph induced by any two consecutive
layers is a complete weighted bipartite graph. The weight of an edge between r € R; and
r’" € R;y1 is determined by several parameters, see details below. Finally, we add nodes s
and ¢, and connect s to all the nodes of the first layer by edges of weight zero and connect ¢
to all the nodes of the last layer by edges of weight zero.

By computing a minimum-weight path from s to ¢ in G, we obtain a crude plan for our
virtual camera. That is, if the computed path is 7 = s,r1,79,...,7%, ¢, then the ¢’th frame
in the clip will correspond to the view from some point p; in the region r;, fori =1,... k.

The input to the third stage is thus the sequence of regions (r1,...,7), and the goal
of this stage is to select a location for the camera in each of these regions. The final clip
will then consist of the sequence of views corresponding to these locations. We present two
alternative approaches for selecting the locations, where the emphasis in both approaches is
on the integration of the individual views.

In both approaches, we assume that the regions are simple polygons with some additional
properties, and we need to traverse the polygons in the given order, such that the resulting
path is (nearly) optimal in some sense. In the first approach, we are only interested in
minimizing the total length of the path, which is (a special case of) the touring polygons
problem [2], and in the second approach we are interested in optimizing several measures,
including path length, number and sharpness of turns and uniform edge length. Thus, we
term this approach as the multi-objective touring polygons problem. In this version of the
paper, we only discuss the second approach.

3 The layer graph

In this section we describe the construction of the layer graph for a sequence of k frames.
We focus on two main issues: determining the nodes of each layer of the graph and setting
the edge weights.

Below we describe one of several options for determining the nodes of a layer. The choice
of a specific option depends on the type of clip that we wish to create. Let ¢; denote the
“center” of the scene for the i’th frame (e.g. the position of the ball), and let O; be the
annulus centered at ¢; with inner radius r and outer radius R. We restrict the location of
the virtual camera to the annulus O;. The radii r and R are fixed; they are determined by
distance constraints of the system. On the one hand, the virtual camera should not be too
close to the scene’s center, so that inaccuracies in the reconstruction are not noticed by the
viewer, and, on the other hand, the camera should not be too far from the scene, so that it
is seen in sufficient detail, see Figure 1(a).

K. Geva, M. Katz and E. Packer 20:3

]
s

BE43

iy

[
B
©

Figure 1 Constructing the set of suitable regions R;.

Our goal is to define the set R; of suitable regions within O;. We begin by dividing
O; into m sectors, where in each sector the direction from any point in it to ¢; is more
or less fixed, but, the difference between the directions corresponding to two points from
non-adjacent sectors is significant and noticeable; see Figure 1(b). The second step is to
find the regions in O; that should be avoided, in the sense that if the camera is placed in
one of them, it will not capture the scene (and in particular ¢;) well due to obstructions by
other objects, e.g. some player; see Figure 1(c). After performing these two steps, we get a
partition of (the good portion of) O; into disjoint regions that can be further partitioned
and refined into simple polygons. These polygons consist of the set of suitable regions R;
around the i’th scene; see Figure 1(d).

As stated in the overview, the set of nodes of the i’th layer, V;, corresponds to the regions
R;, and V = (UF_,V;) U {s,t}, where V is the node set of the graph. Set E; = {(u,v)|u €
Vi, € Vigq}, for 1 <i <k —1, and Ey = {(s,v)|v € Vi} and Ey = {(v,t)|v € V.}. Then,
the edge set of the graphis F = FEyUFE; U ---UFE,_1 U E}.

Let v be the vertex in layer ¢ that corresponds to the region r,, € R;, and let S(v?¥) be
the sector to which r, belongs in O; (1 < S(vf) < m). We determine the weight of an edge
e € E as follows:

w(e) = 0 for each e € Ey U E,.

w(e) = 0 for each e = (vf, v},) such that r, Nr, # 0

Otherwise, the weight of e = (vf, v/,) is determined by several parameters including the
distance between r, and r,, and the difference between S(v{) and S(vY,). So that, the
edges connecting regions in different sectors will have higher weight than those connecting
regions in the same sector, as well as the edges connecting distant regions will have higher

weight than those connecting nearby regions.

We compute a minimum-weight path from s to ¢t in G = (E,V,W), and get a path

EuroCG’'21

20:4 A Contribution to EuroCG 2021

p=(s,07",v52,...,vp", t) that visits in order exactly one vertex in each layer of the graph.
The i’th frame in our clip will correspond to the view from some point p; in the region r,,
fori=1,... k.

4 Multi-objective shortest polygon tours

Recall that once a suitable region in each frame is chosen (see Section 2), we wish to find a
trajectory with some desirable properties that visits these regions in order. Next, we list the
features that we wish to optimize.
Length. Each trajectory vertex corresponds to the position of the camera in a specific
frame, and, in general, shorter trajectories allow slower movement of the camera and thus
a more plausible viewing experience.
Number of links. Each trajectory vertex introduces a sharp turn. We could smooth
the trajectories, but this will not remove the zigzagging effect which is less plausible to
view. Hence, minimizing the number of links may help in decreasing this effect. Finding
touring polygons of minimum links was studied in [4].
Uniform speed. As frames come at constant rate, minimizing the differences in edge
length will result in more uniform speed. The latter is important for smoothing the
virtual clips.
Angle turns. Minimizing the angles between consecutive trajectory edges helps diminish
the turns of the camera and thus improve the overall quality.

In order to optimize the above criteria, we apply the multi-objective shortest path problem
(MOSP) algorithm by Breugem et al. [1] (see also, [5]). The input to their algorithm is a
graph, where each edge is associated with a vector of d non-negative integer weights. Each of
the d weights of an edge corresponds to a different objective one would like to minimize. The
output of the algorithm is a set of ‘good’ paths, where each path is characterized by the sum
vector, which is the sum of the vectors of its edges, i.e., the sum of the weights on the path’s
edges for each of the d objectives. They find a subset of all possible paths which they term
the Pareto-optimal frontier. Those are all the paths for which it is impossible to improve one
objective without harming the others and thus they constitute the locally optimal paths. In
general, the best path depends on the priorities of the various objectives. For any path 7 and
objective z, let 7, be the total weights of objective z on the edges of . As the size of the
Pareto-optimal frontier is exponential in the worst case (the problem is in fact NP-complete),
Breugem et al. propose a FPTAS with approximation factor ey, for any given es > 0. Their
idea is to find a collection of paths) that approximates all Pareto-optimal paths in the
following sense. For any Pareto-optimal path 7 there is a path 7’ € @, such that for any
objective z, m, < (1 + e3)m,. They show that the size of @ is polynomial in the input.

In order to use MOSP, we transform our problem to a shortest path problem on a grid.
In each suitable region we lay a grid of size €; > 0. The grid points in the suitable regions
consist of the set of vertices V' of the graph G. The edges of G correspond to the Cartesian
products of the vertex sets of consecutive regions (with an exception that we mention below).
We formulate the above objectives (except for the first which is obvious) as a shortest path
problem as follows.

Number of links. The appropriate cost on each edge will be 1 to reflect the use of one
link. We also add edges between non-consecutive regions of weight 1 if they pass through
all intermediate ones.

Uniform speed. The appropriate cost on each edge will be the square of its length to
discourage the use of long edges.

K. Geva, M. Katz and E. Packer 20:5

Angle turns. As this criterion has strong correlation with the shortest distance objective,
we ignore it in our formulation.

Once MOSP produces the almost-Pareto-optimal paths (up to €2), we can choose the one
that serves the predefined priorities on the objectives.

The running time of MOSP is O(nm(n log(nC)/ez)?1), where n is the number of vertices,
m is the number of edges, C' is the square of the length of the longest edge after normalizing the
distances, and d is the number of objectives. Suppose that our input consists of k£ frames and
the area of each region is at most w, then in our setting n = O(kw/e?) and m = O((kw/€3)?)
(or m = O(k(w/€})?) if we do not have edges between non-consecutive regions), and the
overall running time is T'(k,w, €1, €2) = O((kw/e?)3((kw/e2) log(kwC/e?) Jez)41).

5 Future work

We are planning to implement the framework described in this paper and to run the program
that is obtained on real-world data from sport events. The idea is to render the clips from
the computed virtual camera trajectories and to compare them with clips obtained with
manual or semi-manual techniques. We plan to perform a plethora of experiments with
various objectives and parameters.

Moreover, in Section 3 we described one (somewhat simplistic) way to determine the
nodes of a layer of the layer graph. We intend to generalize it by, e.g., allowing some control
over the camera’s orientation, so that it is not necessarily determined by its location with
respect to the center c;.

Acknowledgments

The authors would like to thank J.S.B Mitchell and Alon Efrat for helpful discussions.

—— References

1 Thomas Breugem, Twan Dollevoet, and Wilco van den Heuvel. Analysis of FPTASes for
the multi-objective shortest path problem. Comput. Oper. Res., 78:44-58, 2017. URL:
https://doi.org/10.1016/j.cor.2016.06.022, doi:10.1016/j.cor.2016.06.022.

2 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence
of polygons. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of
the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego,
CA, USA, pages 473-482. ACM, 2003. URL: https://doi.org/10.1145/780542.780612,
doi:10.1145/780542.780612.

3 Yasutaka Furukawa and Carlos Herndndez. Multi-view stereo: A tutorial. Found. Trends
Comput. Graph. Vis., 9(1-2):1-148, 2015. URL: https://doi.org/10.1561/0600000052,
doi:10.1561/0600000052.

4 Leonidas J. Guibas, John Hershberger, Joseph S. B. Mitchell, and Jack Snoeyink. Ap-
proximating polygons and subdivisions with minimum link paths. Int. J. Comput. Geom.
Appl., 3(4):383-415, 1993. URL: https://doi.org/10.1142/50218195993000257, doi:
10.1142/50218195993000257.

5 George Tsaggouris and Christos D. Zaroliagis. Multiobjective optimization: Improved
FPTAS for shortest paths and non-linear objectives with applications. Theory Comput.
Syst., 45(1):162-186, 2009. URL: https://doi.org/10.1007/s00224-007-9096-4, doi:
10.1007/s00224-007-9096-4.

EuroCG’'21

Polygon-Universal Graphs

Tim Ophelders!, Ignaz Rutter?, Bettina Speckmann?!, and
Kevin Verbeek!

1 Department of Mathematics and Computer Science, TU Eindhoven, The
Netherlands
{t.a.e.ophelders|b.speckmann|k.a.b.verbeek}@tue.nl

2 Department of Computer Science and Mathematics, University of Passau,
Germany
rutter@fim.uni-passau.de

Related Version A full version of the paper is available at arxiv.org/abs/2103.06916.

1 Introduction

We study a fundamental question from graph drawing: given a pair (G, C) of a graph G and
a cycle C' in G together with a simple polygon P, is there a straight-line drawing of G inside
P which maps C to P? We say that such a drawing of (G, C) respects P (see Fig. 1). We
fully characterize those instances (G, C') which are polygon-universal, that is, they have a
drawing that respects P for any simple (not necessarily convex) polygon P. Specifically, we
identify two necessary conditions for an instance to be polygon-universal. Both conditions
are based purely on graph and cycle distances and are easy to check (see Section 2). In the
remainder of the paper we show that these two conditions are also sufficient. If an instance
(G, Q) is planar, that is, if there exists a planar drawing of G with C on the outer face, we
show that the same conditions guarantee for every simple polygon P the existence of a planar
drawing of (G, C) that respects P. If (G, C) is polygon-universal, then our proofs directly
imply a linear-time algorithm to construct a drawing that respects a given polygon P.

Related work Tutte [5] proved that there is a straight-line planar drawing of a planar
graph G inside an arbitrary convex polygon P if one fixes the outer face of (an arbitrary
planar embedding of) G to P. This result has been generalized to allow polygons P that are
non-strictly convex [1, 2] or even star-shaped polygons [3]. These results have applications in
partial drawing extension problems. Here, in addition to an input graph G, we are given
a subgraph H C G together with a fixed drawing I" of H. The question is whether one
can extend the given drawing I' to a planar straight-line drawing of the whole graph G by

[65) C

C3

Cq Cs

Figure 1 Left: an instance (G, C). Center left: a drawing of (G, C) that respects a polygon P
(shaded in grey). Center right: there is no drawing of (G, C) that respects this polygon. Right: A
triangulated convex polygon with a drawing that is not triangulation-respecting; moving the vertices
along the dashed arrows results in a triangulation-respecting drawing.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

21:2 Polygon-Universal Graphs

drawing the vertices and edges of G — H inside the faces of H. If the embedding of G is fixed,
the results by Tutte and others allow to reduce the problem by removing vertices of G that
are contained in convex or star-shaped faces of I". Such reduction rules have led to efficient
testing algorithms for special cases, for example, when the drawing of H is convex [4].

Notation Let G = (V, E) be a graph with n vertices. A drawing D of G is a map from
each v € V to points in the plane and from each edge e € E to a Jordan arc connecting its
endpoints. A straight-line drawing maps each edge to a straight line segment. A drawing is
planar, if no two edges intersect, except at common endpoints. A graph G is planar if it has a
planar drawing. Let C' = [c1, ..., ¢] with ¢; € V be a simple cycle in G. An instance (G, C)
is planar if G has a planar drawing with C' as the outer face. Let P be a simple polygon with ¢
vertices [p1,...,p] with p; € R%. A drawing D of (G, C) respects P if it is a map D: V — P
from vertices to points in P such that D(¢;) = p; and for each edge {u,v} € E, the line
segment between D(u) and D(v) lies in P (see Figure 1). That is, D is a straight-line
drawing of G inside P that fixes the vertices of C' to the corresponding vertices of P. An
instance (G, C) is (planar) polygon-universal if it admits a (planar) straight-line drawing
that respects every simple (not necessarily convex) polygon P on t vertices.

Our algorithms use a triangulation 7 of P to construct a drawing or prove the non-
universality. We say that a drawing of (G, C) respects T if no edge of G properly crosses
an edge of 7. Although every triangulation-respecting drawing is also polygon-respecting,
the converse is not true. In fact, there are graphs G, cycles C', and polygons P that have
a polygon-respecting drawing, but no triangulation of P admits a triangulation-respecting
drawing (see Figure 2).

Ce Cs Pe D5
&] C4
P2 P3
C2 e3 P1 Pa

Figure 2 A graph G and a polygon for which there exists a drawing of G, but no triangulation
with a triangulation-respecting drawing.

2 Necessary conditions for polygon-universality

We present two necessary conditions for an instance (G, C') to be polygon-universal. Intuitively,
both conditions capture the fact that there need to be “enough” vertices in G between cycle
vertices for the drawing not to become “too tight”. The Pair Condition captures this fact for
any two vertices on the cycle C. The Triple Condition is a bit more involved: even if the
Pair Condition is satisfied for any pair of vertices on the cycle, there can still be triples of
vertices which together “pull too much” on the graph. Specifically, for an instance (G, C)
of a graph G and a cycle C C G with t vertices, we denote by dg: V x V — Ny the graph
distance in G and by d¢: V(C) x V(C) — Ny the distance (number of edges) along the cycle
C'. The following conditions are necessary for (G, C) to be polygon-universal for all simple
polygons P:

Pair For all ¢ and j, we have dco(c;, ¢j) < dg(ci,¢;) (and hence do(c;, ¢j) = da(ci, ¢j)).
Triple For all vertices v € V and distinct ¢, j, k with dc (¢, ¢;) + de(cj, ck) + de(ei, cp) >t
(and hence = t), we have dg(c;,v) + da(cj,v) + da(ck,v) > t/2.

T. Ophelders and I. Rutter and B. Speckmann and K. Verbeek 21:3

To establish that these two conditions are necessary, we use the link distance between two
points inside certain simple polygons P. Specifically, the link distance of two points ¢; and
g2 with respect to a simple polygon P is the minimum number of segments for a polyline
7 that lies inside P and connects g; and ¢o. If the Pair Condition is violated for two cycle
vertices ¢; and ¢, we can construct a Pair Spiral polygon P (see Figure 3 (left)) such that
the link distance between p; and p; (the vertices of P to which ¢; and ¢; are mapped)
exceeds dg(c;, ¢j). Clearly there is no drawing (G, C') that respects P.

If the first condition holds, but the second condition is violated by a vertex v and three
vertices c¢;, ¢j, ¢, of the cycle C, then the distance along C' between any pair of ¢;, ¢, ¢y, is
the same as the shortest path between them that passes through v. That is, dc (¢, ¢;) =

dg(ci,v) +da(cj,v), do(c, cx) = da(cj,v) + da(ck,v) and do(cs, ;) = da(ci, v) + da(ck, v).

In that case, we can construct a Triple Spiral polygon P (see Figure 3 (right)) such that there
is no point that lies within link-distance dg(c;, v) from ¢;, link distance dg(c;, v) from ¢;,
and link distance dg(cg,v) from ¢ simultaneously. Hence, there exists no drawing of the
aforementioned shortest paths through v that respects P.

o

-0

> T

Figure 3 Left: Pair Spiral. Points with link-distance greater than da/(c;, ¢;) from p; shaded red.

Right: Triple Spiral. Points of link-distance < dg(cz, v) from p, for one = € {4, j, k} in light gray; for
two x € {4, j, k} in dark gray; there is no point ¢ in P with d¢(cs, q) < da(cs,v) for all z € {i,j, k}.

3 Triangulation-respecting drawings

In this section we are given the following input: an instance (G, C) consisting of a graph G
with n vertices and a cycle C' with t vertices, and a simple polygon P with ¢ vertices together
with an arbitrary triangulation 7 of P. We study the following question: is there a drawing
of (G, C) that respects both P and 77

We describe a dynamic programming algorithm which can answer this question in linear
time. The basic idea is as follows: every edge of T defines a pocket of P. We recursively
sketch a drawing of G within each pocket. Such a sketch assigns an approximate location,
such as an edge or a triangle, to each vertex. Ultimately we combine the location constraints
on vertex positions posed by the sketches and decide if they can be satisfied.

We root (the dual tree of) T at an arbitrary triangle Tyoot. Each edge e of T partitions P
into two regions, one of which contains Ty,ot. Let @ be the region not containing Tyoot. We
say that) is a pocket with the lid e = eg, and we denote the unique triangle outside @
adjacent to eq by T, 5 . Since a pocket is uniquely defined by its lid, we will for an edge e
also write Q. to denote the pocket with lid e. We say that a pocket is trivial if its lid lies on
the boundary of P; in such case the pocket consists of only that edge. If @ is a non-trivial
pocket, then we denote the unique triangle inside @ adjacent to eg by T (see Figure 4).

We first define triangulation-respecting drawings for pockets: a triangulation-respecting
drawing for a pocket @ with lid eg = (p;, p;) is an assignment of the vertices of G to locations
inside the polygon P, such that (i) any vertex ¢, with ¢ < ¢ < j is assigned to the polygon

EuroCG’'21

21:4 Polygon-Universal Graphs

Figure 4 A triangulation with labels for the pocket @ (shaded dark) and triangles T and Tg
incident to edge eq of the triangulation.

vertex py and (i) for any edge f of G, the vertices of f lie on a common triangle (or edges
or vertices thereof). Note that we consider the triangles of the triangulation as closed, and
hence two distinct triangles may share a segment (namely an edge of the triangulation) or a
point (namely a vertex of P). We define a triangulation-respecting drawing for the entire
triangulation analogously, requiring that ¢, is assigned to p, for all £.

A sketch is an assignment of the vertices of G to simplices (vertices, edges, or triangles)
of the triangulation with the property that, if we draw each vertex anywhere on its assigned
simplex, then the result is a triangulation-respecting drawing. We hence interpret a simplex
as a closed region of the plane. Formally, a sketch of the triangulation is a function I" that
assigns vertices of G to simplices of T, such that () for any vertex ¢; of the cycle, I'(¢;) = p;,
and (i) for any two adjacent vertices u and v, there exists a triangle of 7 that contains
both T'(u) and T'(v). A sketch of a pocket is defined similarly, except that vertices p; of
the polygon that lie outside the pocket do not need ¢; assigned to them. We show that a
sketch exists (for a pocket or a triangulation) if and only if there is a triangulation-respecting
drawing (for that pocket or triangulation). If a pocket admits a sketch, we call the pocket
sketchable. If a particular pocket is sketchable, then so are all of its subpockets, because any
sketch for a pocket is automatically a sketch for any of its subpockets.

We present an algorithm that for any sketchable pocket constructs a sketch, and for
any other pocket reports that it is not sketchable. This algorithm recursively constructs
particularly well-behaved sketches for child pockets, and combines these sketches into a new
well-behaved sketch. To obtain a sketch for 7, we combine the three well-behaved sketches
for the three pockets whose lids are the edges of the root triangle T;,ot — assuming that all
three pockets are sketchable.

» Theorem 1. There is a linear-time algorithm to decide if (G,C) has a triangulation-
respecting drawing for a simple polygon P with fized triangulation T ; the same algorithm
also constructs a drawing if one exists.

4 Planar triangulation-respecting drawings

We are given the same input as in Section 3, namely an instance (G, C') consisting of a graph
G with n vertices and a cycle C' with ¢ vertices, and a simple polygon P with ¢ vertices
together with an arbitrary triangulation 7 of P. In addition, we assume that the instance
(G, Q) is planar, that is, G has a planar drawing D with C on the outer face. Note that D
does not necessarily map vertices of C' to vertices of P.

Analogously to Section 3, we can ask the following question: is there a planar drawing
of (G, C) that respects both P and 7?7 However, the answer to this question is often ‘no’,

T. Ophelders and I. Rutter and B. Speckmann and K. Verbeek 21:5

Figure 5 Left: A planar instance. Center: a triangulation-respecting drawing in which two
vertices coincide. Right: a perturbed drawing that is planar but not triangulation-respecting.

even when both triangulation-respecting drawings and planar polygon-respecting drawings
exist. Consider, for example, Figure 5: a planar triangulation-respecting drawing for
this combination of (G,C), P, and T does not exist; any drawing inside P either places
two vertices on top of each other, or edges cross edges of the triangulation. Nonetheless,
triangulation-respecting drawings are a useful tool for our final goal of constructing planar
polygon-respecting drawings. For example, the triangulation-respecting drawing of Figure 5
can be perturbed infinitesimally to obtain a planar polygon-respecting drawing (that is not
triangulation-respecting). We show that if a planar instance (G, C) has a triangulation-
respecting drawing, then it also has a weakly-planar triangulation-respecting one, that is, a
triangulation-respecting drawing that is planar and polygon-respecting after infinitesimal
perturbation. (That is, vertices may be moved to a simplex of 7 that contains the original
location.) Hence, the algorithm described in Section 3 can decide for a planar instance (G, C)
whether there is a weakly-planar triangulation-respecting drawing.

Consider now a planar drawing D of (G, C). We call the triple (G, C, D) a plane instance.
In the following, we create weakly-planar triangulation-respecting drawings WV, such that a
planar polygon-respecting perturbation W of W “mimics” D inside P. More specifically, w
is isotopic to D in the plane, that is, one can be continuously deformed into the other without
introducing crossings. We say that W accommodates (D, T). A plane instance (G, C, D) is
sketchable if (G, C) has a sketch (for 7). Recall here, that a sketch does not have a notion of
planarity. However, we show in Theorem 2 that any sketchable plane instance (G, C, D) has
a drawing W which accommodates (D, 7).

» Theorem 2. A plane instance (G,C,D) has a drawing that accommodates (D,T) if and
only if (G,C, D) is sketchable.

The algorithm implied by Theorem 1 can check in linear time if a plane instance (G, C, D)
has a sketch and via Theorem 2 the same algorithm can decide in linear time if (G, C, D)
has an accommodating drawing. This drawing can be constructed in polynomial time.

5 Sufficient conditions for polygon-universality

In Section 2 we proved that the Pair and Triple Conditions are necessary for an instance
(G, C) to be polygon-universal. In Sections 3 and 4 we argued that an instance (G, C) has
a triangulation-respecting drawing for a triangulation 7 of P if and only if it has a sketch
for 7. We can show that the Pair Condition alone already implies that each pocket has a
sketch. The Triple Condition then allows us to combine sketches at the root Tioor of 7.

» Theorem 3. Let (G, C) be an instance that satisfies the Pair and Triple Conditions. Then
(G, C) has a triangulation-respecting drawing for any triangulation of any simple polygon.

EuroCG’'21

21:6 Polygon-Universal Graphs

» Corollary 4. Let (G,C, D) be a plane instance that satisfies the Pair and Triple Conditions.
Then (G,C) has a drawing that accommodates (D, T) for any triangulation T of any simple

polygon.

6 Discussion and Conclusion

We have characterized the (planar) polygon-universal graphs (G, C') by means of simple
combinatorial conditions involving (graph-theoretic) distances along the cycle C' and in the
graph G. In particular, this shows that, even though the recognition of polygon-universal
graphs most naturally lies in V3R, it can in fact be tested in polynomial time, by explicitly
checking the Pair and the Triple Conditions. Our main open question concerns the restriction
to simple polygons without holes. Can a similar characterization be achieved in the presence of
holes? Or is the polygon-universality problem for simple polygons with holes V3R-complete?

Another interesting question concerns the running time for recognizing polygon-universal
graphs. Testing the Pair and Triple Conditions naively requires at least Q(n?) time. On the
other hand, at least in the non-planar case, given (G,C) and a polygon P with arbitrary
triangulation 7', we can in linear time either find an extension or a violation of the Pair/Triple
Condition, which shows that the instance is not polygon-universal. (Recall that a polygon-
extension for P might exist, though not one that respects T, see Figure 2). For planar
instances, the contraction to minimal instances causes an additional linear factor in the
running time. Can (planar) polygon-universality be tested in o(n?) time?

—— References

1 Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Loffler. Drawing
graphs in the plane with a prescribed outer face and polynomial area. Journal of Graph
Algorithms and Applications, 16(2):243-259, 2012. doi:10.7155/jgaa.00257.

2 Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Planar drawings
of higher-genus graphs. Journal of Graph Algorithms and Applications, 15(1):7-32, 2011.
doi:10.1007/978-3-642-11805-0_7.

3 Seok-Hee Hong and Hiroshi Nagamochi. Convex drawings of graphs with non-convex
boundary constraints. Discrete Applied Mathematics, 156(12):2368-2380, 2008. doi:
10.1016/j.dam.2007.10.012.

4 Tamara Mchedlidze, Martin Noéllenburg, and Ignaz Rutter. Extending convex partial draw-
ings of graphs. Algorithmica, 76(1):47-67, 2016. doi:10.1007/s00453-015-0018-6.

5 William T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
13(3):743-768, 1963. doi:10.1112/plms/s3-13.1.743.

Rectilinear Steiner Trees in Narrow Strips

Henk Alkema' and Mark de Berg?

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
h.y.alkema@tue.nl

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
m.t.d.berg@tue.nl

—— Abstract

A rectilinear Steiner tree for a set P of points in R? is a tree that connects the points in P using
horizontal and vertical line segments. The goal of MINIMUM RECTILINEAR STEINER TREE is to
find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of
MINIMUM RECTILINEAR STEINER TREE for point sets P inside the strip (—oo, +00) x [0, §] depends
on the strip width §. We give an algorithm with running time n°%) for sparse point sets, where
each 1 x § rectangle inside the strip contains O(1) points.

1 Introduction

In the MINIMUM STEINER TREE problem in the plane, we are given as input a set P of
points in the plane, called terminals, and the goal is to find a minimum-length tree that
connects the terminals in P. Thus the given terminals must be nodes of the tree, but the
tree may also use so-called Steiner points as nodes. MINIMUM STEINER TREE is a classic
optimization problem. It was among the first problems to be proven NP-hard, not only for
the case where the length of the tree is measured using Euclidean metric [10] but also in the
rectilinear version [11]. It was also shown to be NP-hard for other metrics [5]

The rectilinear version of the problem, where the edges of the tree must be horizontal or
vertical, is one of the most widely studied variants, and it is also the topic of our paper. The
MINIMUM RECTILINEAR STEINER TREE problem dates back more than 50 years [12, 13]. Its
popularity arises from its many applications, in particular in the design of integrated circuits [6,
3, 4, 19]. The two most important early insights on MINIMUM RECTILINEAR STEINER TREE
came from Hanan [13] and Hwang [15]. Hanan observed that any terminal set P admits
a minimum rectilinear Steiner tree (MRST, for short) whose edges lie on the grid formed
by all horizontal and vertical lines passing through at least one terminal in P. This grid is
often called the Hanan grid. This implies that the MINIMUM RECTILINEAR STEINER TREE
problem can be reduced to a purely combinatorial problem—namely, a Steiner-tree problem
on graphs—which is not possible for the Euclidean version of the problem. Hwang provided
a characterization of the different components of an MRST.

As mentioned, MINIMUM RECTILINEAR STEINER TREE can be considered a special case
of the Steiner-tree problem on graphs. Here the input is an edge-weighted graph G =
(V(GQ), E(G)) and a terminal set P C V(G), and the goal is to compute a minimum-
length subtree of G that includes all terminals. In 1971 Dreyfus and Wagner [8] gave
an algorithm solving the Steiner-tree problem on graphs in time 3" - log W - |[V(G)[°™),
where W is the maximum edge weight in G. This was improved by Bjoérklund et al. [2]
and Nederlof [17], to 2" - W - [V(G)|°™M). A variant of the Dreyfus-Wagner algorithm for
MINIMUM RECTILINEAR STEINER TREE runs in time O(n?-3"). Thobmorson et al. [18] and

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

22:2 Rectilinear Steiner Trees in Narrow Strips

Deneen et al. [7] gave randomized algorithms for the special case of MINIMUM RECTILINEAR
STEINER TREE where the terminals are drawn independently and uniformly from a rectangle.
Both algorithms run in 20(vV7?1987) expected time. Finally, Fomin et al. [9] presented a
20(vnlogn) algorithm for general (non-random) point sets in 2018.

Due to the many applications of MINIMUM STEINER TREE variants in the plane, there
has also been significant interest in practical implementations. These implementations rely
on the insight that a minimum Steiner tree can always be decomposed into so-called full
components, which are maximal subtrees that do not have any terminals as internal nodes [14].
(This holds for the Euclidean as well as the rectilinear version.) To compute an exact solution,
a set of candidate full components is first computed and then it is computed which subset of
candidate full components can be concatenated into an MRST. This process was introduced
by Winter in 1985 [20], in his software package GeoSteiner. Throughout the years, GeoSteiner,
which has become a collaboration between Warme, Winter and Zachariasen, has remained
the fastest publicly available software package for computing minimum Steiner trees in the
plane. By 2018, it could solve instances for up to 4,000 points for the rectilinear version, and
up to 10,000 points for the Euclidean version [16].

Our contribution. The fastest known algorithm for MINIMUM RECTILINEAR STEINER TREE
in R? runs in 200V71ogn) time [9]. In R, on the other hand, the problem can be solved
in O(nlogn) time by just sorting the points. To better understand the computational
complexity of the classic MINIMUM RECTILINEAR STEINER TREE problem in the plane, we
investigate how the complexity depends on the width of the terminal set P. If P is “almost
1-dimensional” in the sense that the points lie in a narrow strip R x [0, §], then can we solve
MINIMUM RECTILINEAR STEINER TREE more efficiently than in the general case? If so,
how does the complexity scale with §7 Can we obtain an algorithm that is fixed-parameter
tractable with respect to §7 This follows the line of research started recently by Alkema et
al. [1], who studied these questions for the TRAVELING SALESMAN PROBLEM. To be able to
use that the points lie in a narrow strip, we need a further assumption, namely that for any
x € R the rectangle [z, z + 1] x [0, d] contains O(1) points. We show that for these sparse
point sets in R? there exists an MRST that intersects any vertical line only O(\/g) times.
We also give a dynamic-programming algorithm that runs in nO(9) time. In the full version
of this paper, we also give an algorithm with Inin{no(\/g)7 20(5‘/3)71} expected running time
for points generated randomly inside a rectangle of height § and expected width n.

2 Preliminaries

Let P:={p1,...,pn} be a set of terminals in a 2-dimensional strip with height 6 —we call
such a strip a §-strip—which we assume without loss of generality to be R x [0, §]. We use
x; and y; to denote the z- and y-coordinate of point p;, respectively. The points can be
sorted on their z-coordinates in O(nlogn) time. Therefore, we will from now on assume
that z; < z; for all 1 < ¢ < j < n. We denote the vertical distance between two horizontal
edges e, e’ (or the horizontal distance between two vertical edges) by dist(e, e’).

Next we give some (mostly standard) terminology concerning rectilinear Steiner trees.
A rectilinear tree is a tree structure embedded in the plane whose edges are horizontal or
vertical line segments overlapping only at their endpoints. The length of a tree T, or ||T|,
is the sum of the lengths of its edges. A rectilinear Steiner tree for a set P of terminals is
a rectilinear tree such that each terminal p € P is an endpoint of an edge in the tree. A
minimal rectilinear Steiner minimal tree (MRST) is such a tree of minimum length.

Separators will play a crucial role in our algorithm. A separator is a vertical line, not

H. Alkema and M. de Berg 22:3

Figure 1 Illustration for the proof of Observation 2. On the left, T. On the right, T7”. Since
dist(es, e;41) < dist(#, £), the tree T is shorter than T.

containing any of the points in P, that separates P into two non-empty subsets. For all

1 < ¢ < nsuch that z; < x;11, we define s; to be the separator with z-coordinate (x;+x;y1)/2.

The tonicity of a rectilinear tree T' at a separator s is the number of times T crosses s;

The tonicity of a rectilinear tree T' is the maximum over the tonicity of 7" at all separators.

Finally, a well-known property of the MRST is the following:

» Observation 1. [Hanan [13]] Let P be a set of terminals in R2. Then there exists an MRST
on P that is a subset of the Hanan grid, the grid formed by taking all horizontal and vertical
lines which pass through at least one of the points of P.

From now on, we will only consider rectilinear Steiner trees that lie on the Hanan grid.

Furthermore, we can now directly conclude that the tonicity of an MRST is at most n.

3 Sparse point sets inside a narrow strip

We say a point set is sparse if for all x the rectangle [z, z + 1] x [0, d] contains at most k
points for some arbitrary but fixed sparseness constant k. In this section, we will give a
nO(o) algorithm for sparse point sets. We will do so in two steps. First, we will show that
all separators are crossed at most O(\/g) times. Then, we will give a dynamic-programming
algorithm running in the desired time.

We will start by showing that parallel edges of an MRST cannot be too close.

» Observation 2. Let E = {e1,...,e,} be a set of m horizontal edges of an MRST T which

all intersect two vertical lines £ and ¢. Then m < 1+ [§/dist(¢,¢')]|. A similar statement
holds when F is a set of vertical edges intersecting two horizontal lines.

Proof. W.l.o.g., let the edges in £ be numbered from top to bottom, and let ¢ lie to the left
of /. Suppose for a contradiction that m > 1+ |6/dist(¢, ¢')|. Since dist(e1, e,,) < d, there
are two edges e; and e;1 such that dist(e;,e;41) < 0/(m — 1) < dist(¢,¢). We will now

create a rectilinear Steiner tree T” strictly shorter than T, giving the desired contradiction.

To this end we first delete the part of e; between £ and ¢'. Let e; ;1 denote the part of e; to

the left of ¢ (if any) and let e; 2 denote the part of e; to the right of ¢’ (if any); see Figure 1.

The deletion splits T" into two components. Assume without loss of generality that e; o is
in the same component as e;;1. By deleting e; » and connecting e; ; to e;4; with a vertical
edge contained in £, we create a rectilinear Steiner Tree T such that

17| = |T|| — dist (¢, £') — |es 2| + dist(es, es1) < [T,

giving the desired contradiction. |

When combined with the characterization of Hwang [15], this leads to the following lemma.

EuroCG’'21

22:4 Rectilinear Steiner Trees in Narrow Strips

Figure 2 An example of an MRST and its crossing pattern C' = {{q1, ¢2,q5},{g3,qa}} at s;

» Lemma 3. Let P be a sparse point set in a §-strip. Then there exists a ((9k +18)(2+ \/3)) -

tonic MRST on P, where k is the sparseness constant.

Proof. As the full proof is rather long, it can be found in the full version. We give a proof
sketch below. Let s be a separator. Hwang previously showed that there exists an MRST
such that each so-called full component has one of four different shapes [15]. For each of
these shapes, every point can only be ‘responsible’ for a constant number of edges crossing s.
Since the point set is sparse, the more edges cross s, the longer the average edge crossing s
therefore has to be. We can then use Observation 2 to show that T is O(v/§)-tonic at 5. <

Lemma 3 gives rise to a dynamic-programming algorithm, as explained next. Let T be a
rectilinear Steiner tree, and let s; be a separator. We define the crossing pattern of T at s;
as follows. Let X(s;) be the set of at most n points where the Hanan grid crosses s;, and let
X (s;,T) € X(s;) be the subset of points where T' crosses s;. If T' is an MRST,

1X (55, T)| < (9% + 18)(2 + V8) = O(V?)

by Lemma 3. We partition X (s;,T") into parts (that is, subsets) such that two points from
X (s;,T) are in the same part if the path in T between these points fully lies to the left
of s;. The resulting partition of X (s;,T") is the crossing pattern of T at s;; see Figure 2
for an example. We will say that a rectilinear forest T adheres to C' at s; if T lies fully to
the left of s;, and there exists a rectilinear forest 77 which lies fully to the right of s; such
that T UT" is a rectilinear Steiner tree with crossing pattern C at s;. Note that not all
crossing patterns can lead to an MRST: those that require crossing edges on the left-hand
side (because they do not have a proper “nesting structure”) can never lead to an MRST. We
call the crossing patterns that contain at most (9% + 18)(2 4+ v/9) points and do not require
crossing edges on the left-hand side viable crossing patterns. We will now count the number
of viable crossing patterns at s;. There are nOWd) possible sets X (s;,T) that contain at
most (9% + 18)(2 + v/9) points. The number of viable partitions of these points—also known
as the number of non-crossing partitions—follows the Catalan numbers. Hence, there are
20(V9) possible viable partitions for each X (s;, 7). This implies that the total number of

viable crossing patterns for s; is nO(V3) . 20(Vé) — pO(V3),

The algorithm. We can now define a table entry A[i, X| for each separator s; and viable
crossing pattern X at s; as follows.

Ali, X] := the minimum length of a rectilinear forest adhering to X at s;.

H. Alkema and M. de Berg 22:5

Note that the length of an MRST equals A[n,{0}]. Next we describe a recursive formula to
compute the table entries. As a base case, we will use A[0, X] =0 for X = {0}, and oo for
all other X.

Let s; and s; be consecutive separators, with j < i. Note that since the point set is
sparse, at most k points share an z-coordinate. Therefore, j > i — k. Let F(X,s;) be a
minimum-length rectilinear forest adhering to X at s;, and let X’ be its (unknown) crossing
pattern at sj. Then the value of A[i, X] equals the value of A[j, X'] plus the total length
of the edges of F/(X,s;) between s; and s;. The total length of F/(X, s;) between these two
separators only depends on X’ and X. Since this subproblem contains O(\/g) points with
three different z-coordinates, its Hanan grid contains only O(\/g) edges. Therefore, its value
can be computed in 20(V3) time by simply checking every possible subset of edges. Let
L(X’, X) denote the total length of the solution to this subproblem. If no solution exists, we
define it to be oco. Then we get

Ali, X] = min_ A[j, X'] + L(X', X),
viable X’
where s; is the separator immediately preceding s;, and the sum is over all crossing patterns
X' that are viable at s;.

The running time. We first determine the number of table entries. There are O(n) separators,
and we have already seen that for every s; there are nO(o) possible viable crossing patterns.
Hence, the total number of table entries is nO(ve), Next, we calculate the time needed per
table entry. For each of the nO(o) possible viable crossing patterns X’ we compute L(X’, X)
in 20(v9) time. This brings the total time needed per table entry to nOWd),

Since we have n°(V®) table entries, each needing nO(o) time, we conclude:

» Theorem 4. Let P be a sparse point set of size n inside a §-strip. Then we can compute
an MRST on P in n®V9 time.

4 Concluding remarks

We proved that for sparse point sets in a strip of width §, an MRST can be found in nOWd
time. We wonder whether an algorithm with running time 20(V3logs) . poly(n) is possible.
For 6 = ©(n) the running time would then equal the 20(vnlogn) of the algorithm for arbitrary
point sets in the plane [9]. Another direction for future research is to study the problem in
higher dimensions. We believe that our algorithmic results may carry over to R¢ to points
that are almost collinear, that is, that lie in a narrow cylinder. Generalizing the results to,
say, points lying in a narrow slab will most likely be more challenging.

—— References

1 Henk Alkema, Mark de Berg, and Sandor Kisfaludi-Bak. Euclidean TSP in narrow strips.
In Proc. 36th International Symposium on Computational Geometry (SoCG 2020), volume
164 of LIPIcs, pages 4:1-4:16, 2020. doi:10.4230/LIPIcs.S0CG.2020.4.

2 Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
Mobius: fast subset convolution. In Proc. 39th Annual ACM Symposium on Theory of
Computing (STOC 2007), pages 67-74. ACM, 2007. doi:10.1145/1250790.1250801.

3 Marcus Brazil, Doreen A. Thomas, Jia F. Weng, and Martin Zachariasen. Canonical forms

and algorithms for Steiner trees in uniform orientation metrics. Algorithmica, 44(4):281—
300, 2006. doi:10.1007/s00453-005-1178-6.

EuroCG’'21

22:6

10

11

12

13

14

15

16

17

18

19

20

Rectilinear Steiner Trees in Narrow Strips

Marcus Brazil and Martin Zachariasen. Steiner trees for fixed orientation metrics. J. Glob.
Optim., 43(1):141-169, 2009. doi:10.1007/s10898-008-9305-y.

Marcus Brazil and Martin Zachariasen. The uniform orientation Steiner tree prob-
lem is NP-hard. Int. J. Comput. Geom. Appl., 24(2):87-106, 2014. doi:10.1142/
S0218195914500046.

Marcus Brazil and Martin Zachariasen. Optimal Interconnection Trees in the Plane, vol-
ume 29. Springer, 05 2015. doi:10.1007/978-3-319-13915-9.

Linda Deneen, Gary Shute, and Clark Thomborson. A probably fast, provably optimal
algorithm for rectilinear Steiner trees. Random Structures & Algorithms, 5:535 — 557, 10
1994. doi:10.1002/rsa.3240050405.

S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1(3):195-207,
1971. doi:10.1002/net.3230010302.

Fedor Fomin, Daniel Lokshtanov, Sudeshna Kolay, Fahad Panolan, and Saket Saurabh.
Subexponential algorithms for rectilinear Steiner tree and arborescence problems. ACM
Transactions on Algorithms, 16:1-37, 03 2020. doi:10.1145/3381420.

M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner
minimal trees. SIAM Journal on Applied Mathematics, 32(4):835-859, 1977. URL: http:
//www.jstor.org/stable/2100193.

M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 32(4):826-834, 1977. URL: http://www.jstor.
org/stable/2100192.

E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1-29, 1968. URL: http://www. jstor.org/stable/2099400.

M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal on Applied
Mathematics, 14(2):255-265, 1966. URL: http://www.jstor.org/stable/2946265.

F. K. Hwang. On Steiner minimal trees with rectilinear distance. STAM Journal on Applied
Mathematics, 30(1):104-114, 1976. URL: http://wuw. jstor.org/stable/2100587.

F. K. Hwang and Dana S. Richards. Steiner tree problems. Networks, 22(1):55-89, 1992.
doi:10.1002/net.3230220105.

Daniel Juhl, David Warme, Pawel Winter, and Martin Zachariasen. The geoSteiner software
package for computing Steiner trees in the plane: an updated computational study. Mathe-
matical Programming Computation, 10:487-532, 2018. doi:10.1007/s12532-018-0135-8.
Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,
65(4):8687884, 2013. doi:10.1007/s00453-012-9630-x.

Clark D. Thomborson, Linda L. Deneen, and Gary M. Shute. Computing a rectilinear
Steiner minimal tree in n°V™) time. In Proc. International Workshop on Parallel Algo-
rithms and Architectures, volume 269 of Lecture Notes in Computer Science, pages 176-183,
1987. doi:10.1007/3-540-18099-0_44.

Peter Widmayer, Ying-Fung Wu, and C. K. Wong. On some distance problems in fixed
orientations. STAM J. Comput., 16(4):728-746, 1987. doi:10.1137/0216049.

Pawel Winter. An algorithm for the steiner problem in the euclidean plane. Networks,
15(3):323-345, 1985. doi:10.1002/net .3230150305.

A density-based metric learning approach to
geometric inference *

Eugenio Borghini!, Ximena Fernandez?, Pablo Groisman?3, and
Gabriel Mindlin*

1 Departamento de Matematica and IMAS-CONICET, FCEN, Universidad de
Buenos Aires, Argentina. eborghini@dm.uba.ar

2 Department of Mathematics, Swansea University, UK and Departamento de
Matematica, FCEN, Universidad de Buenos Aires, Argentina.
x.1l.fernandez@swansea.ac.uk

3 Departamento de Matematica, IMAS-CONICET, FCEN, Universidad de
Buenos Aires, Argentina and NYU-ECNU Institute of Mathematical Sciences
at NYU Shanghai. pgroisma@dm.uba.ar

4 IFIBA, CONICET and Departamento de Fisica, FCEN, Universidad de
Buenos Aires, Argentina. gabo@df.uba.ar

—— Abstract
We address the problem of estimating intrinsic distances in a manifold from a finite sample. We
prove that the metric space defined by the sample endowed with a computable metric known as
sample Fermat distance converges almost surely in the sense of Gromov-Hausdorff. The limiting
object is the manifold itself endowed with the population Fermat distance, an intrinsic metric that
accounts for both the geometry of the manifold and the density that produces the sample. The
benefits of using Fermat distance as compared with the traditional Euclidean distance are illustrated
by concrete applications in manifold learning and persistent homology.

Related Version arXiv:2012.07621

1 Introduction

Let X,, be a set of n independent sample points with common density f supported on a
smooth manifold M embedded in RP”. We assume that both M and f are unknown. The
goal of manifold learning is to recover information about f and M from X,,. Given an
intrinsic density-based metric p in M (the Fermat distance), we are interested in finding
computable estimators p,, of p over the sample X,, such that the metric space (X, pn) is a
good estimator of (M, p) in the sense of Gromov—Hausdorff.

The problem of learning intrinsic distances from samples has a long history. It is a
crucial step in several learning tasks, such as finding low dimensional representations of
data embedded in a possibly high dimensional Euclidean space, clustering and topology
learning. Persistent homology is a central computational technique in Topological Data
Analysis [2, 8, 9, 15, 18] developed to infer topological features from a sample, encoding
valuable information about the shape of the underlying space. The results generated by this
algorithm depend strongly on the notion of distance associated to the data.

Under the manifold assumption, intrinsic distances based on the distribution that pro-
duced the data capture both the geometry of the underlying manifold and the density of
the point cloud, which can be convenient in presence of noise and outliers.

* This work was supported by the EPSRC grant New Approaches to Data Science: Application Driven
Topological Data Analysis EP/R018472/1.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

23:2 A density-based metric learning approach to geometric inference

In this article, we present a density-based Riemannian metric called Fermat distance
together with a computable estimator based on a finite sample. We study the consistency of
the estimator, as well as its Gromov—Hausdorff convergence. Finally, we show applications
of the use of this estimator to overcome some weaknesses of classical algorithms in manifold
learning and persistent homology. A full version of this manuscript (including proofs) is
available at [3].

2 Density-based distance learning

Let M be a smooth closed Riemannian manifold without boundary of dimension d > 1
with Riemannian metric tensor g together with a continuous positive C'*° density function
f: M — Ryg. For p > 1, consider the deformed metric tensor g, = f2a-p)/dg - Since f
is smooth, g, is a Riemannian metric tensor. Thus, M has a metric space structure given
by the geodesic distance with respect to g,, denoted by dy,. The distance dy, is called
deformed distance under g, in [13] and also population Fermat distance in [11].

» Definition 2.1. [11, 13] For p > 1, the population Fermat distance between x,y € M is

dfp(T,y) = igf/l W\/ 9(Ye, ¥)dt (1)

where the infimum is taken over all piecewise smooth curves v: I — M with vg =2, 11 = y.

In the special case when f is uniform, the population Fermat distance reduces to (a
multiple of) the inherited Riemannian distance d p¢ from the ambient Euclidean space. When
this is not the case, this distance takes into account the density. Indeed, geodesics in M
respect to the distance dy;, are more likely to lie in regions with high values of f. The name
Fermat distance comes from the analogy with optics, in which d ;, is the optical distance as
defined by Fermat principle when the refraction index is given by f~®-1)/d,

Consider now a set X,, = {z1,22,...,2,} € M of n independent sample points in M
with common density f. Suppose that M is embedded in R and it is endowed with the
standard inherited Riemannian metric. Our aim is to approximate dy ,(,y), assuming no
knowledge about M and the Riemannian distance defined on it. To achieve this, we will
define an estimator for this distance over the sample. We denote by |z — y| the Euclidean
distance between points z,y € M.

» Definition 2.2. [11, 14] For p > 1, the sample Fermat distance between x,y € M is
defined as

T
dx, p(z,y) = infz |it1 — @i’
7o

where the infimum is taken over all paths v = (29, 1, ..., Zy1+1) of finite length with 2y = =,
Try1 =y and {z1,22,...,2,} CTX,.

» Example 2.3 (Eyeglasses). We illustrate the effect of the Fermat distance dx, , in a
manifold M embedded in R” by considering the eyeglasses curve in R?, uniformly sampled
and perturbed with Gaussian noise, Figure 1. We compute the sample Fermat distance
between each pair of points for a series of values of p > 1 and embed the sampled points in
R? in such a way that the Euclidean distance in the embedding reflects the Fermat distance,
using the Multidimensional Scaling algorithm (MDS)[17]. As p becomes larger, the geometry
of the data overcomes the bottleneck region and it deforms into a circle. We also compute
the Isomap [1, 16] embedding in R? for different values of the parameter k, the number

E. Borghini, X. Fernandez, P. Groisman, G. Mindlin 23:3

of nearest neighbors used to compute the neighborhood graph. Due to the noise near the
bottleneck region, some points that are far in the sense of the inherited Riemannian distance
become close in the distance estimated by Isomap. We show only the case k = 10 but similar
results are obtained for different values of k. Note that, even if both Isomap distance and
the sample Fermat distance converge to an intrinsic distance, the first one is independent
of the density while the second one favors high density regions. As a consequence, Isomap
embedding is sensitive to noise, while with Fermat distance the points lying in low density
regions are mapped to points that are far from the rest of the sample (see the red points
in Figure 1). The larger the power p, the stronger this effect. This feature allows Fermat
distance to recover the underlying geometry of the manifold, even with noise.

ISOMAP k = 10

Fermatp=1.5 Fermat p = 3.0

Figure 1 Top: A sample with noise of 2000 points of the eyeglasses dataset and Isomap projection
with k = 10. Bottom: MDS embedding in R? using Fermat distance for p = 1.5, 2.5, 3.0.

» Remark (Complexity.). The computation of the matrix of pairwise sample Fermat distances
between points in X,, has complexity @(n3) (but can be reduced to O@(n?log®n) with high
probability) [11].

Our first result, Theorem 2.4, shows that the sample Fermat distance converges to the
population Fermat distance for closed (i.e. compact and without boundary) submanifolds
of RP. This was previously known for isometrically embedded (closures of) open sets of
R9, [11]. Here we extend this result to a general class of manifolds and prove that the
convergence is uniform (not only pointwise, as stated in [11]).

» Theorem 2.4. For everyp > 1 and A € ((p— 1)/pd, l/d), given € > 0 there exist p,0 > 0
such that, for n large enough

P (sup ‘n(p—l)/ddxn,p(x,y) — udf,p(m,y)) > a) < exp (_gn(l—,\d)/(d+2p)) .
z,yeEM

The constant p depends only on p and d and is defined in [12].

Our goal is to compare globally the metric spaces (X,,dx,) and (M,dy). In this
sense, the relevant metric is the Gromov-Hausdorff distance, that allows to measure how
far apart are two metric spaces from each other. We show that the sample X,, endowed

EuroCG’'21

23:4 A density-based metric learning approach to geometric inference

with a re-scaling of the sample Fermat distance converges to the metric space given by the
manifold M with the (population) Fermat distance, in the sense of Gromov—Hausdorff.

» Theorem 2.5. Let ¢ > 0 and A € ((p — 1)/pd,1/d). There exists a constant 8 > 0 such
that, for n large enough,

P (dGH((Mv df,p)v (Xna wdxmp)) > 5) S exXp (70n(17)\d)/(d+2p)) .

3 Density-based manifold learning

In this section we couple the estimation of Fermat distance on input data with the Mul-
tidimensional Scaling method to achieve dimensionality reduction. This strategy is similar
to the one used by the Isomap algorithm. However, it is known that the Isomap algorithm
suffers from topological instability in presence of noise, since it may construct erroneous
connections (called short-circuits) in the neighborhood graph that potentially impair its
performance. In contrast, since noise generally corresponds with regions of low density,
noisy points are treated by our method almost as not being part of the manifold. This
effects increases with the value of p. In particular, they do not affect substantially the
inference of the right geometry of the data.

» Example 3.1 (Trefoil). The Trefoil is a (non-trivial) knot, that is, a particular embedding
of a topological circle S! in R3. In particular, it is homeomorphic to S'. It is expected that
a projection onto R? should be a circle. However, in presence of noise, Isomap projection to
R? poorly recovers the underlying geometry of the data, while MDS with matrix distance
computed with the sample estimator of Fermat metric globally recovers the existence of a
circle (see Figure 2). The noise becomes isolated points as p increases.

4 Intrinsic persistence diagrams

In this section we apply Theorem 2.5 to the topological inference of features from data. In
particular, we explore the convenience of the computation of persistence diagrams using as
input the data endowed with the sample Fermat distance. We refer the reader to [2, 4, 5, 8]
for a more complete exposition of the persistent homology theory.

For the computation of the persistent homology of a point cloud, one imagines each point
as a ball (that is, representing a small surrounding region) and builds a combinatorial model
for the space connecting the points according to whether the corresponding regions intersect.
More precisely, for every fixed value of a parameter or scale that controls the size of the region
that each point represents, one gets a simplicial complez (ie, a higher dimensional analogue
of a graph). This family of simplicial complexes, also known as a filtration, is the input of the
procedure to compute persistent homology. Indeed, the topological features of this family
of complexes change as the scale parameter grows: different connected components join in
one, some loops are filled, new cavities appear, etc. By analyzing these transitions, we are
able to assign a birth and a death value to each of these features, and the difference between
them represents its lifetime. The most persistent features represent topological signatures,
whereas the shortest intervals may be considered as noise. The output of this procedure is
summarized in an object called persistence diagram, denoted by dgm(-) (see Figure 3).

In general, we usually only get an approximation of the metric space under consideration,
so we will be interested in comparing persistence diagrams built on top different metric
spaces. The bottleneck distance, denoted by dp(-), is a frequently used quantity to measure

E. Borghini, X. Fernandez, P. Groisman, G. Mindlin 23:5
-3
2
-1
.
1
.
3 1 o -1 -2 -3
Isomap k =5 Isomap k = 10
__ ; /,
vl
W S " e
““«-—-*""‘i\
e L
Fermatp = 3.0 Fermat p = 4.0
‘: -~ .;.-h‘vv \'J)
‘5 ". -).'; r:-& LB
o el : ¢ \. ¥
: y el e), - F
i v o vag Ty, % Sy j-
P gt 1 4 ¥ Bogp e ™
\\‘.} ﬁ‘?\“‘ﬁ '

Figure 2 Reduction of dimensionality of the Trefoil knot using Isomap and Fermat distance + MDS.

the difference between two persistence diagrams. The stability theorem [5, 7] links this
distance to the Gromov-Hausdorff distance between metric spaces.
states that for any two precompact metric spaces X and Y,

More concretely, it

db <dgm(Xa pX)a dgm(Ya PY))) S ZdGH ((X7 pX)? (Ya pY))a

where dg g denotes the Gromov—Hausdorff distance.

We apply Theorem 2.5 to the estimation of the persistence diagram of a submanifold
of an Euclidean space from a sample. This problem has already been studied in [6, 10],
where the authors prove the almost sure convergence (in the sense of bottleneck distance) of
the persistence diagrams associated to the sample to the persistence diagram of the desired
metric space. However, in these works the distance function of the underlying metric space
is assumed to be known which is not the case in most of real-life applications. We deduce
an analogue result in our context, where the novelty lies in that both the underlying set
and distance function of the metric space under study are unknown. This result is a direct
consequence of Theorem 2.5 and the stability theorem.

» Corollary 4.1. Let £ > 0 and A € ((p—1)/pd,1/d). There ezists a constant 6 > 0 such
that, for n large enough,

P(dy (Agm(M, dyp), dgm(Xp, 2502 dy 1)) > €) < exp (—gn(t A0/ (@H20))

EuroCG’'21

23:6

A density-based metric learning approach to geometric inference

Point cloud
15
@, @
104 L) We 5 L
L)
] n
0.5 2 % wg :f o
0.0 -
» o o g
.
-05 : ¢ 3
e
* 3
-1.0 { Sagieo o & oo
-15 T T T T T
-3 -2 -1 0 1 2 3
radius = 0.3 radius = 0.6 radius = 1.1
20 20 20
15 15 15
10 T 10 * 10
0s s 0s b] 0s
00 4 00 4 0o
-05 3 -05 3 -0.5
-10 e -10 pr -10
-15 -15 -15
-20 -20 -20
-3 -2 -1 0 1 H 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1
radius = 0.3 radius = 0.6 radius = 1.1
20 20 20
15 15 15
10 e 10 10
05 b | 05 05
00 & 0o ; 0o
-05 4 05 05
-10 '-_"‘" -1.0 -1.0
-15 -15 -15
-20 -20 20
-3 -2 -1 [} 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1
Persistence diagram (Euclidean Distance) Persistence diagram (Lifetime)
a
175 T T
o 175
-
7
150 % 1504
-
,
1251 -
) e 1.25 4
-
7
1.00 1 - v
=] e £ 1.00
© . £
8 0.75 - g
- e ~ 0754
-
-
0.50 1 "
: -~ 0.50 1
;
s
0.25 4 4
4 I 0.25 4 T
Vd e Hp o Hp
0.00 1 - Hy 0.00 H
0.0 05 1.0 15 0.0 05 1.0 15
Birth Birth

Figure 3 Persistent homology pipeline. From a point cloud construct a filtration of simplicial com-
plexes parametrized by real numbers representing the radius of a covering of balls. Then, compute the
persistent generators of homology groups and summarize the information in a persistence diagram.

» Remark. Persistent diagrams computed with Fermat distance and Euclidean distance
are different in general. In persistence diagrams computed with intrinsic distances —rather
than the Euclidean one— topological features persist longer. For instance, when Euclidean
distance is used, the topology of the manifold is not expected to be reproduced for radii
larger than the reach of M. This limitation is absent when intrinsic metrics are used.

Persistence diagrams strongly depend on the notion of distance defined in the input data.
In the next example we show the convenience of using Fermat distance.

» Example 4.2 (Eyeglasses). We compute the persistence diagram associated to the sample
points from Example 2.3, Figure 1. We compare the results obtained with different distance
choices: the Euclidean distance, the Isomap estimator of the inherited Riemannian distance
and the sample Fermat distance for p = 2.5 and p = 3 (see Figure 4). The homology of
the eyeglasses curve has one generator of Hy and one generator of H;. However, it can be
noticed that for both Euclidean and Isomap distances, the persistence diagram displays two

REFERENCES 23:7

salient generators for the first homology group Hi, which can be attributed to the small
reach of the manifold and the presence of noise. With the Fermat distance for different
choices of p the diagram shows accurately only one persistent generator for H;. On the
other hand, the number of noticeable connected components increases with p. This effect is
caused by the presence of noise in regions of extremely low density, becoming isolated points
(or outliers) as p evolves.

Euclidean distance Isomap distance with k = 10
1.6
P - o 35 = e
1.4 4
3.0 A
1.2 4
2.5
1.0 4
v v 2.0
E 0.8 E
& o
3 = 1.5
0.6
0.4 4 1.0
0.2 —-— 0.5 4 -— =
| R, . o
0.0 - Hy 4 0.0 ' Hi
0.00 025 050 075 100 125 150 00 05 1.0 15 20 25 30 35
Birth Birth
Fermat distance withp = 2.5 Fermat distance with p = 3
____________________________________ e e e]
0.04 |
0.010 |
.
0.03 | 0.008 1
] © .
£ £ 0.006 |
& 002 k] .
pu =
.
. 0.004 -
. !
0014 °
' 0.002 A
—a ——
l s Ho s Ho
0.00 H1 4 0.000 T—= 1 A
T T T T . ! ' ' ! ! !
0.00 0.01 0.02 0.03 0.04 0.000 0002 0.004 0.006 0.008 0.010
Birth Birth

Figure 4 Persistence diagrams associated to the eyeglasses point cloud with noise for different dis-
tances: Euclidean, Isomap distance with £ = 10, Fermat with p = 2.5 and p = 3.

References

1 M. Bernstein, V. De Silva, J. C. Langford, and J. B. Tenenbaum. Graph approximations
to geodesics on embedded manifolds. Technical report, 2000.

2 Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and topolog-
ical inference. Cambridge Texts in Applied Mathematics. Cambridge University Press,
Cambridge, 2018.

3 Eugenio Borghini, Ximena Fernindez, Pablo Groisman, and Gabriel Mindlin. Intrinsic
persistent homology via density-based metric learning. arXiv:2012.07621, 2020.

4 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability
of persistence modules. SpringerBriefs in Mathematics. Springer, Cham, 2016.

EuroCG’'21

23:8 REFERENCES

10

11

12

13

14

15

16

17

18

Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric
complexes. Geom. Dedicata, 173:193-214, 2014.

Frédéric Chazal, Marc Glisse, Catherine Labruere, and Bertrand Michel. Convergence
rates for persistence diagram estimation in topological data analysis. J. Mach. Learn.
Res., 16:3603-3635, 2015.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence
diagrams. Discrete Comput. Geom., 37(1):103-120, 2007.

Herbert Edelsbrunner and John Harer. Persistent homology—a survey. In Surveys on
discrete and computational geometry, volume 453 of Contemp. Math., pages 257-282.
Amer. Math. Soc., Providence, RI, 2008.

Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence
and simplification. Discrete Comput. Geom., 28(4):511-533, 2002. Discrete and compu-
tational geometry and graph drawing (Columbia, SC, 2001).

Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman
Balakrishnan, and Aarti Singh. Confidence sets for persistence diagrams. Ann. Statist.,
42(6):2301-2339, 2014.

Pablo Groisman, Matthieu Jonckheere, and Facundo Sapienza. Nonhomogeneous eu-
clidean first-passage percolation and distance learning. arXiv:1810.09398, 2018.

C. Douglas Howard and Charles M. Newman. Euclidean models of first-passage perco-
lation. Probab. Theory Related Fields, 108(2):153-170, 1997.

Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero, ITI. Shortest path through
random points. Ann. Appl. Probab., 26(5):2791-2823, 2016.

D. Mckenzie and S. Damelin. Power weighted shortest paths for clustering euclidean
data. arXiv:1905.13345, 2019.

Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of sub-
manifolds with high confidence from random samples. Discrete Comput. Geom., 39(1-
3):419-441, 2008.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,
17:401-419, 1952.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete Com-
put. Geom., 33(2):249-274, 2005.

Bicolored Path Embedding Problems in Protein
Folding Maodels

Tianfeng Feng!, Ryuhei Uehara?, and Giovanni Viglietta®

1 School of Information Science, Japan Advanced Institute of Science and
Technology (JAIST)
ftflluyQ@jaist.ac. jp

2 School of Information Science, Japan Advanced Institute of Science and
Technology (JAIST)
uehara@jaist.ac.jp

3 School of Information Science, Japan Advanced Institute of Science and
Technology (JAIST)
johnnyQjaist.ac.jp

—— Abstract
In this paper, we introduce a path embedding problem inspired by the well-known HP model of

protein folding. A graph is said bicolored if each vertex is assigned a label in the set {red, blue}. For
a given bicolored path P and a given bicolored graph G, our problem asks whether we can embed P
into G in such a way as to match the colors of the vertices, or not.

We first show that our problem is NP-complete even if GG is a dense graph of the same size as P.
We then study the special case where G is a grid graph (a typical scenario in protein folding models),
showing that the path embedding problem remains NP-complete even if P is monochromatic, or
if G and P have the same size. By contrast, we prove that the path embedding problem becomes
tractable if the grid graph G has fixed height. Finally, we show the NP-hardness of a maximization
problem directly inspired by the HP model of protein folding.

1 Introduction

The protein folding problem asks how a protein’s amino acid sequence dictates its three-
dimensional atomic structure. This problem has wide applications and a long history dating
back to the 1960s [7]. From the viewpoint of theoretical computer science, there is ongoing
research aiming at revealing insights into reality by working on simplified abstract models.

One of the most popular such models is the hydrophobic-polar (HP) model [6, 8]. A
protein in the HP model is represented as an abstract open chain, where each link has unit
length and each joint is marked either H (hydrophobic, i.e., non-polar) or P (hydrophilic,
i.e., polar). A protein is usually envisioned as a path embedded in a grid within the 2D or
3D lattice, where each joint in the chain maps to a point on the lattice, and each link maps
to a single edge. The HP model of energy specifies that a chain desires to maximize the
number of H-H contacts, which are pairs of H nodes that are adjacent on the lattice but
not adjacent along the chain. The optimal folding problem in the HP model asks to find an
embedding of a sequence of Hs and Ps on the 2D square lattice that maximizes the number
of H-H contacts. This problem is known to be NP-hard in general [3].

Previous results on the HP model mostly concern the 2D square lattice, and some
techniques rely on the properties of parity in a lattice (see [4, Sec. 9.3] for a comprehensive
survey). However, such parity-related observations have no meaning in the original protein
folding problem that we aim to model. Also, the number of H-H contacts is not the only
possible measure that may be used to capture the intricate physical and chemical laws that

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

24:2 Bicolored Path Embedding Problems in Protein Folding Models

describe how a real protein folds. These facts have taken us to a new variant of the protein
folding problem within the HP model, which we named bicolored path embedding problem.

In our model, we combine the basic ideas of protein folding with the complementary
problem of protein design, where the goal is to synthesize a protein of a given shape (and
function) from an amino acid sequence. Thus, we provide the “blueprint” of the folded shape
of a protein, in the form of an input (grid) graph G with colors assigned to its vertices, and
we ask if a given colored path P can be (injectively) embedded in G in such a way that vertex
colors match. In other terms, we are effectively asking whether a given amino acid sequence
can fold into (part of) a protein with prescribed structure. Since the HP model has nodes of
only two types, we assume both G and P to be bicolored, say, with colors “red” and “blue”.!

In Section 2, we prove that the bicolored path embedding problem is NP-complete even
if G is a dense graph of the same size as P (i.e., with the same number of vertices).? In
Section 3, we consider the case where G is a (square) grid graph, which is the standard
assumption in the HP model. We first prove that the path embedding problem remains
NP-complete even if P is monochromatic (e.g., all its vertices are blue), and then we prove
that the problem is NP-complete even if G and P have the same size. Next, we contrast
these hardness results with a polynomial-time algorithm for the case where G is a grid of
fixed height: thus, the bicolored path embedding problem, parameterized according to the
height of G, is in XP. In Section 4, we show that maximizing red-red contacts in the bicolored
path embedding problem (defined in the same way as H-H contacts in the HP model) is also
NP-hard.?

2 Bijective embedding in a dense graph

Let us first consider the case where the bicolored blueprint G is a “precise” description of
a protein, i.e., it has to be matched exactly by the amino acid sequence represented by
the bicolored path P. In other words, G and P have the same number of vertices, and
the embedding should therefore be bijective. We will show that the embedding problem is
NP-hard even if G is a dense graph (intuitively, a blueprint with many edges should allow
greater leeway in the construction of an embedding of P) by a reduction from the strongly
NP-complete 3-Partition problem [9]. We recall that the input to the 3-Partition problem is
a multiset of 3m positive integers {a1,as,...,asm}, and the goal is to decide whether it can
be partitioned into m multisets of equal sum S. Our reduction is sketched in Figure 1.

The path P has length m - (S + 1), and is made up of m consecutive copies of a sub-path
denoted by Psi1, which in turn consist of a red vertex followed by S blue vertices. The
blueprint G' contains a complete bipartite graph Ke, »n with m red vertices on one side and
6m blue vertices on the other side. These blue vertices are further connected in all possible
ways, forming a clique @ of size 6m (the gray box in the figure). Additionally, for each a;, we
construct a clique of a; — 2 blue vertices (in the 3-Partition problem, we can safely assume
that a; > 2), and we connect two of its vertices with two vertices of Q.

With regard to bicolored and monochromatic graphs, we do not adhere to established terminology from
classical graph coloring theory; for the purposes of this paper, a coloring of a graph is simply a labeling
of its vertices, with no extra constraints. In particular, adjacent vertices may have the same color.
Formally, an infinite collection of graphs S is said to be a set of dense graphs if there is a positive
constant « such that, for any large-enough n, every graph in S with n vertices has at least « - n? edges.
We remark that, in previous work, it has been established that the problem of maximizing H-H contacts
is NP-hard when G is not given, and P can be embedded in any way on a grid [3].

T. Feng, R. Uehara, and G. Viglietta 24:3
P

PS+[PS+I o PS+1

S S S
G Ka-2

K,
Kai_z ay 2
(oo 2 o ¢ 4)Kg,
LN NS

Figure 1 Sketch of the NP-hardness reduction from the 3-Partition problem. For clarity, the

edges of the clique Kem, as well as some edges of the complete bipartite graph Kem,m, have been
omitted.

It is easy to see that the graph G is dense, it has the same size as P, and there is an
embedding of P into G if and only if the a;’s can be partitioned into multisets of sum S.

» Theorem 1. The bicolored path embedding problem is NP-complete even if the blueprint G
1s a dense graph of the same size as the path P. |

3 Embedding in a grid graph

In this section we focus on blueprint graphs G which are grid graphs, i.e., they are obtained
from regular tilings of the plane (sometimes these are also called lattice graphs). This is the
typical setting of the standard HP model.

3.1 Monochromatic path

If the path P only consists of blue vertices, there is a simple NP-hardness reduction from
the Hamiltonian path problem (i.e., given a graph, decide if there is a walk that visits each
vertex exactly once), which is known to be NP-complete even if the graph G is an induced
subgraph of a square grid graph, a triangular grid graph, or a hexagonal grid graph [1, 2, 13].

Figure 2 NP-hardness reduction from the Hamiltonian path problem for several grid graphs

EuroCG’'21

24:4 Bicolored Path Embedding Problems in Protein Folding Models

Our reduction is sketched in Figure 2: given a graph G’ on n vertices, which is an induced
subgraph of a grid graph, we color all its vertices blue, and we “complete” it to a grid graph
G by adding red vertices. Obviously, we can embed a path P of n blue vertices into G if and
only if G’ has a Hamiltonian path.

» Theorem 2. The bicolored path embedding problem is NP-complete even if the blueprint G
is a (square, triangular, or hexagonal) grid graph, and P is a monochromatic path. |

3.2 Bijective embedding in a square grid graph

Let us turn again to bijective embeddings, this time in the case where the blueprint G is
a square grid graph. We will give another NP-hardness reduction from the Hamiltonian
path problem. We start from a square grid graph R(m’,n’) with an induced subgraph G’
(which is an instance of the Hamiltonian path problem), and we construct the blueprint G
by “expanding” each vertex v of R(m’/,n’) into a (k + 2) x (k + 2) block B, (where k is a
large-enough even constant, defined later). If v is not a vertex of G’, then all vertices of B,
are blue; if v is a vertex of G, then B, is illustrated in Figure 3: its four central vertices are
red, and all other vertices are blue. The size of G is therefore (k +2) - m’ x (k + 2) - n'; the
full construction is shown in Figure 4.

Gl
) o o
o
o—e o
® o o o o
R(m'n")

Figure 3 Transformation of a vertex v of G’ into the (k + 2) x (k + 2) block B,

The path P is sketched in Figure 5: there is a copy of the subpath P’ for each vertex of
G’, and then a final trail of blue vertices such that the total length of P matches the size of
G. Now, to embed P into GG, we have to start from a set of four red vertices in some block
B,, and then move to another set of four red vertices in some other block B,,. Since we must
traverse exactly 2k blue vertices between these two red sets, this is possible only if v and w
are adjacent in G’ (note that a “diagonal” move would take 2k + 1 steps on blue vertices).
Thus, embedding P into G is impossible if G’ is not Hamiltonian.

Assume now that G’ is Hamiltonian. We can embed all copies of P’ into G by “mimicking”
a Hamiltonian path in G’ and moving from one set of red vertices to the next by covering
the 2 x k rectangle between them in a zig-zag fashion. Eventually, the region of G covered
by all the copies of P’ looks like a winding “tube” of width 2, as sketched in Figure 6.

5

24

T. Feng, R. Uehara, and G. Viglietta

R e Y e e e e e e e e e e e e e e e e W e e e e e e i

R T T | L e T T T | L e T | N L e e e L B L B e e |

R T T T L T e e e | L B B T T B L e e e e N L T T S P S !

R T T | e T T T | e e I | L T T T B | B R T T

R T T e T T L e e e | L B T R e | B L e I T B | B T T R S B S

T T e L T e e e | L B T T B L e e e e e N R T T S BRI B S

R T T T T | R T T T e e | B e I B e S I S B S

R T T T L S e e e | L T B N e e B e !

R T T | L T T e | T e B i T | L T T e R B e T S S

(OSSP S S S S SPGB VRN S S S S S S S S VI S S S S S S S S S Vi) SN S S ST S S ST S SV I ST S S S S S S S S Y

R e e e T i i e e e e e o

R T T e | T T e | B e T T T | L e e e] B L T B S S e S |

R T T I e | L R e e | T T L B e S

T T T T | L e e T e | T T e B | B T | B T T S S B S

R T T T | L T e S | e e T T | L e e B L e e R

R T T I T T | L e e | T T T T B e S I S B S

R T T T 1 L B e | T T e N T T T B e T S i

T T T L e e e | 1 L T i I | L R T T B L e e e e

T T T T e e e T | L T T B e | B R I T | N T S R S B S

(NSRS S S S S S ST VRN S SIS SIS S S S VI S S S S S S ST S S Vi) ST S S ST S S S S SV I ST S S S S S S S S Y

O e T e e e e e e e e e e o e e e)

T T e T L T e e | e e e T B e N T T e I T B

R T T | L T e | e e T S e e B | T T T L B e I i

T T T L e e B T | L T T B e H L e e e T T B L e T I |

R T T | e e e | T T B | L e e I B L e e R I

R T T T | L e T T I L i T T N T T T e e S I T

T T e T T e T e | T T e e | B O T s T T L B e e T S S S

R T | e e e T T | L B T T | L e e I N L e e T

R T T T | T T e | e T T T | L e e B L e e S S

(OSSP S S S S SPGB VRN S S S SIS S S S VI S S S S S S ST S S Vi) ST S S ST S S ST S SV I ST S S S S S S S S Y

R e e | i i e e e e e o

T T T L e e e | L B T B L e e R I B L e I e S S

T T B | e e T T | L e e T | L s T L B e S I S S

R T T e e e T L e T | T T T e | B I I S P I S

R T T I L T T T | L e T | N L R e T T B | B R T T S BRI B S

R T T I L T | N L e e e T L T T T e B e S I S B S

T T B T T L S e e e e L T T T T | L T e T] B L e T S S S

T T e L L T T | L e e L e e T I B L e I B !

T T T T LT T e e e | L T T T e | e T T I B L e T T e

(OSSP S S S S SPGB (RN S SIS S S S S S VI S S S S S S ST S S Vi) ST S S ST S S S S SV I Y S S S S S S S S Y

Figure 4 Complete construction of G: each block represents a vertex in the original graph

Enough nodes to fill
the board

J

R

P' x size of the induced subgraph G’

Figure 5 Construction of the path P

Now we have to cover the remaining part of G with the trailing sequence of blue vertices
of P. In order to do that, we partition this region into maximal “horizontal rectangles”,
i.e., in such a way that no two rectangles touch each other along vertical edges, as shown in
Figure 6. Then we do a depth-first traversal of these rectangles. When we visit a rectangle,

we cover it as shown in Figure 7: we further divide it into smaller rectangular “tiles”, one for

each unvisited neighboring rectangle. After covering a tile, we visit its adjacent rectangle in

the partition, and then we move to the next tile when we backtrack from that rectangle.

Constructing the tiles such that each of them can be covered completely before moving
on to the next rectangle is indeed possible. In [10], the grid graphs containing a Hamiltonian

path with assigned endpoints have been characterized: as it turns out, if the size of a tile is

even and one of its sides is longer than four vertices, then there is a Hamiltonian path in the

tile with any assigned endpoints having odd distance. Because k is a large even constant, we

can indeed subdivide each rectangle in the appropriate number of tiles, each of which has

even size and at least one side longer than four vertices (choosing k& = 100 suffices by a big

margin). It follows that we can embed P into G.

» Theorem 3. The bicolored path embedding problem is NP-complete even if the blueprint G

s a square grid graph of the same size as the path P.

<

EuroCG’'21

24:6 Bicolored Path Embedding Problems in Protein Folding Models

Figure 6 Partition into rectangles of the region not covered by the zig-zagging copies of P’

3.3 Fixed-height rectangular blueprint

We can contrast our previous hardness results with an embedding algorithm that runs in
polynomial time, provided that the blueprint G is a grid graph of fixed height k. Thus, let
G be a bicolored m x k grid, and let P be a bicolored path of n vertices. Our approach is
based on dynamic programming, where a sub-problem consists of embedding part of P into
a sub-grid of G going from the first column to the ath column, with 1 < a < m. A sub-
problem’s specification also contains a description of the intersection between a hypothetical
embedding of P and the ath column of G, illustrated in Figure 8: for each vertex w in the
ath column, the sub-problem specifies which vertex v; of P is mapped to w (if any), as well
as an extra bit of information that encodes whether the left or right neighbor of v; along P
should be mapped to the left neighbor of w (if such information is incompatible with the rest
of the specification, this bit is ignored). Thus, the total number of sub-problems is 2% - n* . m
(the last factor represents the m choices of a).

The output to a sub-problem is “Yes” if an embedding satisfying the given constraints
exists, “No” if it does not exist, and “N/A” if the sub-problem specifies no intersection on
the ath column, and it is not possible to embed P entirely to the left of the ath colum (this
implies that P should be embedded entirely to the right of the ath column, but we are still
unable to determine if this is possible).

Solving a sub-problem S for column a amounts to finding a sub-problem S’ for column
a — 1 with a “Yes” answer such that the specifications of S and S’ are compatible. In other
words, the mappings described by S and S’ on columns a and a — 1 should (i) match the
colors in G and P, and (ii) match with each other: for example, if S indicates that the vertex
v;4+1 of P should be mapped to the left neighbor w’ of w (where w is in column a), then S’
should indicate that v;41 is indeed mapped to w’ (which is in column a — 1). Thus, S can be
solved by looking up at most n* sub-problems, and each compatibility test takes O(k) time.

» Theorem 4. Given a bicolored square grid graph G of size m x k and a bicolored path P
of size n, the embedding problem for G and P can be solved in O(k - 2F - n?* . m) time. <«

T. Feng, R. Uehara, and G. Viglietta 24:7

7
i

7%

N

.
%

Figure 7 Traversal order of the tiles of a rectangle and its six neighboring rectangles

_

Note that, if k is a constant, the running time of our algorithm is O(n?*m), hence polynomial.

» Corollary 5. The bicolored path embedding problem where the blueprint G is a square grid
graph, parameterized according to the height of G, is in XP. |

4 Maximizing red-red contacts in a grid graph

Finally, let us turn to the problem of maximizing red-red contacts in the context of the
bicolored path embedding problem. Recall that, according to the HP model of energy, an
amino acid chain tends to fold in a way that maximizes the number of H nodes that are close
together in the folded state, even if they are not adjacent along the chain. In other words,
when G and P are given, we seek an embedding of P into G that covers a large number of
adjacent red vertices of G without traversing the edges between them. A red-red contact in
an embedding of P is a pair of adjacent red vertices u, v in G such that the embedding of P
covers both u and v, but does not contain the edge {u,v}.

The problem of maximizing red-red contacts in the bicolored path embedding problem
is also NP-hard, even when restricted to instances where the path P is guaranteed to be
embeddable into G. Figure 9 shows a reduction from the Hamiltonian path problem, where
Block 2 of G is constructed as the graph in Section 3.1: that is, we are given a graph G’, we
color its n vertices blue, and then we “complete” it to a grid graph by adding r red vertices
around it. Then we take an integer k greater than r, and we construct Block 1, which is a
grid of at least k red vertices. Block 3 of G and the path P are constructed as in the figure.

Now it is easy to see that, if G’ does not have a Hamiltonian path, we can only embed P
in Block 3, which yields no red-red contacts. Otherwise, we can embed the blue part of P in
Block 2 and the red part in Block 1, which produces a large number of red-red contacts.

EuroCG’'21

24:8 Bicolored Path Embedding Problems in Protein Folding Models

P
)))))))
vV Vi
=1 w=a-1 vw=a
[))))) o—e -0
A/ivjﬁ)
)))))))
S
))))) o —-0- o
fv)
)) ®)))))
))))) o—eo——-o
Jv)

R(m,k)

Vn

Vx=m
[J

Figure 8 Illustration of the dynamic-programming algorithm for rectangular blueprints

P

r
°

Block 1 Block 2

o/
o)

Block 3

Figure 9 NP-hardness reduction for the problem of maximizing red-red contacts

» Theorem 6. Given a bicolored grid graph G and a bicolored path P that can be embedded

in G, it is NP-hard to find an embedding of P in G that mazimizes red-red contacts.

This result can easily be extended to grid graphs induced by different tilings of the plane
(cf. Section 3.1). Also, it shows that the related approximation problem is NP-hard, as well.

Acknowledgments. The authors wish to thank the anonymous reviewers for useful observa-
tions and suggestions. This work is partially supported by JSPS KAKENHI Grant Numbers

17H06287 and 18H04091.

—— References

1 Esther M. Arkin, Sadndor P. Fekete, Kamrul Islam, Henk Meijer, Joseph S. B. Mitchell,
Yurai Nufiez-Rodriguez, Valentin Polishchuk, David Rappaport, and Henry Xiao. Not being
(super) thin or solid is hard: A study of grid Hamiltonicity. Computational Geometry,

42(6-7):582-605, 2009.

T. Feng, R. Uehara, and G. Viglietta 24:9

10

11

12

13

Michael Buro. Simple Amazons endgames and their connection to Hamilton circuits in

cubic subgrid graphs. In International Conference on Computers and Games, pages 250-261.

Springer, 2000.

Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and
Mihalis Yannakakis. On the complexity of protein folding. Journal of Computational
Biology, 5(3):423-465, 1998.

Erik D. Demaine and Joseph O’Rourke. Geometric folding algorithms: linkages, origami,
polyhedra. Cambridge University Press, 2007.

Erik D. Demaine and Mikhail Rudoy. Hamiltonicity is hard in thin or polygonal grid graphs,
but easy in thin polygonal grid graphs. arXiv:1706.10046, 2017.

Ken A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24(6):1501-1509, 1985.

Ken A. Dill and Justin L. MacCallum. The protein-folding problem, 50 yeas on. Science,
338(6110):1042-1046, 2012.

Kit Fun Lau and Ken A. Dill. A lattice statistical mechanics model of the conformational
and sequence spaces of proteins. Macromolecules, 22(10):3986-3997, 1989.

Michael R. Garey and David S. Johnson. Computers and intractability, volume 174. Freeman
San Francisco, 1979.

Alon Ttai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676-686, 1982.

Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85—103. Springer, 1972.

F. Luccio and C. Mugnia. Hamiltonian paths on a rectangular chessboard. In Proceedings
of the 16th Annual Allerton Conference, pages 161-173, 1978.

Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related to
the travelling salesman problem. Journal of Algorithms, 5(2):231-246, 1984.

EuroCG’'21

On Voronoi diagrams of 1.5D terrains with
multiple viewpoints*

Vahideh Keikha! and Maria Saumell!»2

1 The Czech Academy of Sciences, Institute of Computer Science, Czech
Republic
(keikha,saumell)@cs.cas.cz

2 Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, Czech Republic

—— Abstract
Given an n-vertex 1.5D terrain 7 and a set P of m < n viewpoints, the Voronoi visibility map
VorVis(T,P) is a partitioning of 7 into regions such that each region is assigned to the closest
visible viewpoint. The colored visibility map ColVis(T,P) is a partitioning of 7 into regions

that have the same set of visible viewpoints. In this paper, we propose an algorithm to compute
VorVis(T,P) which runs in O(n+ (m?+k.) logn) time, where k. and k, denote the total complexity
of ColVis(7,P) and VorVis(T,P), respectively. This improves upon a previous algorithm for this
problem. We also show that the next problem can be solved in the same running time: What is
the minimum value of r such that, if the viewpoints can only see objects within distance r, the
partitioning of 7 into visible and invisible portions does not change?

1 Introduction

A 1.5D terrain 7 is an z-monotone polygonal chain of n vertices in R?. Two points on T are
visible if the segment connecting them does not contain any point strictly below 7T .

Visibility problems in terrains are fundamental in geographical information science and
have many applications, such as placing fireguard or telecommunication towers [3], identifying
areas that are not visible from sensitive sites [14], or solving problems related to sensor
networks [16]. Although 2.5D terrains are more interesting for modelling and forecasting,
1.5D terrains are easier to visualize and they give insights into the difficulties of 2.5D terrains
in terrain analysis. We focus on the variant where a set P of m viewpoints are located on
vertices of 7, and our goal is to efficiently extract information about the visibility of 7 with
respect to P. We continue the work of [11], where the following structures are defined.

The wvisibility map Vis(T,P) is a partitioning of T into a wvisible region (containing all
portions of 7 that are visible by at least one element in P) and an invisible region (containing
the portions that are not visible by any element in P). The colored visibility map ColVis(T, P)
is a partitioning of 7 into regions that have the same set of visible viewpoints (see Fig. 1b
for an example). Finally, the Voronoi visibility map VorVis(T, P) is a partitioning of 7T into
regions that have the same closest visible viewpoint (see Fig. 1c), where the distance used is
the Euclidean distance (not the distance along the terrain).

Algorithms to compute these structures for 1.5D and 2.5D terrains are proposed in [11].
The algorithm to obtain VorVis(7,P) of a 1.5D terrain runs in O(n + (m? + k.)logn +
ky(m +lognlogm)) time, where k. and k, denote the total complexity of ColVis(7,P) and

* Supported by the Czech Science Foundation, grant number GJ19-06792Y, and with institutional support
RVO:67985807. This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sktodowska-Curie grant agreement No 734922.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

25:2 On Voronoi diagrams of 1.5D terrains with multiple viewpoints

Pi

Figure 1 (a) The viewshed of a viewpoint. (b) ColVis(T,P). (c) VorVis(T,P).

VorVis(T,P), respectively. It first computes ColVis(T,P), and then it spends ©(m) time
to find each single region of VorVis(7,P). In this note, we show that VorVis(7,P) can be
extracted from ColVis(7,P) in a 1.5D terrain without adding any extra running time. We
use an observation related to the bisectors of pairs of viewpoints that also allows to prove a
relation between k. and k,.

The new algorithm for VorVis(7,P) also allows to efficiently solve a problem related to
limited range of sight. These problems are motivated by the fact that, even though many visi-
bility problems assume an infinite range of visibility, the intensity of light, signals. .. decreases
over distance in realistic environments. In this spirit, the problem of illuminating a polygonal
area with the minimum total energy was introduced by O’Rourke [15], and studied in [6, 7].
We consider a related problem on terrains, namely, computing the minimum value r* such
that, if the viewpoints can only see objects within distance r*, the obtained visibility map is
the same as Vis(7,P). We show that this problem can also be solved in O(n+ (m?+k.) logn)
time.

Related Work. When m = 1, computing the visibility map of a 1.5D terrain can
be done in O(n) time [12]. One of the first results on the variant where m > 1 is an
O((n+m)logm) time algorithm to detect if there are any visible pairs of viewpoints above a
1.5D terrain [2]. Later, a systematic study of Vis(T,P), VorVis(T,P) and ColVis(T,P) was
carried out in [11] for 1.5D and 2.5D terrains. Apart from the mentioned output-sensitive
algorithm for VorVis(7,P) of a 1.5D terrain, the authors also propose an algorithm running
in O(mnlogm) time, which is worst-case nearly optimal, since the maximum complexity of
VorVis(T,P) is ©(mn). A problem which is very related to the construction of Vis(7,P) is
that of computing the total visibility index of the terrain, that is, the number of viewpoints
that are visible from each of the viewpoints. This problem can be solved in O(nlog®n)
time [1].

The situation where the locations of the viewpoints are unknown has been much studied.
It is well-known that computing the minimum number of viewpoints to keep a 1.5D terrain
illuminated is NP-Hard [13], but the problem admits a PTAS [8, 9, 10]. If the viewpoints are
restricted to lie on a line, the same problem can be solved in linear time [5].

Assumptions. As in [11], we assume that no three vertices of T are aligned. Here we
also assume that no edge of T is contained in the bisector of two viewpoints in P.

V. Keikha and M. Saumell 25:3

Omitted proofs and details will be given in the full version of this paper.

2 Complexity of the Voronoi visibility map

In this section, we prove an upper bound on k,,.

Let us introduce some terminology. The viewshed of a viewpoint p is the set of points
of T that are visible from p (see Fig. 1la for an example). Further, the Voronoi viewshed
Wy (p, P) of p is the set of points in the viewshed of p that are closer to p than to any other
viewpoint that is visible from them.

We denote by b; ; the perpendicular bisector of two viewpoints p;, p;. Since no edge of T
is contained in the bisector of two viewpoints, the shared boundary between two consecutive

regions of VorVis(T, P) is a single point of 7, which we call an event point of VorVis(T,P).

We denote by g¢; ; an event point of VorVis(7,P) such that a point infinitesimally to the
left and right of ¢; ; belongs to Wy (p;, P) and Wy (p;, P), respectively (notice that an event
¢ ; is different from an event g¢;;). There are three (not mutually exclusive) possibilities: (i)
p; becomes invisible at ¢; ;'; (ii) p; becomes visible at g¢; ;; (iii) p; and p; are visible at g; ;,
and ¢; ; is an intersection point between b; ; and 7.

» Lemma 2.1. Let p; € P be lower than p; € P. Let q be an intersection between b; ; and
T to the left (resp. right) of p;. Then any point to the left (resp. right) of q visible from p;
is closer to p; than to p;. Thus, there is no event q; j or q;; of type (iii) to the left (resp.
right) of q.

We can now prove the following:
» Theorem 2.2. k, < k. + m?.

Proof. Notice that events of type (i) and (ii) are also events of ColVis(7,P). Let us prove
that there are at most m? events of type (iii): Let p;,p; be a pair of viewpoints. If p; and p;
are at the same height, b; ; is vertical and only intersects 7 once, so there is at most one
event of VorVis(7,P) on b; ; N T. Otherwise, we assume without loss of generality that p; is
lower than p;. By Lemma 2.1 the only candidates for events ¢; ; or g;; of type (iii) are the
left-most intersection point of type b; ; N7 among all such points to the right of p; and the
right-most one among all points to the left. Thus, every pair of viewpoints creates at most
two events of type (iii). <

3 Computation of the Voronoi visibility map

Let VorVis(T,Py) and ColVis(T,P,) be the corresponding maps if viewpoints only see

themselves and to their left. VorVis(T,P,) and ColVis(T,P,) are defined analogously.
The outline of the algorithm we propose is given in Figure 2. Its main highlight is a way

to compute VorVis(T, P,) and VorVis(T, P,) so that new events of the diagrams are found in

O(logm) time rather than O(m). We next explain the algorithm to compute VorVis(T,P,).

The algorithm sweeps the terrain from left to right and stops at points that are candidates

for event points. The candidates for events of type (i) and (ii) are the events of ColVis(7T,P,.).

We explain below which are the candidates for events of type (iii).

! When we write that p; becomes invisible at ¢i,j, we mean that it is visible immediately to the left of
¢:,; and invisible immediately to its right. We use the same rational when we write that p; becomes
invisible at g; ;.

EuroCG’'21

25:4 On Voronoi diagrams of 1.5D terrains with multiple viewpoints

compute ColVis (7, P;) compute ColVis (T, Py)
compute VorVis (T, Py) compute VorVis (7, P;)
\ |
v

merge VorVis (7, P,) and VorVis (T, P;)

Figure 2 Outline of the algorithm to compute VorVis(T,P).

Events of ColVis(T,P,). We compute ColVis(7,P,) using the algorithm from [11]
which returns a doubly-linked list with the vertices of ColVis(T,P,.) sorted from left to right,
together with the following visibility information: The visible viewpoints are specified for
the first component of ColVis(T,P,) and, for the other components, the algorithm outputs
the changes in the set of visible viewpoints with respect to the component immediately to
the left.

Data structures. A binary table V indicates, at any given point of the sweep, which
are the visible viewpoints, that is, V[i] = 1 if and only if p; is visible at the moment.

Maintaining the set of viewpoints sorted by distance to the point of 7 currently swept by
the line would be too expensive because every bisector b; ; might intersect the terrain O(n)
times. Instead, we maintain a table L containing all viewpoints that have been swept by the
line such that some pairs of viewpoints are sorted with respect to the distance to the current
intersection point between the sweep line and the terrain, but some other pairs (which are
never checked by the algorithm) are unordered. The table is filled by the algorithm from the
last position to the first.

Additionally, we maintain a balanced binary search tree H which contains the positions
of L occupied by viewpoints that are currently visible. As we will see, the viewpoints that
are currently visible appear in L correctly sorted with respect to the current distance to the
terrain. The algorithm always chooses as the “owner” of the current Voronoi visibility region
the following viewpoint: among all elements that are currently visible, the one appearing
earliest in L, whose position in L is found by obtaining the minimum element of H.

For all 4, we also maintain a pointer from Vi] to the position in L (if any) containing p;.

Finally, we also use a data structure that allows to answer ray-shooting queries in 7 in
O(logn) time [4]

Unordered sets of viewpoints and candidates for events of type (iii). Let p; € P
be lower than p; € P. Let ¢ be the left-most intersection point of type b; ;N7 among all such
points to the right of p;. If p; is to the left of p;, ¢ is to the right of both p; and p;, while if
p; is to the right of p;, ¢ lies between both viewpoints. In both cases, a point infinitesimally
to the left of ¢ is closer to p; than to p;, and a point infinitesimally to the right is closer to
Dj-

If p; is to the left of p;, by Lemma 2.1, ¢ is the only candidate for event of type (iii) to
the right of p;. Such a point is found in O(logn) time by a ray-shooting query and added to
the list of candidates for events swept by the line. When the line sweeps ¢, p; and p; are
swapped in L because p; becomes closer to the terrain. Even though later the terrain might
intersect b; ; again and p; might become closer than p;, p; and p; are never swapped again
in L. The reason for this is that the algorithm only takes into account the visible viewpoints
to output the Voronoi visibility regions and, by Lemma 2.1, any point to the right of ¢ which

V. Keikha and M. Saumell 25:5

is visible from p; is closer to p; than to p;. Therefore, whenever both p; and p; are visible,
p; is indeed closer to the terrain than p;.

If p; is to the right of p;, since ¢ is to the left of p; and viewpoints can only see to their
right, ¢ is not a candidate for event of type (iii). By Lemma 2.1, there is no candidate for
event of type (iii) to the right of p;.

Finally, notice that there are no candidates for events of type (iii) to the left of p; because
in VorVis(T,P,) viewpoints can only see to their right.

Description of the algorithm. Given ¢,r on 7 with 2(q) < z(r), we denote by T g, 7]
the closed portion of the terrain between ¢ and r. We create a list F of potential events
sorted from left to right containing all events of ColVis(7,P,) and the O(m?) candidates
for events of type (iii). We also add an event at the right-most point of the terrain. Using
E and the data structures mentioned above, we output VorVis(7,P,) as a list of pairs
([g,], pi) such that p; is the closest visible viewpoint in T (g, r| (if T|q, r] is not visible from
any viewpoint, we output ([g,7], L)). The variables t;, and p, in the algorithm below refer to
the left endpoint of the portion of T currently analyzed by the algorithm and the closest
visible viewpoint in that portion, respectively. The variable py;, refers to the viewpoint
contained in the position of L given by the minimum element of H (if H is empty, pmin = L).

Initially, V[i] :== 0 and L[i] := 0 for all ¢, H := (), t; := left-most point of 7, and p, + L.

We repeat the following procedure until F is empty: We extract the next element ¢ from
E, and proceed according to the following cases (for the sake of simplicity, in the description
below we deliberately ignore some degenerate situations which we tackle right after):

(i) One or more viewpoints become visible at ¢. For all such viewpoints p;, we set V[i] := 1.
If one of these viewpoints is at ¢, we insert it at the highest index j such that L[j] = 0.
For every viewpoint becoming visible at ¢, we insert to H the position of L containing it.
If, after updating pmin, Pmin 7 P+, we output ([te,], p«), set ty := ¢, and set p. := pmin-

(ii) One or more viewpoints become invisible at ¢g. For all such viewpoints p;, we set V[i] := 0
and we delete from H the position of L containing p;. If, after updating pmin, Pmin # P,
we output ([ts, g, p«), set ty := ¢, and set p. := pmin-

(iii) ¢ is an intersection point between 7 and b; ;. We swap p; and p; in L. If necessary, we
update H according to the visibility of the viewpoints contained in the positions of L
affected by the swap (for example, if p; is visible and p; is not, we add to H the new
position of L containing p; and we remove the old one). If, after updating pmin, Pmin 7 D,
we output ([tg, q],ps), set ty := q, and set py := pmin. I ¢ is an intersection point between
7 and other bisectors distinct from b; ;, the bisectors can be processed in any order.

(iv) ¢ is the right-most point of 7. We output ([ts, q], p«)-

It remains to explain in which order to process events of distinct type occurring at the
same time. Viewpoints becoming visible have priority over the other types of events, and
viewpoints becoming invisible have priority over intersections of the terrain with bisectors.

Merging the two diagrams. We overlap VorVis(T,P;) and VorVis(7,P,), and de-
compose the terrain by sweeping it from left to right and stopping at the endpoint of every
pair of the form ([g,], p;) belonging to any of the two diagrams. After this decomposition,
for any portion of the terrain there are two candidate viewpoints, and the distribution of the
portion between the two viewpoints can be done in O(logn) time via a ray shooting query
with their bisector (with similar arguments to those in the proof of Lemma 2.1, one can
prove that the portion gets split into at most two portions of the final diagram).

We conclude:

EuroCG’'21

25:6 On Voronoi diagrams of 1.5D terrains with multiple viewpoints

» Theorem 3.1. VorVis(7,P) can be constructed in O(n + (m? + k.)logn) time and
O(n +m? + k.) space.
4 Computation of r*

Notice that r* is realized at a vertex of VorVis(T,P) at maximum distance from its closest
visible viewpoint (r* is the distance from the vertex to the viewpoint). Thus, after constructing
VorVis(T,P), we can traverse it in linear time to identify such a vertex. We obtain:

» Theorem 4.1. The problem of computing the minimum range of the viewpoints that keeps
Vis(T,P) unchanged can be solved in O(n + (m? + k.) logn) time.
5 Final remark

We have shown that VorVis(7,P) can be constructed almost for free (asymptotically) if
ColVis(T,P) is computed first. Therefore, any faster algorithm for VorVis(7,P) must use
less information than the one encoded in ColVis(T, P).

—— References

1 Peyman Afshani, Mark De Berg, Henri Casanova, Ben Karsin, Colin Lambrechts, Nodari
Sitchinava, and Constantinos Tsirogiannis. An efficient algorithm for the 1D total visibility-
index problem and its parallelization. Journal of Experimental Algorithmics, 23:1-23, 2018.

2 Boaz Ben-Moshe, Olaf Hall-Holt, Matthew J Katz, and Joseph SB Mitchell. Computing the
visibility graph of points within a polygon. In Proceedings of the 20th Annual Symposium
on Computational Geometry, pages 27-35, 2004.

3 Filipe X. Catry, Francisco C. Rego, Teresa Santos, Joel Almeida, and Paulo Relvas. Forest
fires prevention in Portugal - using GIS to help improving early fire detection effectiveness.
In Proceedings of the 4th International Wildland Fire Conference, 2007.

4 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas J. Guibas, John
Hershberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. Algorithmica, 12(1):54-68, 1994.

5 Ovidiu Daescu, Stephan Friedrichs, Hemant Malik, Valentin Polishchuk, and Christiane
Schmidt. Altitude terrain guarding and guarding uni-monotone polygons. Computational
Geometry: Theory and Applications, 84:22-35, 2019.

6 Friedrich Eisenbrand, Stefan Funke, Andreas Karrenbauer, and Domagoj Matijevic. Energy-
aware stage illumination. International Journal of Computational Geometry € Applications,
18(01n02):107-129, 2008.

7 Maximilian Ernestus, Stephan Friedrichs, Michael Hemmer, Jan Kokemdtiller, Alexander
Kroller, Mahdi Moeini, and Christiane Schmidt. Algorithms for art gallery illumination.
Journal of Global Optimization, 68(1):23-45, 2017.

8 Stephan Friedrichs, Michael Hemmer, James King, and Christiane Schmidt. The continuous
1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS. Journal of
Computational Geometry, 7(1):256-284, 2016.

9 Stephan Friedrichs, Michael Hemmer, and Christiane Schmidt. A PTAS for the continu-
ous 1.5D terrain guarding problem. In Proceedings of the 26th Canadian Conference on
Computational Geometry, 2014.

10 Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi Varadarajan. An approximation
scheme for terrain guarding. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 140-148. Springer, 2009.

V. Keikha and M. Saumell 25:7

11

12

13

14

15

16

Ferran Hurtado, Maarten Loffler, Inés Matos, Vera Sacristdn, Maria Saumell, Rodrigo I.

Silveira, and Frank Staals. Terrain visibility with multiple viewpoints. International Journal
of Computational Geometry & Applications, 24(04):275-306, 2014.

Barry Joe and Richard B Simpson. Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics, 27(4):458-473, 1987.

James King and Erik Krohn. Terrain guarding is NP-hard. STAM Journal on Computing,
40(5):1316-1339, 2011.

Bernd Moller. Changing wind-power landscapes: regional assessment of visual impact on
land use and population in Northern Jutland, Denmark. Applied Energy, 83(5):477-494,
2006. doi:10.1016/j.apenergy.2005.04.004.

Joseph O’Rourke. Open problems from CCCG 2005. In Proceedings of the 18th Canadian
Conference on Computational Geometry, 2006.

Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey.
Computer Networks, 52(12):2292-2330, 2008. doi:10.1016/j.comnet.2008.04.002.

EuroCG’'21

Upward Planar Drawings with Three Slopes

Jonathan Klawitter and Johannes Zink

Universitdt Wiirzburg, Germany, {firstname.lastname}@uni-wuerzburg.de

—— Abstract

We study upward planar straight-line drawings that use only three different slopes. We show that
deciding whether a digraph admits such a drawing is NP-hard already for embedded outerplanar
digraphs, though linear-time solvable for trees with and without given embedding.

1 Introduction

One of the main goals in graph drawing is to generate clear drawings. To achieve this, we
may reduce the visual complexity by using only few different geometric primitives [22] — in
our case few slopes. Using only few different slopes is common for schematic drawings; for
example, if we allow two different slopes we get orthogonal drawings [9], with three or four
slopes we get hexalinear and octilinear drawings [31], respectively. Here, we additionally
require our graphs to be drawn upward and planar.

Upward planarity. An upward planar drawing of a directed graph (or digraph for short) G
is a planar drawing of G where every edge is drawn as a monotonic upward curve. We call G
upward planar if it admits an upward planar drawing and upward plane if it is equipped with
an upward planar embedding. Note that an upward planar embedding, given by the cyclic
sequences of edges around each vertex, is necessarily bimodal, that is, each cyclic sequence
can be split into a contiguous subsequence of incoming edges and a contiguous subsequence
of outgoing edges [9].

Upward planarity testing is an NP-complete problem for general digraphs [17], though
several fixed-parameter tractable algorithms exist [5,14,18]. Furthermore, the problem is
polynomial-time solvable, for example for single source digraphs [3], outerplanar digraphs [33],
series-parallel digraphs [14], and triconnected digraphs [2]. If the embedding of a digraph is
given, upward planarity can be tested in polynomial time [2].

k-slope drawings. A k-slope drawing of a graph G is a straight-line drawing of G where
every edge is drawn with one of at most k different slopes; see Fig. la—b. The (planar) slope
number of G is the smallest k£ such that G admits a planar k-slope drawing. If only planar
drawings are allowed, this is called the planar slope number of G. Both numbers have been
studied extensively for a variety of classes [4,11,13,15,16,20,21,25,27-29,32,34]. Determining
the planar slope number of a graph is hard in the existential theory of the reals [19].

Di Battista and Tamassia [10] have shown that if a digraph is upward planar, then it even
admits an upward planar straight-line drawing. We may therefore ask how many slopes are
necessary for a digraph G to admit an upward planar drawing. The answer to this question
defines the upward planar slope number of G. To the best of our knowledge, this number has
so far only been studied by Czyzowicz et al. [6,7] for lattices and, allowing one bend per edge,
by Di Giacomo et al. [12] for series-parallel digraphs and by Bekos et al. [1] for st-graphs.

Most research on slope numbers is concerned with the minimum number of slopes
required to draw any graph of a fixed class. We can consider the problem also from a different
perspective, namely, given only & slopes, decide whether a given digraph admits an upward

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

26:2 Upward Planar Drawings with Three Slopes

planar k-slope drawing. For k = 2, this question has been investigated by Klawitter and
Mchedlidze [23] who show that deciding whether a given upward plane digraph admits an
upward planar 2-slope drawing can be done in linear time. For the variable embedding
scenario, they give a linear-time algorithm for single-source digraphs, a quartic-time algorithm
for series-parallel digraphs, and a fixed-parameter tractable algorithm for general digraphs.
Here, we investigate the next natural case £k = 3. Note that a 2-slope drawing can be
stretched in the direction of one slope without affecting the length of edges drawn with the
other slope. The fact that this does not hold for three (or more) slopes introduces interesting
new geometric aspects for 3-slope drawings.

¢ o L

(a) (b) (c)

Figure 1 (a) A digraph G with (b) upward planar 3-slope drawing; (c) drawing rotated by 45°.

Note that the maximum indegree and outdegree of a digraph G are natural lower bounds
on its upward planar slope number. Since we have k = 3, we assume that our digraphs
have maximum indegree and outdegree at most three. Further note that an upward planar
3-slope drawing of a digraph G on any three slopes can be affinely transformed into one with
slopes 45°, 90°, and 135°. Hence, we restrict considerations to this slope set. For illustrative
purposes however, we rotate drawings by 45° clockwise and thus use the slope set {1, 7, —};
see Fig. 1c. A 3-slope assignment of a digraph G assigns each edge of G one of the slopes
in {1, /,—}. If G is upward plane, we say a 3-slope assignment of G is consistent if the
assignment complies with the cyclic edge order around each vertex; for example, if a vertex
has three incoming edges, then they need to be assigned the slopes —, ', and 1 in ccw order.
Clearly, if an upward plane embedding does not admit a consistent 3-slope assignment, then
it also does not admit an upward plane 3-slope drawing.

Contribution. We initiate research on upward planar 3-slope drawings by examining the
complexity of the decision problem. Some of our results are generalizable to k > 3 slopes.
We classify whether an embedded tree T" admits an upward planar 3-slope drawing. In the
affirmative, we can construct such a drawing. Otherwise, we can change the embedding of T’
such that it admits a desired drawing. We further show that it is NP-hard to decide whether
a given upward outerplanar! digraph admits an upward planar 3-slope drawing.

For statements marked with “x”, a proof is available on arXiv [24].

b An upward outerplanar digraph admits an upward planar drawing with each vertex on the outer face.

Klawitter and Zink 26:3

: 7]
"/
ﬁ L

u u u
(a) (b) (c)

Figure 2 (a) The tree T' does not admit a consistent 3-slope assignment, (b) unless we change the

embedding; (c) an upward planar 3-slope drawing of 7' with exponentially shrinking edge lengths.

2 Trees

We start with the class of directed trees? with indegree and outdegree at most three. While
every bimodal embedding of a tree induces an upward planar embedding, it does not
necessarily admit an upward planar 3-slope drawing; see tree T in Fig. 2a. There the edge uv
of T needs to get slope 1 by u but slope ' by v and thus obstructs a consistent 3-slope
assignment. However, we can always change the embedding of T such that it admits a
consistent 3-slope assignment and drawing; see Fig. 2b. We show that both testing whether

an embedding is suitable and finding a suitable embedding can be accomplished in linear time.

» Theorem 2.1 (x). Under a fixed bimodal embedding, a directed tree T admits an upward
planar 3-slope drawing if and only if it admits a consistent 3-slope assignment. Moreover,
this can be tested in linear time and, in the affirmative, a drawing can be constructed.

Proof sketch. While the “only-if”-direction is clear, the converse can be shown by drawing T’
with edge lengths exponentially shrinking as the distance from a start edge increases;
see Fig. 2c. A consistent 3-slope assignment is either directly obstructed by an edge as in
Fig. 2a or can be computed straightforwardly. |

» Theorem 2.2 (x). Given a directed tree T with indegree and outdegree at most three, we
can construct an upward planar 3-slope drawing of T in linear time.

Proof sketch. To find a suitable embedding, pick a start vertex, order its incident edges
bimodally, and continue vertex by vertex to construct a consistent 3-slope assignment. <«

We conjecture that a similar approach also works for cactus graphs, though constructing
an actual drawing is geometrically more involved. We will investigate this further.

3 Outerplanar Graphs

In this section, we show that already for upward outerplanar digraphs, it is NP-hard to
decide whether a digraph admits an upward planar 3-slope drawing. It remains open whether
the problem is also NP-complete since containment in NP is not immediately clear. More
precisely, if the problem was in NP, there would be small proof certificates for yes-instances
that a verifier could use to decide the problem in polynomial time. Typically a combinatorial
characterization or a drawing of the input graph could act as such a certificate. However in our

2 A directed tree (or polytree) is a digraph whose underlying undirected graph is a tree.

EuroCG’'21

26:4 Upward Planar Drawings with Three Slopes

case, we do not know whether there are graphs that require irrational (or super-polynomial
precise) coordinates and if so, how to treat them implicitly. Yet NP-hardness holds true,
even if an upward outerplanar embedding is given. Remember that for an arbitrary number
of slopes, upward planarity for outerplanar digraphs can be decided in polynomial time [33] —
if an embedding is given, even in linear time. We show NP-hardness by reduction from
PLANAR MONOTONE 3-SAT [8], an NP-complete version of 3-SAT, where the three literals
of each clause are all either negated or unnegated — from now on called negative and positive
clauses, respectively. Moreover, the incidence graph® is planar and has a planar drawing
where the vertices are rectangles, the edges are vertical straight-line segments, the variables
are arranged on a horizontal line, the positive clauses are above, and the negative clauses
are below this line. For an example, see Fig. 5a. For a given formula F' and a rectangular
drawing of its incidence graph, we construct a corresponding upward outerplanar digraph G,
which can only be drawn upward planar with 3 slopes if F is satisfiable. Our construction
follows ideas of Nollenburg [30] and Kraus [26] and utilizes the following observations.

Up to scaling and mirroring diagonally, G in Fig. 3a admits an upward planar 3-slope
drawing only as an outerplanar square as in Fig. 3b. We can attach multiple squares (and
triangles) to each other as in Fig. 3c—d. The drawing of such a bigger digraph is unique up
to scaling and mirroring diagonally. If the squares form a tree, the drawing is outerplanar.
We refer to these squares as unit squares, since, once set, the side lengths for all attached
squares are the same. To allow a certain small degree of freedom, we exploit the following.

Gn »

(a) (b) (c) (d)

Figure 3 (a) The digraph G admits only an upward 3-slope drawing as square (b); (c, d) by
combining copies of G and triangles we can build larger rigid structures.

€1

€2

Figure 4 Upward planar 3-slope drawing of the digraph G,.

» Lemma 3.1 (x). In any upward planar 3-slope drawing of the digraph G, (see Fig. 4), ...

3 In the incidence graph of a SAT formula, there is a vertex for each variable and each clause, and for
each occurrence of a variable in a clause, there is an edge between the corresponding vertices.

Klawitter and Zink 26:5

$1V$3Vx4

x1VxaV I3

z1 X2 x3 T4

-9 V x3 V Xy

—x1 V xg V Xy

(a) Rectangular drawing of the incidence graph of a PLANAR MONOTONE 3-SAT formula F.

-

(b) Outerplanar drawing of the digraph G obtained from (a). Chains of unit squares are drawn as straight
line segments. The variable/clause/edge gadgets occupy the areas of their corresponding rectangles. Here,
x1 and x4 are set to false (brush on the left), while z2 and z3 are set to true (brush on the right)

L

Figure 5 Schematic example for our NP-hardness reduction from PLANAR MONOTONE 3-SAT.

m the edges ey and es are parallel and have the same arbitrary length £ > 0,
= all other edges are oriented as in Fig. 4 up to mirroring along a diagonal axis, and
m all other vertical and horizontal edges have the same lengths, as well as all diagonal edges.

With this construction kit of useful (sub)graphs in hand, we build a bigger graph whose
upward planar drawings represent the satisfying truth assignments for F'. The high-level
construction is depicted in Fig. 5b. We construct, for each variable z;, an individual
digraph — the variable gadget for x;. Similarly, for each clause c;, there is an individual
digraph — the clause gadget for c;. All gadgets mainly consist of chains of Ggs. For a
drawing, this enforces a rigid frame structure built from unit squares. We glue all variable
gadgets together in a row and connect variable and clause gadgets by edge gadgets such that
the composite graph remains upward outerplanar (see Fig. 5b) and all Ggs are drawn as
unit squares.

A variable gadget is depicted in Fig. 6. Its base structure is the (violet) frame composed
of chains of unit squares. The core element is the (red) central chain of unit squares (with a
few side-arms), which has one degree of flexibility, namely, moving as a whole to the left or
to the right without leaving the frame structure of the gadget. It looks and behaves a bit like

a pipe cleaning brush that is stuck inside the frame but can be moved a bit back and forth.

Hence, we also call it a brush. It is connected via a G, to the brush of the previous variable

EuroCG’'21

26:6 Upward Planar Drawings with Three Slopes

(b)
(a)
g G g—.
? ?
- V /1
i Vaad
[v -1 o - -
false true «— —_—
false true
%@Z@E ‘ K ‘
|
Fia%a Y

WN
[N
N
NN
.
[N
R Rossssrdrm N

%
R

(c)

= =

false true

Figure 6 A variable gadget, contained in two positive and one negative clauses, being set to false.

gadget (see Fig. 6a/d) and the first brush is connected to the frame via a G, (see the left
of Fig. 5b). This allows only a horizontal shift of the brushes, but no vertical movement
relative to its anchor point at the frame structure. Note that the horizontal position in any
variable gadget is independent of those in all other gadgets. If the brush is positioned close
to the very left (right), the corresponding variable is set to false (true).

For each occurrence of a variable in a positive clause, we have a construction as depicted
in Fig. 6b. There, a long chain of (green) GGos — from now on called boll — is attached to the
frame structure via two G s, which allow only a vertical, but no horizontal shift. The bolt
has on its left side an arm, which can only be placed in one of two pockets of the frame. It
can always be placed in the upper pocket, which pushes the bolt outwards with respect to
the variable gadget (into an edge and then a clause gadget). It can only be placed in the
lower pocket if the brush is shifted close to the very right (i.e. set to true) — then the bolt
can “fall” into a cove of the brush. For each occurrence of a variable in a negative clause,
we have the same construction, but upside-down, such that the bolt can be pulled into the

Klawitter and Zink 26:7

m%
?mé
i
s | B
i
-
WL

true true true

oLl Flelillal) [l L
T %%E%M%H%% %W% %E
false % 1 Y e % false
vav v
4 i
i AN A AR T A
: Fé -
=NANRE R .
false " false " false

true true true

Figure 7 Positive clause gadget (negative clause gadget is mirrored vertically) in 8 configurations.

variable gadget only if the brush is shifted close to the very left (i.e. set to false).

Note that, to maintain outerplanarity of the whole construction, the frame structure is
not contiguous, but connected by G, s and the arms of the bolts. Hence, the frame structure
decomposes into many components that have fixed relative horizontal positions and their unit
squares have the same side lengths. However, the components can shift up and down relative
to each other. To keep this vertical shift small enough not to affect the correct functioning
of our reduction, we use, for each such component, the construction depicted in Fig. 6¢. The
chain of brushes has no flexibility in vertical direction and serves as a base ground for an
“anchor” of the frame structure. The frame structure can move less than one unit up or
down unless it violates planarity. If the frame structure would be shifted up enough to be
completely above the brush, it would get in conflict with the adjacent bolt.

An edge gadget consists of only three straights chains — two are frame segments, one
is a bolt in the middle. Their purpose is to synchronize the distance of the clause gadgets

to the variable gadgets and to provide these chains of unit squares for the clause gadgets.

Several edge gadgets are depicted on yellow background color in Fig. 5b.

A clause gadget for a positive clause is depicted in Fig. 7. Within a frame, which is
connected at six points to the frames of three edge gadgets, there is a horizontal (orange)
bar, which is attached via two G s to the frame — one G, allows a horizontal, the other
allows a vertical shift. It resembles a crane that can move up and extend its arm, while it
holds the horizontal bar on a vertical (orange) rope. The three bolts from the corresponding
variable gadgets reach into the clause gadget. The lengths of these bolts is chosen such
that, if they are pushed out of their variable gadget and into the clause gadget, they only
slightly fit inside the gadget. Depending on whether each of the bolts is pushed into the
clause gadget or pulled out of it, we have eight possible configurations (with sufficiently small

EuroCG’'21

26:8 Upward Planar Drawings with Three Slopes

vertical slack). They represent the eight possible truth assignments to a clause. In Fig. 7, we
illustrate that in each configuration, we can accommodate the horizontal in an upward
planar 3-slope drawing of the clause gadget — except for the case when all three bolts push
into the clause gadget, which represents the truth assignment false to all contained variables.
A negative clause gadget uses the same construction, but mirrored vertically. There, three
bolts pushing into the clause gadget means the contained variables are all set to true.

We conclude with our main theorem. In the future, we plan to generalize Theorem 3.2 to
k > 3 slopes. In the fixed embedding setting, the main idea is to simply add 2(k — 3) dummy
leaves to each vertex that automatically occupy the additional slopes.

» Theorem 3.2 (x). Deciding whether a directed outerplanar graph admits an upward planar
3-slope drawing is NP-hard, even when an upward outerplanar embedding is given.

Acknowledgments. We would like to thank the reviewers for their helpful comments.

—— References

1 Michael A. Bekos, Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio
Montecchiani. Universal Slope Sets for Upward Planar Drawings. In Therese Biedl and
Andreas Kerren, editors, Graph Drawing and Network Visualization, pages 77-91. Springer
International Publishing, 2018. doi:10.1007/978-3-030-04414-5_6.

2 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward
drawings of triconnected digraphs. Algorithmica, 12(6):476-497, 1994. doi:10.1007/
BF01188716.

3 Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Opti-
mal Upward Planarity Testing of Single-Source Digraphs. SIAM Journal on Computing,
27(1):1327169, 1998. doi:10.1137/S0097539794279626.

4 Guido Briickner, Nadine Davina Krisam, and Tamara Mchedlidze. Level-planar drawings
with few slopes. In Daniel Archambault and Csaba D. Té6th, editors, Graph Drawing and
Network Visualization, pages 559-572, 2019. doi:10.1007/978-3-030-35802-0_42.

5 Hubert Chan. A Parameterized Algorithm for Upward Planarity Testing. In Susanne
Albers and Tomasz Radzik, editors, Algorithms — ESA 2004, pages 157-168. Springer,
2004. doi:10.1007/978-3-540-30140-0_16.

6 Jurek Czyzowicz. Lattice diagrams with few slopes. Journal of Combinatorial Theory,
Series A, 56(1):96-108, 1991. doi:10.1016/0097-3165(91)90025-C.

7 Jurek Czyzowicz, Andrzej Pelc, and Ivan Rival. Drawing orders with few slopes. Discrete
Mathematics, 82(3):233-250, 1990. doi:10.1016/0012-365X(90)90201-R.

8 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. International Journal of Computational Geometry & Applications, 22(3):187-206,
2012. doi:10.1142/s0218195912500045.

9 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

10 Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61(2):175-198, 1988. doi:10.1016/
0304-3975(88)90123-5.

11 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Drawing Outer 1-planar
Graphs with Few Slopes. In Christian Duncan and Antonios Symvonis, editors, Graph
Drawing, pages 174-185. Springer, 2014. doi:10.1007/978-3-662-45803-7_15.

12 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. 1-Bend Upward Planar
Drawings of SP-Digraphs. In Yifan Hu and Martin Noéllenburg, editors, Graph Drawing

Klawitter and Zink 26:9

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

and Network Visualization, pages 123-130. Springer International Publishing, 2016. doi:
10.1007/978-3-319-50106-2_10.

Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Drawing subcubic planar
graphs with four slopes and optimal angular resolution. Theoretical Computer Science,
714:51-73, 2018. doi:10.1016/j.tcs.2017.12.004.

Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward Spirality and Upward
Planarity Testing. SIAM Journal on Discrete Mathematics, 23(4):1842-1899, 2010. doi:
10.1137/070696854.

Vida Dujmovié¢, David Eppstein, Matthew Suderman, and David R. Wood. Drawings of
planar graphs with few slopes and segments. Computational Geometry, 38(3):194-212, 2007.
doi:10.1016/j.comgeo.2006.09.002.

Vida Dujmovi¢, Matthew Suderman, and David R. Wood. Graph drawings with few slopes.
Computational Geometry, 38(3):181-193, 2007. doi:10.1016/j.comgeo.2006.08.002.
Ashim Garg and Roberto Tamassia. On the Computational Complexity of Upward and
Rectilinear Planarity Testing. SIAM Journal on Computing, 31(2):601-625, 2001. doi:
10.1137/S0097539794277123.

Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing
upward planarity. International Journal of Foundations of Computer Science, 17(05):1095—
1114, 2006. doi:10.1142/S0129054106004285.

Udo Hoffmann. On the Complexity of the Planar Slope Number Problem. Journal of Graph
Algorithms and Applications, 21(2):183-193, 2017. doi:10.7155/jgaa.00411.

Vit Jelinek, Eva Jelinkova, Jan Kratochvil, Bernard Lidicky, Marek Tesaf, and Tomas
Vyskocil. The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree. Graphs
and Combinatorics, 29(4):981-1005, 2013. doi:10.1007/s00373-012-1157-z.

Balazs Keszegh, Janos Pach, and Démoétor Palvolgyi. Drawing Planar Graphs of Bounded
Degree with Few Slopes. SIAM Journal on Discrete Mathematics, 27(2):1171-1183, 2013.
doi:10.1137/100815001.

Philipp Kindermann, Wouter Meulemans, and André Schulz. Experimental analysis of the
accessibility of drawings with few segments. Journal of Graph Algorithms and Applications,
22(3):501-518, 2018. doi:10.7155/jgaa.00474.

Jonathan Klawitter and Tamara Mchedlidze. Upward planar drawings with two slopes,
2021. In preparation.

Jonathan Klawitter and Johannes Zink. Upward planar drawings with three slopes, 2021.
arXiv:2103.06801.

Kolja Knauer, Piotr Micek, and Bartosz Walczak. Outerplanar graph drawings with few
slopes. Computational Geometry, 47(5):614-624, 2014. doi:doi.org/10.1016/j.comgeo.
2014.01.003.

Rebecca Kraus. Level-auflenplanare Zeichnungen mit wenigen Steigungen, 2020. Bachelor
Thesis, University of Wiirzburg.

William Lenhart, Giuseppe Liotta, Debajyoti Mondal, and Rahnuma Islam Nishat. Planar
and Plane Slope Number of Partial 2-Trees. In Stephen Wismath and Alexander Wolff, ed-
itors, Graph Drawing, pages 412-423. Springer, 2013. doi:10.1007/978-3-319-03841-4_
36.

Padmini Mukkamala and Démotor Palvolgyi. Drawing Cubic Graphs with the Four Basic
Slopes. In Marc van Kreveld and Bettina Speckmann, editors, Graph Drawing, pages 254—
265. Springer, 2012. doi:10.1007/978-3-642-25878-7_25.

Padmini Mukkamala and Mario Szegedy. Geometric representation of cubic graphs with
four directions. Computational Geometry, 42(9):842-851, 2009. doi:10.1016/j.comgeo.
2009.01.005.

EuroCG’'21

26:10 Upward Planar Drawings with Three Slopes

30

31

32

33

34

Martin Néllenburg. Automated Drawing of Metro Maps, 2010. Diploma Thesis, University
of Karlsruhe (TH).

Martin Néllenburg and Alexander Wolff. Drawing and labeling high-quality metro maps by
mixed-integer programming. IEEFE Transactions on Visualization and Computer Graphics,
17(5):626-641, 2011. doi:10.1109/TVCG.2010.81.

Jénos Pach and Démotor Palvolgyi. Bounded-degree graphs can have arbitrarily large slope
numbers. Electronic Journal of Combinatorics, 13(1):N1, 2006.

Achilleas Papakostas. Upward planarity testing of outerplanar dags. In Roberto Tamassia
and lToannis G. Tollis, editors, Graph Drawing, pages 298-306. Springer, 1995. doi:10.
1007/3-540-58950-3_385.

G. A. Wade and J.-H. Chu. Drawability of Complete Graphs Using a Minimal Slope Set.
The Computer Journal, 37(2):139-142, 1994. doi:10.1093/comjnl/37.2.139.

Decomposing Polygons into Fat Components

Maike Buchin! and Leonie Selbach!

1 Ruhr University Bochum
maike.buchin@rub.de, leonie.selbach@rub.de

—— Abstract

We study the problem of decomposing (i.e. partitioning or covering) polygons into components
that are a-fat, which means that the aspect ratio of each subpolygon is at most . We consider
decompositions without Steiner points. We present a polynomial-time algorithm for simple polygons
that finds the minimum « such that an a-fat partition exists. Furthermore, we show that finding an
a-fat partition or covering with minimum cardinality is NP-hard for polygons with holes.

Related Version A full version of this paper is available at https://arxiv.org/abs/2103.08995 [1]

1 Introduction

A decomposition of a polygon P is a set of subpolygons whose union is exactly P. If the
subpolygons are not allowed to overlap, the set is a partition of P. Otherwise, we call the set
a covering. Here, we consider decompositions without Steiner points. Thus, a polygon is
decomposed by adding diagonals between its vertices. Polygon decomposition problems arise
in many theoretical and practical applications and can be categorized with regard to the
type of subpolygon that is used [6]. We consider decompositions into fat components. Our
research is motivated by a bioinformatical application: The fragmentation of tissue samples
can be modeled as a constrained shape decomposition problem in which specifically round or
fat components are desired [7].

A polygon P is called a-fat if its aspect ratio (AR) is at most «. There are different
definitions for the aspect ratio and in this paper we consider the following two (see Fig. 1):
square-fatness: AR quare = ratio between the side length of the smallest axis-parallel square

containing P and side length of the largest axis-parallel square contained in P [5].
disk-fatness: ARg;s; = ratio between the diameter of the smallest circle enclosing P (mini-

mum circumscribed circle or MCC) and the diameter of the largest circle enclosed in P

(maximum inscribed circle or MIC) [3].

A polygon P is called a-small if the side length of the enclosing square or respectively the
diameter of the enclosing circle is at most a. The minimum «-fat partition (or covering)
problem is finding a partition (or covering) with minimum cardinality such that every
subpolygon is a-fat. We have analog problems with a-smallness instead of a-fatness.

o

=

(a) (b)

Figure 1 Partition that is 1.5-fat with square-fatness (a) and 1.4-fat with disk-fatness (b).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

27:2 Decomposing Polygons into Fat Components

Worman showed that the minimum a-small partition problem as well as the covering
problem are NP-hard for polygons with holes [8]. Square-smallness was used for the reduction,
but with some adjustments the construction holds for disk-smallness as well [1]. In the
following results disk-smallness and -fatness was used. Damian and Pemmaraju showed that
the minimum a-small partition problem is polynomial-time solvable for simple polygons
and that a faster 2-approximation algorithm exists [3]. Additionally, the authors presented
an approximation algorithm for convex polygons. Damian proved that the minimum a-fat
partition problem can be solved in polynomial time for simple polygons and conjectured that
this problem is NP-hard for polygons with holes [2]. The min-fat partition problem is finding
the smallest « for which an a-fat partition exists. Solving the min-fat partition problem was
stated as an open problem by Damian [4].

This paper includes two main results. In section 2 consider the min-fat partition problem
using disk-fatness and present a polynomial-time algorithms for simple polygons. In section 3
we consider the minimum «-fat partition and covering problem and confirm the conjecture
that these problems are NP-hard for polygons with holes. This result is true for both
square- and disk-fatness. Because of the line constraints, we present only the reduction
for square-fatness. All missing proofs and results can be found in the full version of this

paper [1].

2 Min-fat partition problem for simple polygons

We extend the method of Damian [2] to solve the min-fat partition problem for simple
polygons while using the definition of disk-fatness. Our goal is to find a partition such that
the largest aspect ratio (AR) of any subpolygon is minimized. Note that the value of the
largest AR in this optimal partition equals the desired « in the min-fat partition problem.

Let P be a simple polygon, with vertices labeled from 1 to n counterclockwise. A diagonal
(i,7) is a line segment that connects two vertices 4 and j and does not intersect the outside of
P. Let G(P) be the visibility graph of P consisting of the n vertices of P and m diagonals.
We define S as the set consisting of all vertices and edges of G(P). For each diagonal (i, j)
with i < j, let P; ; be the subpolygon with vertices {i,i+1,...,j} (see Fig. 2a). To solve
the min-fat partition problem, we compute an optimal partition Z; ; for each P; ;. This
can be done iteratively. Let () be the polygon in Z; ; adjacent to (i,7). Note that the
vertices of @) induce a path ¢ from ¢ to j in the visibility graph (see Fig. 2b) and we have
Zij = U(k,l)eq Zy1 U Q. The idea is to find an optimal partition by computing the optimal
path g. We define edge weights w(4, j) as the value of am optimal partition Z; ; of P; ;:

. /
w(i,j) = PI/réaz};J AR(P") = max{(g}l?ng<k’ 1), AR(Q)}

for AR(Q) = d(MCC)/d(MIC) being the ratio between the diameters d(-) of the minimum
circumscribed circle MC'C' and maximum inscribed circle MIC of Q. If j is equal to i 4 1,
the partition Z; ;41 is empty and we set w(i,i + 1) = 0. Otherwise, w(3, j) equals the value
of the largest AR in an min-fat partition of F; ;.

However, the computation of w(i, j) presents the following problem: Finding the path
q and its correct edges requires knowledge about the resulting polygon) and its aspect
ratio, which is obviously not available beforehand. Therefore, we compute paths on different
reduced graphs that ensure that the aspect ratio of each possible polygon is below a certain
value and then choose the best one. For this, we consider all pairs of circles (C,I) such
that the following properties hold: (i,) lies completely inside of C' and outside of I, I is
tangent to 3 elements in S, and C' either touches 3 vertices of P or its diameter connects 2

M. Buchin and L. Selbach 27:3

(@) Pi ;. (b) Polygon Q. (c) Graph G’E(;’I).

Figure 2 In (a): Subpolygon P; ;. In (b): Polygon @ (gray) in an optimal partition of P; ;
induced by a path ¢ (blue edges) in the visibility graph. In (c): Reduced visibility graph GgS’I) (fat
edges) for a pair of circles (C, I).

vertices. Note that for any subpolygon the pair (MCC,MIC) fulfills these properties. For
each (C,I), let GES’U be the subgraph of G(P) consisting of edges that lie inside of P; ; and
C and outside of I (see Fig. 2c).

We can compute the weights w(i,j) by using dynamic programming with increasing
values of j — i. For each pair of circles (C,I), we compute a corresponding weight W (C, I)
and use those values to determine an edge weight w’(i, j) as follows:

w'(i,7) = min W(C,I) = min min max{ max w'(s,5),d(C)/d(I)}.
qeG" (k,1)€q

The weights of all edges except for (i, j) have already been computed. We search in GES’I)
for the path ¢ such that the value max{max e, w’(k,1),d(C)/d(I)} is minimized. We
denote this optimal value as W(C, I). Over all possible combinations of circles, we search for
the pair (C, I) with minimum W(C,I) and set w’(i, j) = W(C, I). We can show by induction
that w’(4,7) is actually equal to the largest aspect ratio in the corresponding partition and
that this partition is indeed optimal and thus w’(i,j) = w(i, j).

» Lemma 2.1. For an edge (i, j) in the visibility graph G(P) with j #i+1, let w'(4,) be the
computed weight and Z; j the corresponding partition. Then, w'(i,j) = maxpicz, , AR(P').

» Lemma 2.2. The computed partition Z; ; is an optimal partition of P; ;, meaning that the
largest aspect ratio of any subpolygon is minimized.

» Theorem 2.3. For a simple polygon P, the min-fat partition problem using disk-fatness
can be solved in time O(n3m5logn) with n being the number of vertices of P and m being
the number of edges in the visibility graph G(P).

Proof. First, we have to compute the visibility graph of P which takes O(n + m) time. For
every edge (4,) in the visibility graph, we determine an optimal partition Z; ; by computing
the optimal weight w(i,j). For each (i,), we consider pairs of circles (C,I). There are
O(n?) circles C and O(m?) circles I to consider. Computing the optimal path in GES’I) can
be done by an adjusted version of Dijkstra’s Algorithm and therefore takes O(mlogn) time.

Thus, the overall runtime of the algorithm is O(n3m?® logn). <

EuroCG’'21

27:4 Decomposing Polygons into Fat Components

3 Minimum o-fat decomposition problems for polygons with holes

We show that given a polygon with holes, it is NP-complete to decide whether there exists an
a-fat partition or covering with a given number of components. Similarily to Worman [8], we
show its NP-hardness by a reduction from planar 3,4-SAT. This is the problem of deciding if
a boolean formula ¢ is satisfiable under the following 3 restrictions: In conjunctive normal
form ¢ has exactly 3 literals per clause, each literal appears in at most 4 clauses, and the
graph G(¢) = (V,E) with V =UUC and FE = {(u,¢) |u € U,c € C,u or 4 is a literal in c},
where U are the literals and C' the clauses, is planar.

We construct a polygon representing the graph G(¢) that has an a-fat partition of size
k if and only if ¢ is satisfiable. We determine the value k during this construction. Our
construction uses a fixed value of o and consists of 3 different polygon components: variable,
wire and clause polygons. In contrast to the related reduction of Worman, the constructions
differ depending on the definition of fatness that is applied. Here, we present the method for
square-fatness, the one for disk-fatness can be found in the full version [1].

We set a = 1.2. All polygon components have a width of at most 5, thus the side length
of the enclosing squares cannot exceed 6. The wvariable polygon is shown in Figure 3a. It
has four terminals at which wires can be connected. With the given «, this polygon can
be minimally partitioned with 8 subpolygons in two ways (see Fig. 3b). These partitions
represent the True and False assignment that will be carried to the corresponding clauses.

Each wire consists of a set of individual wire polygons that are connected with each other
(as depicted in Figure 4) to carry the variable assignment to the clause polygon. The wires
can be attached at the terminals in two possible orientations (see Fig. 5) depending on
whether the variable appears in the clause negated or unnegated. If the wire is connected in
the unnegated orientation and the variable is set to True, the green polygon in Figure 5a
can cover the top part of the wire as well, but this is not the case if the variable is set to
False. The reverse is true if the wire is connected in the negated orientation. If a wire is
partitioned in this way (unnegated position and True assignment or negated position and
False assignment), we say that it carries True.

(@) (b)

Figure 3 The variable polygon with four terminals indicated by 1,2,3,4 in blue (a) and its
minimal 1.2-fat partitions representing the True (green) and False (red) assignment (b).

M. Buchin and L. Selbach 27:5

oo oo

(a) (b) ()

Figure 4 A single wire polygon (a), its two partitions that represent the True (green) or False
(red) assignment (b), and two connected wire polygons (c).

(a) True assignment of variable. (b) False assignment of variable.

Figure 5 Attaching a wire to the variable in unnegated orientation (on bottom right terminal)
and in negated orientation (on bottom left terminal) which switches the True/False value.

The variable assignment is carried to the clause polygon (see Fig. 6). For each of the
three variables contained in the clause, this polygon has one terminal where the wires will
be attached. Depending on the values these wires carry, a different number of polygons is
needed to partition the clause polygon into 1.2-fat components. If some wire carries True
(see Fig. Ta and 7b), the tip of the connected terminal (gray) is already covered and center
part of the clause polygon (dark green) can be covered as well. If more than one wire carries
True either one of the corresponding polygons (light green) can cover the center. In either
case, the partition requires exactly four polygons. If all wires carry False (see Fig. 7¢), the
a part of the center (red area) cannot be covered by any of the bigger polygons (light red)
and thus five polygons are needed to partition the clause polygon.

The whole polygon representing G(¢) is constructed based on a planar orthogonal grid
drawing of G(¢). That is a planar embedding of the graph such that every vertex is located at
an integer grid point, the edges are non-overlapping, and every edge is a chain of orthogonal
lines that bend at integer grid points. A schematic example for the placement of variable
and clause polygons on the vertices of the drawing can be seen in Figure 8. To construct
the edges, the wires have to be bend, shifted or offset. This is achieved by the constructions
presented in Figure 9. The drawing of G(¢) is scaled to accommodate the size of the variable
and clause polygons as well as the needed adjustments of the wire polygons.

EuroCG’'21

27:6 Decomposing Polygons into Fat Components

—

(a) True, False, False (b) True, True, True (c) False, False, False

Figure 7 Partition of the clause polygon depending on different assignments that are transmitted
by the wires (True green edges, False red edges).

jE
I e

st
f=
]

Figure 8 Placement of 5 variable and 3 clause polygons on a planar orthogonal grid drawing.

I

M. Buchin and L. Selbach 27:7

(a) (b) (c)

Figure 9 Bending (a), shifting (b) and offsetting (¢) a wire that carries True (green edges) or
False (red edges).

As we consider the decision problem, the number & of allowed subpolygons is fixed. We
have k = 8v + 4¢ + w where v is the number of variables, ¢ the number of clauses and w the
number of wire polygons needed in the construction. Bending, shifting and offsetting a wire
counts as 3, 2, and 5 wire polygons, respectively.

» Theorem 3.1. Deciding the a-fat partition problem is NP-complete for polygons with holes
if square-fatness is applied.

Note that we can find a minimum 1.2-fat covering with the same number of components
as the minimum partition and that the constructed polygon is orthogonal. Thus, the result
remains true for the corresponding covering problem and also for orthogonal polygons with
holes. However, the presented construction does not work for disk-fatness: If « is set to the
smallest aspect ratio needed such that all components in the construction are still feasible,
other subpolygons become feasible, and the transmission of True/False values would no
longer be consistent. We can adjust the construction for disk-fatness, but this adjusted
construction in turn does not work for square-fatness anymore [1].

4 Conclusion

We presented a polynomial-time algorithm for the min-fat partition problem for simple
polygons. Furthermore, we proved that it is NP-complete to decide the a-fat partition
problem and covering problem for polygons with holes. Both results are true for disk-fatness
and the latter also holds for square-fatness. It remains open whether the minimum a-fat or
min-fat covering problem is solvable for simple polygons. Moreover, there are no results for
any related fat decomposition problems that allow Steiner points yet.

—— References

1 Maike Buchin and Leonie Selbach. Decomposing polygons into fat components, 2021.
arXiv:2103.08995.

2 Mirela Damian. Exact and approximation algorithms for computing optimal fat decompo-
sitions. Computational Geometry, 28(1):19-27, 2004.
3 Mirela Damian and Sriram V Pemmaraju. Computing optimal diameter-bounded polygon

partitions. Algorithmica, 40(1):1-14, 2004.
4 Erik Demaine and Joseph O’Rourke. Open problems from CCCG 2002. In Proceedings of
the 15th Canadian Conference on Computational Geometry, pages 178-181, 2003.

EuroCG’'21

27:8 Decomposing Polygons into Fat Components

5 Matthew J Katz. 3-d vertical ray shooting and 2-d point enclosure, range searching, and
arc shooting amidst convex fat objects. Computational Geometry, 8(6):299-316, 1997.

6 J Mark Keil. Polygon decomposition. Handbook of computational geometry, 2:491-518,
2000.

7 Leonie Selbach, Tobias Kowalski, Klaus Gerwert, Maike Buchin, and Axel Mosig. Shape
Decomposition Algorithms for Laser Capture Microdissection. In 20th International Work-
shop on Algorithms in Bioinformatics, volume 172 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 13:1-13:17, 2020.

8 Chris Worman. Decomposing polygons into diameter bounded components. In Proceedings
of the 15th Canadian Conference on Computational Geometry, pages 103-106, 2003.

StreamTable: An Area Proportional Visualization
for Tables with Flowing Streams*

Jared Espenant and Debajyoti Mondal

Department of Computer Science
University of Saskatchewan, Saskatoon, Saskatchewan, Canada
jae608Qusask.ca, d.mondal@usask.ca

—— Abstract

Let M be an r X ¢ table with each cell weighted by a nonzero positive number. A StreamTable
visualization of M represents the columns as non-overlapping vertical streams and the rows as
horizontal stripes such that the area of intersection between a column and a row is equal to the
weight of the corresponding cell. To avoid large wiggle of the streams, it is desirable to keep
the consecutive cells in a stream to be adjacent. Let B be the smallest axis-aligned bounding
box containing the StreamTable. Then the difference between the area of B and the sum of the
weights is referred to as the excess area.

We examine the complexity of optimizing various table aesthetics (minimizing excess area, or
maximizing cell adjacencies in streams) in a StreamTable visualization.

If the row permutation is fixed and the row heights are given as a part of the input, then we

provide an O(rc)-time algorithm that optimizes these aesthetics.

If the row permutation is fixed but the row heights can be chosen, then we discuss a tech-

nique to compute an aesthetic StreamTable by solving a quadratically constrained quadratic

program, followed by iterative improvements.

If row permutations can be chosen, then we show that it is NP-hard to find a row permutation

that optimizes the area or adjacency aesthetics.

1 Introduction

Proportional area charts and cartographic visualizations commonly map data value to area.
Table cartogram [4] is a brilliant way to visualize tables, where each table cell is mapped to
a convex quadrilateral with area equal to the cell’s weight. Furthermore, the visualization
preserves cell adjacencies and the quadrilaterals are packed together in a rectangle with no
empty space in between. However, since the cells in a table cartogram are represented with
convex quadrilaterals, neither the rows nor the columns remain axis aligned (e.g., see Figure
4 in [4]). This motivated us to look for solutions where the rows are represented with fixed
horizontal stripes and the cells are represented with axis aligned rectangles.

Streamgraphs are examples where the columns can be thought of as vertical stripes. Given
a set of variables, a streamgraph visualizes how the value changes over time by representing
each variable with an z-monotone flowing river-like stream. The width of the stream at a
timestamp is determined by the value of the variable at that time. Figure 1(a) illustrates
a streamgraph with five variables. Streamgraphs are often used to create infographics of
temporal data [2], e.g., box office revenues for movies [1], various statistics or demographics
of a population over time [7], etc.

In this paper, we introduce StreamTable that extends this idea of a streamgraph to
visualize tables or spreadsheets. We formally define a StreamTable as follows.

* Work is supported in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC), and by two CFREF grants coordinated by GIFS and GIWS.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

35:2 Area Proportional Visualization for Tables

¢ co c3 ¢y c1 c1 ca 3 ¢y
s ,
T 4 2 2 71 : : 1
|} 1
-
T2 2 2 8 ro : : : T2 C
1 1 1
| - :
ry| 4 2 4 73| 1 r3
l |
oo
ra 2 4 2 r4 : : : T4 r
1 1 1
(a) (b) (c) (d)

Figure 1 (a) A streamgraph. (b) A table T. (c¢) A StreamTable for T. (d) A StreamTable
visualization with smooth streams.

StreamTable Let T be an r x ¢ table with r rows and ¢ > 2 columns, where each cell is
weighted by a nonzero positive integer. A StreamTable visualization of T' is a partition of
an axis-aligned rectangle R into r consecutive horizontal stripes that represent the rows
of T', where each stripe is further partitioned into rectangles to represent the cells of its
corresponding row. A column ¢ of T is thus represented by a sequence of rectangles
corresponding to the cells of q. By a stream we refer to such a sequence of rectangles that
represents a column of 7. Furthermore, a StreamTable must satisfy the following properties.
Py The left side of the leftmost stream (resp., the right side of the rightmost stream) must
be aligned to the left side (resp., right side) of R.
P, For each cell of T, the area of its corresponding rectangle in the StreamTable must be
equal to the cell’s weight.
Property P, provides an aesthetic alignment with the row labels and a sense of total
visualization area. Property P, provides an area proportional representation of the table cells.
Figure 1(b) illustrates a table and Figure 1(c) illustrates a corresponding StreamTable. The
stripes (rows) are shown in dotted lines and the partition of the stripes are shown in dashed
lines. Figure 1(d) illustrates an aesthetic visualization of the streams after smoothing the
corners. StreamTable computation can also be viewed as a variant of floorplanning [3, 10].
Note that a StreamTable may contain rectangular regions that do not correspond to
any cell. We refer to such regions as empty regions and the sum of the area of all empty
regions as the excess area. While computing a StreamTable, a natural optimization criteria
is to minimize this excess area. However, minimizing excess area may sometimes result
into disconnected streams, e.g., Figure 2(b) illustrates a StreamTable where the consecutive
rectangles for column cy are not adjacent. If a pair of cells are consecutive in a column but
the corresponding rectangles are nonadjacent in the stream, then they split the stream. To
maintain the stream connectedness, it is desirable to minimize the number of such splits.
As illustrated in Figure 2(c)-(d), one may choose non-uniform row heights or reorder the
rows to optimize the aesthetics. Such reordering operations also appear in matrix reordering
problems [8] where the goal is to reveal clusters in matrix data.

Our Contribution. We explore StreamTable from a theoretical perspective and consider
the following two problems.

Problem 1 (StreamTable with no Split, Minimum Excess Area, and Fixed Row Ordering).
Given an r x ¢ table T, can we compute a StreamTable for 7" in polynomial time with no
split and minimum excess area? Note that in this problem, the StreamTable must respect
the row ordering of T'.

J. Espenant and D. Mondal 35:3

c1 C2 c3
C1 Co C3 [c3 - C1 C2 c3
1 2 2 8 1 To
T2
r2 6 4 2 o T
T3 2 2 8 r3 r3 r3

(a) (b) (c) (d)

Figure 2 (a) A table. (b) A StreamTable with no excess area and 2 splits. (c) A StreamTable
with non-uniform row heights, non-zero excess area, but no split. (d) A StreamTable with no excess
area and 1 split, which is obtained by reordering the rows.

While Problem 1 remains open, if the input additionally specifies a set {h1,...,h,} of
nonzero positive numbers to be chosen as row heights, then we can compute a StreamTable
with minimum excess area in O(rc) time. We show how to minimize the excess area further
by leveraging a quadratically constrained quadratic program, and then iteratively adjusting
the row heights. Since choosing a fixed row height helps to obtain a fast algorithm and
to compare the cell areas more accurately, we examined whether one can leverage the row
ordering to further improve the StreamTable aesthetics.

Problem 2 (Row-Permutable StreamTable with Uniform Row Heights). Given a table
T and a non-zero positive number ¢ > 0, can we compute a StreamTable in polynomial time
by setting § as the row height, and minimizing the excess area (or, the number of splits)?
Note that in this problem, the row ordering can be chosen.

We show that Problem 2 is NP-hard. In particular, we show that computing a StreamTable
with no excess area and minimum number of split is NP-hard and similarly, computing a
StreamTable with no split and minimum excess area is NP-hard.

2 StreamTable (No Split, Min. Excess Area, Fixed Row Ordering)

In this section we compute StreamTables by respecting the row ordering of the input table.
We first explore the case when the row heights are given, and then the case when the row
heights can be chosen.

2.1 Fixed Row Heights

Let T be an r x ¢ table and let {hi,...,h,} be a set of nonzero positive numbers to be
chosen as row heights. We now introduce some notation for the rectangles and streams in
the StreamTable. Let w; ; be the weight for the (4, j)th entry of T, where 1 < ¢ < r and
1 <j <eg, and let R; ; be the rectangle with height h; and width (w; ;/h; ;). Let a; ; and
b; ; be the z-coordinates of the left and right side R; ;.

We now show that a StreamTable R for T with no split and minimum excess area can be
constructed using a greedy algorithm G, as follows:

Step 1. Draw the rectangles R; 1 of the first column such that they are left aligned.
Step 2. For each j < ¢, draw the jth stream by minimizing the sum of z-coordinates
a; j, but ensuring that the stream remains connected.

EuroCG’'21

35:4 Area Proportional Visualization for Tables

Step 3. Draw the rectangles R;. of the last column by minimizing the maximum
z-coordinate over b; ., but ensuring that the rectangles are right aligned.

For every column j, let A(R,j) be the orthogonal polygonal chain determined by the left
side of R; ;. Similarly, we define (resp., B(R,j)) for the right side of R; ;. We now have the
following lemma.

» Lemma 2.1. G computes a StreamTable R with no split and minimum excess area.

Proof. We employ an induction on the number of columns. For an r x ¢ table T with ¢ = 2,
it is straightforward to verify the lemma. We now assume that the lemma holds for every
table with j columns where 1 < j < ¢. Consider now a table with ¢ columns and let R* be
an optimal StreamTable with no split and minimum excess area.

We first show that the first two streams of R* can be replaced with the corresponding
streams of R. To observe this first note that the stream for the first column must be drawn
left-aligned, and since the rectangle heights are given, the right side of the streams B(R,1)
must coincide with B(R*, 1). Consider now the left sides of the second streams. If A(R,2)
does not coincide with A(R*,2), then there must be non-zero area between them. Let
A be an orthogonal polygonal chain constructed by taking the left envelope of these two
chains. In other words, for each row, we choose the part of the chain that have the minimum
z-coordinate. Since the streams for R and R* are connected, the stream determined by A
must be connected. Since the sum of z-coordinates is smaller for A, the polygonal chain
A(R,2) must coincide with A. Thus the right side of the stream, i.e., the polygonal chain
B(R,2), must remain to the left of B(R*,2).

We can now construct an r X (¢ — 1) table T by treating the polygonal chain B(R,2) as
B(R,1). By induction, G provides a StreamTable R’ with no split and minimum excess area.
We can thus obtain the StreamTable R by replacing the first stream with the two streams
that were constructed using the greedy approach. |

We now have the following theorem. We omit the proof due to space constraints.

» Theorem 2.2. Given an r X c table T and a height for each row, a StreamTable R for T
with no split and minimum excess area can be computed in O(rc) time such that R respects
the row ordering of T.

We now show how to formulate a system of linear equations to compute a StreamTable
for T with no split and minimum excess area such that the height of the ith row is set to
h;, where 1 < ¢ < r. This will be useful for the subsequent section. Let d; ; be a variable
to model the adjacency between R; ; and R;1q ;, where 1 <¢<r—-1land 1< j<c. We

r c—1
minimize the excess area: Y, > hj(a;x+1 — bj k), subject to the following constraints.
j=1k=1
1. a;1 =aj41,0 and bj . = bj11,c, where j =1,...,7—1. This ensures StreamTable property

Py.

bjk —ajr = (wjx/hj), where j =1,...,7and k =1,...,c. This ensures property P.
ajr <djr <bjrand ajpir <djp <bjpik, wherel <j<r—1and 1<k <c This
ensures that there is no split in the streams.

Since hq, ..., h, are fixed constants, the above system with the constraint that the variables
must be non-negative can be modeled as a linear program, e.g., see Figure 3 (left).

J. Espenant and D. Mondal 35:5

2.2 Variable Row Heights

A straightforward solution in this case is to treat hi,...,h; as variables, which yields
a quadratically constrained quadratic program. Note that scaling down the height of a
StreamTable by some § € (0, 1] and scaling up the width by 1/ do not change the excess
area. Therefore, a non-linear program solver may end up generating a final table with bad
aspect ratio. Hence we suggest to add another constraint: hy + ...+ hy = H, where H is
the desired height of the visualization. Figure 3 (right) illustrates an example where the
solution (not necessarily optimal) is computed using a non-linear program solver Gurobi [6],
and Figure 4 is obtained by smoothing the corners of the streams.

Netherlands Finland

Frapce Swifzerland
131(. CTnda nlly I GerIdny Unitedftates Nurvay S\Tden A mal

Swpden Finland

Frapce Swigzerland Netherlands
‘IUI(. l ci.m nry l GerTany u.medfzms Nolwsy Auitnnl

2014 97

1998 |
191 I 34

199: 26

198 o1
1984 82

10 86
1976 81
1972 st
196 88
1964 ™
196 57
1950 51
1952—— o7
1945 G5

T e i
! 19247 S — T 1T I =

7 Figure 3 StreamTables of a Winter Olympics dataset (left) using a linear program with row
height proportional to the row sum, and (right) using Gurobi with a fixed total height.

France Switzerland Netherlands Finland
iKl CTada Itlly GerIany United ftates Nolway Swfden Auitrial

2014 197

201 182

200 187

2002 188

19987 51

19944 D 134

1992 126

19884 101
1984— 82

1980 86
1976 81

19727 81
1968 88

1964 "
1960 57

195 54
1952 67

194 65
1936933 15 ol
1928 39

1924 48

[Figure 4 An aesthetic StreamTable created by corner smoothing.

35:6 Area Proportional Visualization for Tables

We now show how a non-optimal StreamTable may be improved further by examining
each empty cell individually, while deciding whether that cell can be removed by shrinking
the height of the corresponding row. By E; ; we denote the empty rectangle between the
rectangles R; ; and R; ;1. We first refer the reader to Figure 5(a)—(b). Assume that we
want to decide whether the empty cell E; j(= Ea4) can be removed by scaling down the
height of the second row. The idea is to grow the rectangles to the left (resp., right) of E; ;
towards the right (resp., left) respecting the adjacencies and area.

(0,0) (We,0)

Figure 5 (a) A StreamTable with width W, and height H.. (b) Removal of the empty rectangle
E3.4 (c)—(d) Hlustration for computing the new height H,, of the second row.

Now consider a rectangle R; (= Ra22) before E; j(= Ea4). Let G be the rectangle
determined by the ith row with left and right sides coinciding with the left and right sides of
R; 1 and R, j, respectively. Figure 5(a) shows G2 in a falling pattern. Let ¢; ;, be the width
of G; 1. Let A; , be the initial area of G; 1, and our goal is to keep this area fixed as we scale
down the height of the ith row. The height of G; . is defined by f(¢; k) = Ai x/li . Since
the rectangles of the (i — 1)th and (i + 1)th rows do not move, f(¢;) does not split the
(k +1)th stream as long as ¢; 1, is upper bounded by the right sides of R;_1 x+1 and Rit+1 k1.
Figure 5(c) plots these functions, where H. is the current height of the second row. The
height function for G o is drawn in thick purple in the interval [¢3 2, min{q; 3, ¢33}], where
¢1,3 and g3 3 are the right sides of R; 3 and Rj3 3, respectively.

We construct such functions also for all the empty rectangles E; ,, where 1 < ¢ < j.
These are labelled with e; ,. Finally, we construct these functions symmetrically for the
rectangles that appear after E; ;. We then find a height H,, by determining the common
interval L where all these functions are valid individually (Figure 5(c)), and determining the
first intersection (if any) in this interval, as illustrated in Figure 5(d).

We iterate over the empty rectangles as long as we can find an empty rectangle to improve
the solution, or to a maximum number of iterations.

3 StreamTable (Uniform Row Heights, Variable Row Ordering)

We now show that computing StreamTables with no split (resp., minimum excess area) while
minimizing the excess area (resp., number of splits) by reordering the rows is NP-hard.

J. Espenant and D. Mondal 35:7

» Theorem 3.1. Given a table T and a non-zero positive number § > 0, it is NP-hard to
compute a StreamTable with no split and minimum excess area, where each Tow is of height §
and the ordering of the rows can be chosen.

Proof. We reduce the NP-complete problem betweenness [9]. Given an instance S of
betweenness, we construct an r x (4c + 1) table T' and a positive integer J such that there
exists a StreamTable for 7" with no split and excess area at most 1?;“ if and only if S admits
a total order. We omit the details due to space constraints. |

» Theorem 3.2. Given a table T and a non-zero positive number § > 0, it is NP-hard to
compute a StreamTable with zero excess area and minimum number of splits, where each row
1s of height § and the ordering of the rows can be chosen.

Proof. We reduce the NP-complete problem Hamiltonian path in a cubic graph [5]. Given
an instance G with n vertices and m edges, we construct an n X m table T and a positive
integer & such that there exists a StreamTable for T with § height for each row, zero excess
area, and at most 4(n — 1) splits, if and only if G admits a Hamiltonian path. We omit the
details due to space constraints. |

—— References

1 Marco Di Bartolomeo and Yifan Hu. There is more to streamgraphs than movies: Better
aesthetics via ordering and lassoing. Comput. Graph. Forum, 35(3):341-350, 2016.

2 Lee Byron and Martin Wattenberg. Stacked graphs - geometry & aesthetics. IEEE Trans.
Vis. Comput. Graph., 14(6):1245-1252, 2008.

3 Temo Chen and Michael K. H. Fan. On convex formulation of the floorplan area min-
imization problem. In Majid Sarrafzadeh, editor, Proceedings of the 1998 International
Symposium on Physical Design (ISPD), pages 124-128. ACM, 1998.

4 William S. Evans, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, Debajyoti
Mondal, Rahnuma Islam Nishat, and Kevin Verbeek. Table cartogram. Comput. Geom.,
68:174-185, 2018.

5 M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar Hamiltonian circuit
problem is NP-complete. SIAM J. Comput., 5(4):704-714, 1976.

6 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL:
https://wuw.gurobi.com/wp-content/plugins/hd_documentations/documentation/
9.1/refman.pdf.

7 Susan Havre, Elizabeth G. Hetzler, Paul Whitney, and Lucy T. Nowell. Themeriver: Visu-
alizing thematic changes in large document collections. IEEE Trans. Vis. Comput. Graph.,
8(1):9-20, 2002.

8 FErkki Makinen and Harri Siirtola. Reordering the reorderable matrix as an algorithmic
problem. In Michael Anderson, Peter C.-H. Cheng, and Volker Haarslev, editors, Proc. of
the First International Conference on Theory and Application of Diagrams, volume 1889
of LNCS, pages 453—-467. Springer, 2000.

9 Jaroslav Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111-114, 1979.

10 E. Rosenberg. Optimal module sizing in VLSI floorplanning by nonlinear programming.
ZOR Methods Model. Oper. Res., 33(2):131-143, 1989.

EuroCG’'21

An example of a randomized order-dependent time
analysis in incremental construction”

Kolja Junginger! and Evanthia Papadopoulou?

1,2 Faculty of Informatics, Universita della Svizzera italiana
{kolja. junginger, evanthia.papadopoulou}@usi.ch

—— Abstract

Abstract Voronoi-like diagrams were introduced by the authors in SoCG 2018 [4] serving as interme-
diate structures in a simple randomised incremental algorithm to perform site-deletion in abstract
Voronoi diagrams in expected linear time. The intermediate Voronoi-like structures depend on the
permutation order of the randomized algorithm and this complicates the time complexity analysis of
the incremental construction. In this abstract we present a method to perform the time-complexity
analysis, which can be of independent interest when analysing the expectation of order-dependent
structures.

Related Version arXiv:1803.05372v2

1 Introduction

We present the time complexity analysis of a simple randomized incremental algorithm,
which was described by the authors in [4] to perform deletion in abstract Voronoi diagrams
in expected linear time, and which also applies to other related Voronoi structures [5].
The technique uses Voronoi-like diagrams as intermediate structures, which are defined as
graphs on the arrangement of the underlying bisector system. These intermediate structures,
however, depend on the randomization order of the incremental algorithm and this complicates
the algorithm’s time complexity analysis. We present a strategy of how to perform this
analysis, which can be of independent interest when analyzing expectation in order-dependent
environments.

Backwards analysis [8] offers simple and elegant means to analyse a randomized incremen-
tal algorithm. It was first used by Chew [1] in a simple incremental technique to compute the
Voronoi diagram of points in convex position in expected linear time. Seidel [8] demonstrated
a variety of problems, whose time analysis can be performed in simple terms by backwards
analysis and since then it has become a standard in computational geometry, see, e.g., [2]
and references therein. He also pointed out a negative example of an order-dependent trian-
gulation where the standard arguments were not applicable. Similarly, standard arguments
are not easy to apply to our order-dependent Voronoi-like structures.

In [4], the cost of one insertion operation is expressed in terms of the resulting structure,
as typically done in backwards analysis. However, depending on the permutation order, at
any step ¢ of the incremental algorithm, there can be a large number of different resulting
structures, which are defined on the same set of i objects, preventing the use of standard
arguments in deriving the expectation. In this paper, we give an alternative derivation. We
consider all possible permutations on i objects, and partition them into disjoint groups of ¢
permutations each. The i permutations within one group all have a different i*" element,
while the order of the remaining elements is kept intact. We show that the step ¢ of the

* Supported in part by the Swiss National Science Foundation, DACH project SNF-200021E_ 154387.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 A randomized order-dependent time analysis

Figure 1 § = 9OVR(s, S) shown in black and V(8) = V(S \ {s}) N VR(s,S) shown in red;
8= (a,ﬂ7’77 6,87 g: 7, 19) (Reproduced from [4])

algorithm on an entire group can be performed in total O(i) time. Since all permutations
are equally likely, we can derive that step 4 is performed in expected O(1) time. The method
gives a simple alternative to backwards analysis, applicable to both order-dependent and
order-independent structures.

We first review concepts of abstract Voronoi and Voronoi-like diagrams and the randomized
incremental construction of [4]. Then in Section 3, we give the strategy to perform the time
complexity analysis, and in Section 4 we outline its derivation.

2 Review of abstract Voronoi and Voronoi-like diagrams

Let S be a set of n abstract sites and let J = {J(p,q) : p # q¢ € S} be their underlying
bisector system, which is admissible, i.e., it satisfies the axioms of abstract Voronoi diagrams
for every subset S’ C S. That is, each bisector curve is an unbounded Jordan curve; each
Voronoi region is non-empty and connected; Voronoi regions cover the plane; and any two
bisectors intersect transversally and in a finite number of points [6].

The bisector J(p, q) of two sites p,q € S is an unbounded Jordan curve that divides the
plane into two open domains: the dominance region of p, D(p,q), and the dominance region
of ¢, D(q,p). The Voronoi region of site p is

VR(p,S) = () D)
4€8\{p}

The abstract Voronoi diagram of S is V(S) = R? \ Upes VR(p, 9).

Without loss of generality, we restrict all computations within the domain Dr enclosed
by a large closed curve I' (e.g., a circle or rectangle) which encloses all intersections of the
bisector system. Each bisector crosses I' twice and transversally.

Consider a Voronoi region VR(s, S) and let 8 denote the sequence of Voronoi edges along
OVR(s,S), i.e., 8 = OVR(s,S) N Dr. The arcs in 8 can be interpreted as sites that induce
the Voronoi diagram V(8) = V(S '\ {s}) N VR(s,S) N Dr, see Figure 1. We compute V(8) in
order to update the Voronoi diagram after deletion of the site s. V(8) is a tree, if VR(s, S)
is bounded, and a forest otherwise. Its regions may have multiple faces that belong to the
same site; in fact, 8 is a Davenport-Schinzel sequence of order 2.

Given 8’ C 8, we need a diagram that is related to 8’. To this aim we use the notion of a
boundary curve on 8" and its Voronoi-like diagram. For any arc a € 8, let s, denote the site
in S such that o« C J(s, s4). Consider the set 7, of all bisectors related to a site p € S, i.e.,
the set of the bisectors J(p,-).

K. Junginger and E. Papadopoulou 29:3

Figure 2 A boundary curve P on 8 C § and its Voronoi-like diagram V;(P). 8’ is shown in bold
and V;(P) in red. The gray arc g is a [-arc, the blue arc 3’ is an auxiliary arc, and the remaining
arcs are original. (Reproduced from [4].)

» Definition 2.1 ([4]). A path in the arrangement of all bisectors in 7, is called p-monotone,
if any two consecutive arcs «, 3, with o C J(p, so) and 8 C J(p, sg), coincide locally around
their common endpoint v with the Voronoi edges of OVR(p, {p, sa, $3}), incident to v.

» Definition 2.2 ([4]). A boundary curve P on a set of core arcs 8’ C 8 is a closed s-monotone
path in the arrangement of 7, UT that contains all arcs in 8’. The part of the plane enclosed
by P is called its domain Dp, see Figure 2.

A boundary curve consists of pieces of s-bisectors called boundary arcs, and pieces of T,
called T'-arcs. The I'-arcs serve as links to boundary arcs and they correspond to openings of
the domain Dp to infinity. Among the boundary arcs, those that contain an arc of 8 are
called original and the others are called auziliary. Original arcs are expanded versions of the
core arcs in 8. In Figure 2, core arcs are shown in bold.

Let S” C S\ {s} denote the set of sites that, together with s, induce the bisectors of the
arcs in 8'. Let Js» = {J(p,q) € T |p,q € S’}. We consider the arrangement of Jg UT.

» Definition 2.3 ([4]). The Voronoi-like diagram of a boundary curve P on 8 C § is a plane
graph defined on the arrangement of bisectors Jg/ that induces a subdivision on the domain
Dyp as follows (see Figure 2): (1) for each boundary arc o € P there is exactly one distinct
face R(a, P), called the Voronoi-like region of «, whose boundary is an s,-monotone path in

Js» UT connecting the endpoints of a; and (2) the faces cover Dp: Uaep\F R(a,P) = Dp.

The Voronoi-like diagram of P is Vi(P) = Dp \ U,ep R(a, P).

V;(P) is unique and its complexity is O(|P|), where |P| is the number of boundary arcs
in P [4].

The incremental construction. Any random permutation of the arcs in 8, defines a series of
boundary curves P;,i =1,...,h, h = |8], and a series of shrinking domains Dp,, where P; is
the boundary curve defined by a single core arc, and Py, = 9(VR(s,S) N Dr); Vi(Pr) = V(8)
[4]. The incremental algorithm is inspired by Chew [1] and works in two phases for a random
permutation of 8 o = (aq,...,ap). In phase 1, delete the arcs in 8 in the reverse order
o~ !, while registering their neighboring arcs at the time of deletion. In phase 2, insert back
the arcs one by one in the order o, starting at P; = (D(s, sq,) N Dr) and V;(Py) = 0. At
any step 4, we compute V;(P;4+1) from V,(P;) by inserting the core arc «; following an arc
insertion operation @, which is detailed in [4]. The insertion point for «; is determined by

the recorded neighbors from phase 1, followed by a scan of any auxiliary arcs between them.

EuroCG’'21

20:4 A randomized order-dependent time analysis

Figure 3 V;(P3) is derived from V;(P) by inserting the region R(8,Ps) [4].

The arc insertion operation @®. Given V;(P) and §* € &', such that 5* ¢ P, we identify
the original arc 5 € J(s,sg) N Dp such that § O §*, and insert it in P to obtain Pg =P & 3
and V;(Pg) = Vi(P) @ 8. To derive Pz we substitute the portion of P between the endpoints
of 8, with 3, see Figure 3. Then, a merge curve J(8) is computed, similarly to an ordinary
Voronoi diagram, which connects the endpoints of § and reveals the Voronoi-like region
R(B,Ps), such that J(5) U S = OR(S,Ps). Updating the diagram, we obtain V;(P) & £,
which turns out to be V;(Pg). The case analysis and correctness were established in [4]. The
time complexity is proportional to the complexity of J(53), plus some additional parameters
for scanning auxiliary arcs and for splitting Voronoi-like regions. For the purposes of this
paper, we ignore these additional parameters and we reduce the dependency of the time
complexity to |R(8,Ps)|-

In summary, the simplified cost of the algorithm’s step ¢ in this paper is assumed
| R(cvi, Pig1)]-

3 The time analysis strategy

Consider the decision tree T, which encodes all possible random choices that can be made
by our incremental algorithm on a set of h core arcs 8, h = |8], see Fig. 4. Any path in T
from the root to a leaf corresponds to one possible execution of the incremental construction.
At level-i, there are h!/(h —4)! nodes, and each node corresponds to a unique permutation
of i core arcs. The arity of each node is h — i corresponding to all possible choices of the
algorithm at this node. 7 has h! leaves and its root corresponds to the empty permutation.

Let 8; C 8 be a subset of 7 core arcs. §; is associated with ¢! different nodes at level-i of
T, which are called the block of the set §;. Each node within a block is associated with a
boundary curve and its diagram. The boundary curves of different nodes in the same block
can vary considerably depending on the path, i.e., the permutation order, that leads to each

Figure 4 There are h!/(h — 4)! nodes at level-i of the decision tree T, each corresponding to a
unique permutation of i core arcs. Level ¢ is partitioned into groups of size i.

K. Junginger and E. Papadopoulou 29:5

node. 7 has (};) distinct such blocks at level i.
We use the following strategy: we partition each block of nodes at level-i into (¢ — 1)!
disjoint groups of ¢ nodes each; for each group we show that the step i of our algorithm
requires total time O(4), for all the ¢ permutations of the group.
Let 0; = (a1, a,...,q;) be an arbitrary permutation of 8;. From o; we define a group
G = G(o0;) of i permutations: for each 1 < j < i, remove «; from its position in o; and
append it to the end of o;.

0i=(04170627~~~,04j71,,Otj+1~~~,06i71,06i) (1)

Oj:(alaa27"~7aj—lv aj+1a~"7ai—l7aia) (2)

Each permutation o; in G corresponds to a boundary curve Bj;, 1 < j < 4, which is
derived by arc insertion following the order in o;. B; is the base boundary curve of the group
that is derived from o;. Figure 5 illustrates an example for i = 3.

The rule of equation (2) follows two principles: 1) each of the i elements in 8; appears
in the i*" position of exactly one permutation in each group; and 2) each permutation has
a minimal number of ‘nversions with respect to o;. Property 1 is used to derive the time

complexity of step ¢ on G by reducing it to the structural complexity of a resulting diagram.

Property 2 minimizes the differences between the resulting boundary curves. By combining

the two, we can reduce the time complexity of step ¢ to the structural complexity of V;(;).

Let T'(4, 05) denote the time complexity of step ¢ when inserting the last arc of permutation
o, in deriving V;(B;).

» Lemma 3.1. The time for step i on the entire group G = G(0;) is
T(i,G) =Y T(i,0;) = O(i)
OjEG

After proving Lemma 3.1 it remains to argue that the partitioning of each block of 7!
nodes (permutations) following the scheme of equation (2) is possible. The answer to this

question is provided by Levenshtein [7] and this was pointed out to us by Stefan Felsner [3].

> Lemma 3.2. Let 1I; denote the block of all i! permutations of the set 8;. There exists a
set ' C II; of (i — 1)! permutations such that II; = |, pG(0).

Levenshtein calls this set F' a code capable of correcting single deletions and proves that
these codes exist for all ¢ € N [7, Theorem 3.1]. Given Lemmata 3.1,3.2, we conclude:

» Theorem 3.3. The expected time complexity of step i of the randomized algorithm is O(1).

4 Proving Lemma 3.1

In this section we establish relations between the Voronoi-like diagrams of B; and the rest
of the boundary curves B; in G = G(0;), j < i, so that we can prove Lemma 3.1. Figure 5
illustrates an example of B;, i = 3, and B;.

o i B; [e% i o B,

(a) (b)

Figure 5 (a) Boundary curve B;, 0; = (7, 8,). (b) Boundary curve Bi, 01 = (8, @, 7).

EuroCG’'21

29:6 A randomized order-dependent time analysis

Figure 7 Let 01 = (3,a,v) and 0; = (7, 3, a); then o = source;(a’). B; is shown in Fig. 5(a).

Let D; denote the domain of the base boundary curve B; in G = G(0;), see Figure 6. The
boundary curves Bj, j < i, significantly overlap with B; as they share the same set of core
arcs 8;. However, they may also get in and out of the domain D; because their auxiliary
arcs need not be the same. Let in; = B; N D;, and out; = B; \ D;, denote the portion of B;
inside, and outside of D;, respectively.

» Observation 4.1. The boundary curve B;, j # i, contains no auxiliary arcs of the core arc
o and these are the only auxiliary arcs of B; that do not also appear in B;.

» Definition 4.2. Let o’ be an auxiliary arc in B; and let o € 8; be a core arc of the same
site. We say that o is an auxiliary arc of « if there is an original arc & O o U o/, which
was created for the first time when inserting the core arc o during the construction of Bj,
see Figure 7. The core arc « is called the source of &' and is denoted as source; (o). If o
appears counterclockwise (resp. clockwise) from its source v on the underlying bisector then
o’ is called a ccw (resp. cw) auxiliary arc.

Let inj+ (resp. in;) include the ccw (resp. cw) auxiliary arcs of inj. In Figure 5, arcs o
and (3’ belong in in;r for j = 1.

» Observation 4.3. Let o € in; and let oy, = sourcej(). Then, k > j, i.e., oy follows
in 0;. Further, if o € mj then (ag, o, o) appear ccw in B;.

We define the set IV; of source arcs for each j.
N; = {source;(a’) € 8; | @’ € in]}.

Using Observation 4.3, we derive the following disjointness property. In contrast the sets

in;' and in}, k # j, may have many common arcs.

> Lemma 4.4. N; N\ Ny =0 for all k # j. Thus, ¥;_; [N;| = O(i).

Next, we point out the special structure of inj, which is shown in Figure 8.

K. Junginger and E. Papadopoulou 29:7

Figure 8 If o/, 8’ € in;', then j < k < ¢, and (ag, ar, aj, ', a’) appear in ccw order on B;.

» Observation 4.5. Let o/, € m;r such that ay, = sourcej(a’), oy = source;(f'), and
k<. Then, j <k <, and (ou, oy, o, ', a") appear in ccw order in Bj. All auziliary arcs
of ay appear before the auziliary arcs of ay, as we move on B; counterclockwise from a;.

Next, we compare R(c;, B;) and R(a;, B;) and bound the differences in their adjacencies.
We observe that any common arcs to both B; and B; that have adjacent regions in V;(B;), the
same arcs must also have adjacent regions in V;(B;). We also use Observations 4.1 and 4.5.

» Lemma 4.6. |R(Olj,8j)| < 2‘R(CVJ,BZ)| + |NJ|

By Lemmata 4.6 and 4.4, we derive that Z;zl |R(cj,Bj)| = O(i). This completes the
proof of Lemma 3.1 for the simplified time complexity formula of this abstract.

Acknowledgments. We thank Stefan Felsner for making the connection to the seemingly
unrelated result of Levenshtein [7] on perfect codes, which established the proof of Lemma 3.2.

—— References

1 L. Paul Chew. Building Voronoi diagrams for convex polygons in linear expected time.
Technical report, Dartmouth College, Hanover, USA, 1990.

2 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

3 Stefan Felsner. Personal communication, 2019.

4 Kolja Junginger and Evanthia Papadopoulou. Deletion in Abstract Voronoi Diagrams in
Expected Linear Time. In 34th International Symposium on Computational Geometry
(SoCG 2018), volume 99 of LIPIcs, pages 50:1-50:14, Dagstuhl, Germany, 2018. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/8763.

5 Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi diagrams
in expected linear time and related problems. CoRR, abs/1803.05372v2, 2020. URL:
http://arxiv.org/abs/1803.05372, arXiv:1803.05372v2.

6 Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes in
Computer Science. Springer-Verlag, 1989.

7 Vladimir Levenshtein. On perfect codes in deletion and insertion metric. Discrete Mathe-
matics and Applications, 2(3):241-258, 1992.

8 Raimund Seidel. Backwards analysis of randomized geometric algorithms. In Trends in
Discrete and Computational Geometry, Algorithms and Combinatorics, volume 10, pages
37-68. Springer-Verlag, 1993.

EuroCG’'21

A Tail Estimate with Exponential Decay for the
Randomized Incremental Construction of Search
Structures®

Joachim Gudmundsson! and Martin P. Seybold!

1 School of Computer Science, University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au, mpseybold@gmail.com

—— Abstract
We revisit the randomized incremental construction (RIC) of the Trapezoidal Search DAG (TSD)
for a set of n segments. It is well known that this point location structure has O(n + k) expected
size and O(nlnn + k) expected construction time, where k is the number of intersection points.

Our main result is an improved tail bound, with exponential decay, for the size of the TSD on
non-crossing segments (k = 0): There is a constant such that the probability for a TSD to exceed
its expected size by more than this factor is at most 1/€™. This yields improved bounds on the TSD
construction and their maintenance. I.e. TSD construction takes with high probability O(nlnn)
time and TSD size can be made worst case O(n) with an expected rebuild cost of O(1).

1 Introduction

RIC is one of the most successful and influential paradigms in Computational Geometry.
The idea is to first permute all n input objects, uniformly at random, before inserting them,
one at a time, in an initially empty structure under this order. The theory developed for
history based RIC lead to a tail bound technique [13, 8] that holds as soon as the actual
geometric problem under consideration provides a certain boundedness property. To our
knowledge, the strongest tail bound to date is from Clarkson et al. [8, Corollary 26], which
states the following. Given a function M such that M (j) upper bounds the size of the
structure on j objects. If M(j)/j is non-decreasing, then, for all A > 1, the probability
that the history size exceeds AM (n) is at most (e/\)*/e. This includes the TSD size for
non-crossing segments (k = 0). Assuming intersecting segments, Matousek and Seidel [12]
show how to use an isoperimetric inequality for permutations to derive a tail bound of O(n~°),
given there are at least k > Cnlog'® n many intersections in the input (both constants ¢ and
C' depend on the deviation threshold A\). Mehlhorn et al. [13] show that the general approach
can yield a tail bound of at most 1/e2(*/71n7) "given there are at least k > nlnnln® n
intersections in the input. Recently, Sen [22] gave tail estimates for ‘conflict graph’ based
RICs (cf. Chapter 3.4 in [17]) using Freedman’s inequality for Martingales. The work also
shows a lower bound on tail estimates for the runtime, i.e. the total number of ‘conflict
graph’ modifications, for computing the trapezoidation of non-crossing segments that rules
out high probability tail bounds [22, Section 6]. In this variation of the RIC, not only one
endpoint per segment is maintained in conflict lists, but edges in a bipartite conflict graph,
over existing trapezoids and uninserted segments, that contain an edge if the geometric
objects intersect (see Appendix and Figure 4 in [22]). Hence this lower bound construction
does not translate to the TSD (i.e. history based RIC).

* Full paper: https://arxiv.org/abs/2101.04914

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7-9, 2021.

This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

30:2 A Tail Estimate with Exponential Decay for the RIC

Technique Size | With Prob. > Condition
Isoperimetric[12] | O(k) —0(1/n°) k> Cnlog'®n
Hoeflding[13] Ok) | 1—1/eE/mnm) | k> pninnn® n
Freedman(22] O(k) | 1—1/ek/mam k>nlnn
Hoeffding[8] On) | 1—(e/N)*/e

Pairwise Events | O(n) | 1 —1/e"

Table 1 Tail bounds for the history size of TSDs on n segments. k denotes the number of
intersection points and a(n) the inverse of Ackermann’s function.

We introduce a new and direct technique to analyze the size of the TSD that is based
on pairwise events and an inductive application of Chernoff’s method. Our main result is a
much sharper tail estimate for the TSD size of non-crossing segments (see Table 1). This
complements the known high probability bound for the point location cost and shows that
the TSD has, with very high probability, size O(j) after every insertion step j.

2 Recap: Trapezoidal Search DAGs

Let S be a set of n segments in the plane. We identify the permutations over S with the
set of bijective mappings to {1,...,n}, i.e. P(S) ={n:S5 — {1,...,n} | 7 bijective}. The
integer 7(s) is called the priority of the segment s.

An implicit, infinitesimal shear transformation allows to assume, without loss of generality,
that all distinct endpoints have different z-coordinates (e.g. Chapter 6.3 in [9]). Trapezoida-
tion 7(5) is defined by emitting two vertical rays (in negative and positive y-direction) from
each end or intersection point until the ray meets the first segment or the bounding rectangle
(see Figure 1). To simplify presentation, we also implicitly move common endpoints infinites-
imal along their segment, towards their interior. This gives that non-crossing segments have
no points in common, though there may exist some spatially empty trapezoids in 7(S). We
identify 7(S) with the set of faces in this decomposition of the plane. Elements in 7(.5) are
trapezoidal regions that have a boundary that is defined by at most four segments of S (see
Figure 1). Note that boundaries of the trapezoids in 7(S) are solely determined by the set
of segments S, irrespective of the permutation. We will need the following notations. Let
v > 1 be the smallest constant® such that |7(S)| < yn holds for any S that is sufficiently
large. For a segment s € S, let f(s,S5) = {A € T(S) : A is bounded by s} denote the set of
faces that are bounded by s (i.e. top, bottom, left, or right). Let s; = 7~ 1(i) be the priority
i segment and let S< = {s1,..., sk}

The expected size of the TSD is typically analyzed by considering Z;’:l D; where the
random variable D, := |f(s;, S<;)| denotes the number of faces that are created by inserting
s; into trapezoidation 7 (S<;_1), equivalently that are removed by deleting s; from T (S<;)
(see Figure 2). Classic Backward Analysis [9, p. 136] in this context is the following argument.
Let S’ C S be a fixed subset of j segments, then

<=5 = Z 3 x(A€f(s,9) < 4}7,

ses/ AET(S)

E |D;
P(5)

where the binary indicator variable x(A € f(s,S’)) is 1 iff the trapezoid A is bounded by
segment s. The equality is due to that every segment in S’ is equally likely to be picked

! See, e.g., Lemma 6.2 in [9] that shows |7(S)| < 3|S| + 1 for non-crossing segments.

Joachim Gudmundsson and Martin P. Seybold 30:3

Figure 1 Trapezoidations over the segments S = {a = (a.l,a.r),b = (b.,b.r),c = (cl,cr),d =
(d.l,d.r)} where c.l = d.l is a common endpoint. T ({a}), T({a,b}), T({a,b,c}), and T ({a,b,c,d})
have 4, 7, 10, and 13 faces respectively (cf. leaves in Figure 2).

T({a,b})
T({a,b,c})
O (g O O (@)@ (é @] (B T({a7b’07d})
Uu v

Figure 2 TSD for the history of trapezoidations under permutation m = (‘11 e ff) from Fig-

ure 1. TSD node v corresponds to the trapezoid A(v), which has the boundaries top(A(v)) = ¢,
bottom(A(v)) = b, left(A(v)) = a.r, and right(A(v)) = b.r and the spatially empty A(u) is due to
common endpoint left(A(u)) = c.l = d.l = right(A(u)). Path with heavy line width is not a search
path, since d.r is left of a.r.

EuroCG’'21

30:4 A Tail Estimate with Exponential Decay for the RIC

D=4
o 1 AQZ{CL} NQZ{} D2:5
X =17 As={a,b} Ns={} |Ds=6
01 Ay={c} Ny={ab}|Ds=4

Table 2